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Abstract: Fault Detection and Identification (FDI) problems often have to take into
account the interference of nuisance parameters in the elaboration of decision processes.
There are many works addressing cases in which nuisance parameters interfere in a linear
and additive way, most of them in a deterministic framework.The main contribution of
the paper is to propose a fully statistical methodology for dealing with non-linear nuisance
parameters. The results obtained allow an analysis of the risks (in terms of non-detection
and false alarm probabilities) attached to a statistical test designed for such non-linear
models. The developed method is applied to the integrity monitoring of GNSS train
navigation and some simulations demonstrate the worthiness of this approach.
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1. OUTLINE

The goal of the paper is to consider the FDI problem
in the case of nuisance parameters (or faults) given
by a non-linear static regressive model. The main
contribution of the paper is the adaptation of the
general statistical theory of detection with nuisance
parameters to a certain class of non-linear models. A
very special effort is done to estimate the statistical
quality of the obtained tests and to warrant theirε-
optimality. Finally, the developed methodology is used
in the context of the integrity monitoring of GNSS
train navigation.

2. PROBLEM STATEMENT

Let us consider the following static non-linear model

Y = H(X) + ε[+Mθ], X ∈ K ⊂ Rm (1)

whereY ∈ Rn is the measured output,X is a un-
known nuisance parameter (typically the state of a

system), it is assumed thatn > m, K is a compact
set of vectors,θ ∈ Rp is an informative parame-
ter vector, i.e. the target fault to be detected,ε ∼
N (0, σ2In) is a zero-mean Gaussian noise,M is a
known full column rankn × p matrix andH(X) =

(h1(X), . . . , hn(X))
T is a known function assumed

to be at least continuous w.r.t.X. The target faultθ
detection problem is stated as follows : one wishes to
design a statistically optimal decision rule (based on
the outputY ) between hypotheses

H0 : θ = 0,X ∈ K ⊂ Rm (null hypothesis) and

H1 : θ 6= 0,X ∈ K ⊂ Rm (alternative one). (2)
The assumption that the vectorX belongs to a com-
pact setK can be justified in practice by some physical
limitations on the values of variableX (the altitude
of an aircraft is always positive, the power of an en-
gine is limited), even if the real value ofX remains
unknown, besides it has been proved that such an
information (if available) may be useful to improve
the statistical quality of the decision process (Lacresse
and Grall, 2001).



The statistical performance of a binary decision test
δ : Y 7→ {H0, ; H1} is defined with the probability
of false alarm:α = Pr0 (δ 6= H0) and the power func-
tion : βδ(θ) = Prθ (δ = H1),wherePrθ stands for the
vectorY being generated by model (1) when the true
target fault vector is equal toθ. In case of a vector
parameterθ, the crucial issue is to find an optimal
solution over a set of alternatives which is rich enough.
Unfortunately, uniformly most powerful (UMP) tests
scarcely exist, except for some family of distributions
when the parameterθ is scalar (Borovkov, 1987). The
general theory of the composite hypotheses testing
problem was originally proposed by Wald. His idea
is to impose an additional constraint on the class of
considered tests, namely, aconstant power function
βδ(θ) over a family of surfaces defined on the param-
eter spaceΘ (see details in (Wald, 1943)).

The optimal statistical decision problem has been
solved in the case of linear nuisance parameter
H(X) = HX, whereH is a matrix of adequate size,
which allows to rewrite (1) as

Y = HX + ε[+Mθ]. (3)

Model (1) remains quite general, indeed many
discrete-time models involving an informative param-
eter (target fault) can be re-written as regression mod-
els similarly to (1) (or (3)) (see details in (Basseville,
1997)), provided the initial detection problem is off-
line.

3. LINEAR MODEL

An optimal solution based on the invariant uniformly
best constant power (UBCP) test will be briefly re-
called in this section (see details in (Basseville and
Nikiforov, 2002; Fouladirad and Nikiforov, 2003;
Fouladirad and Nikiforov, n.d.; Nikiforov, 2002)). The
statistical testing problem between two hypotheses
given by equation (2) in the case of model (3) is invari-
ant under the group of transformationsG = {Y 7→
g(Y ) = Y + HX} of the output dataY , and one
should then seek a statistics based onY that is a max-
imal invariant statistics w.r.tG to design an optimal
test. Let us define the column spaceR(H) of the ma-
trix H. The standard solution to this invariant problem
is the projection ofY on the orthogonal complement
R(H)⊥ of the column spaceR(H) (“parity space" in
the analytical redundancy literature). The parity vector
Z = WY is the transformation of the measured output
Y into a set ofn− q linearly independent variables (q
being the rank ofH). If the matrixH is full column
rank, i.e.q = m, the matrixW satisfies the following
conditions

WH = 0, WWT = In−m, WT W = PH ,

with PH = In − H(HT H)−1HT . If q < m then
the matrix (HT H)−1 is replaced by a generalized
inverse matrix (Koch, 1999, Ch. 1.5.3). The parity
vector Z = WY is indeed a maximal invariant for

the group of transformationsG (see (Fouladirad and
Nikiforov, n.d.) for details) and transformation byW
removes the interference of the nuisance parameter
X since Z = WY = Wε [+WMθ]. By using
Wald’s methodology (Wald, 1943), one can define the
statistics corresponding to this problem :

Λ(Y ) =
1

σ2
Y T PHM(MT PHM)−1MT PHY (4)

It has been shown (Fouladirad and Nikiforov, 2003;
Fouladirad and Nikiforov, n.d.) that the testδ∗

δ∗(Y ) =

{

H1 if Λ(Y ) ≥ h(α)
H0 if Λ(Y ) < h(α)

, (5)

where the thresholdh(α) is determined so that

Pr0(δ
∗(Y ) = H1) =

∫ ∞

h(α)

f0(z)dz = α

with f0(z) = z
n−m

2
−1

e
−

z

2

2
n−m

2 Γ(n−m

2 )
, Γ(x) is the gamma

function andα is a prescribed probability of false
alarm, is UBCP over the family of surfacesSc :
1

σ2 ‖WMθ‖2
2 = c2, c > 0. It is thus convenient to

present the power of a such a test as a function ofc2 :
c2 7→ βδ∗(c2). It is easy to see thatc2 is the parameter
of non centrality of theχ2 law underH1. Hence, the
power function is given by

βδ∗(c2) = Prc2(δ∗(Y )) =

∫ ∞

h(α)

fc2(z)dz (6)

wherefλ(z) = f0(z)e−
λ

2 G
(

n−m
2 , λz

4

)

is the density
of the non centralχ2

n−m,λ with n−m degrees of free-
dom, λ is the non-centrality parameter, andG(κ, x)
is the hyper-geometric function. It was also shown
(Nikiforov, 2002) that the invariant UBCP test given
by equations (4) - (5) coincides with thegeneralized
likelihood ratiotest.

4. NONLINEAR MODEL

4.1 Preliminary remarks

At first glance, it seems that the methodology de-
scribed in (Wald, 1943) could allow the treatment of
of the fault detection problem in the case of non-linear
model (1) re-formulated as follows

H0 : ν(θ) = 0,H1 : ν(θ) 6= 0

by using the observation vectorY whose distribution
Fθ is a function of parameterθ ∈ Θ ⊂ Rp and the
functionν : Θ ⊂ Rp → Rr(r ≤ p) being potentially
non-linear. The feasibility of Wald’s scheme is con-
ditioned by the possibility to complete the following
set of r equations,ν(θ) = 0, corresponding to hy-
pothesisH0, with p − r similar equations to obtain a
differentiable one-to-one map of the setΘ onto itself.
The conditions on the family of distributionsFθ area
priori weak but the properties of this family should
allow to compute the maximum likelihood estimate



θ̂(Y N
1 ) from a sampleY N

1 of statisticsY to comply
with the requirements of Wald’s approach.

Unfortunately, it can be stated with many examples
that the application of Wald’s scheme to non-linear
models encounters serious intrinsic difficulties. These
problems can be quite easily explained with the fol-
lowing simple particular case of (1)

Y =

(

y1

y2

)

=

(

sin x
cos x

)

+

(

ε1

ε2

)

[+θ] (7)

with x ∈ R1, θ = (θ1, θ2)
T a possible fault and

ε = (ε1ε2)
T ∼ N (0, σ2I2). The initial decision

problem isH0 : θ = 0 vs. H1 : θ 6= 0 but, in order
to use Wald’s methodology, model (7) and the initial
formulation ofH0 andH1 ought to be replaced by
other more appropriate though not equivalent forms.
Having no direct way to eliminate the nuisancex, it
is assumed thatY ∼ N

(

(m1,m2)
T ;σ2I2

)

and the
“new" decision problem is defined by using

H0 : ν(m1,m2) = m2
1 + m2

2 − 1 = 0

and H1 : ν(m1,m2) 6= 0

The first difficulty is that the functionν and the
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Fig. 1. The two hypotheses : the values of nuisancex
ranges over the interval[0; 2π]

auxiliary parameters(m1,m2) do not fulfill Wald’s
requirements, i.e. in this case the completion of equa-
tion m2

1 + m2
2 − 1 = 0 with another similar equation

to obtain a one-to-one map ofR2 is impossible, and
the statistical separability of the two hypotheses is
not ensured (see figure 1). It is however interesting
to retain the idea that a hypothesis testing problem
involving a non-linear model with linear hypotheses
can be turned into a problem with a linear model and
non-linear hypotheses, even if the two formulations
are not exactly describing the same problem.

The second difficulty is that even if a suitable function
ν could be found to satisfy Wald’s conditions, another
problem would still persist : since the nuisance pa-
rameterx interferes within outputY in a non-linear
way the optimality of the test based on Wald’s statis-
tic would only be asymptotic, whereas in the linear
case optimality can be achieved without asymptotic
conditions. This means that getting reliable statistical

performances requires infinitely many measurements
of output Y , whereas the detection processes under
consideration should use very few measurements and
possibly only one to be relevant to practical needs.

4.2 Usual linearization schemes

The use of linearization scheme is the most obvious
way to overcome the difficulties mentioned in the
previous section when dealing with the following non-
linear model

Y = H(X) + ε[+θ],X ∈ K

whereH is a non-linear function. It is usually assumed
that H is smooth enough to write, for anyX0 ∈ K,
H(X) = H(X0) + JH(X0) · (X − X0) + ‖X −
X0‖ε(X − X0) with limX→X0

ε(X − X0) = 0 and
JH(X0) the Jacobian matrix ofH at pointX0. The
non explicit term of this expansion is then neglected
to treat statisticsY as if

Y ∼ N
(

H(X0) + JH · (X0)(X − X0) + θ, σ2In

)

If WX0
is a projection on the left null-space of

JH(X0), the affine interference of the nuisanceX
can be rejected by using the statisticsZ = WX0

·
(Y − H(X0)) (assuming there is no rank problem
with this projection). Following the methodology ap-
plied to linear models, the statistics to be used in
this situation isΛ(Y ) = 1

σ2 ZT Z. This statistics is
distributed according to aχ2 type law whose ap-
proximate non-centrality parameter (with a faultθ)
is λa = ‖ 1

σ2 WX0
θ‖2 whereas its exact expression

is λt = ‖ 1
σ2 WX0

· (H(X) − H(X0) + θ)‖2. To
assess the performance of the test based on such an
approximation scheme, it would be useful to compute

sup
X∈K

‖WX0
· (H(X) − H(X0))‖

2

or eveninfX0∈K supX∈K ‖WX0
·(H(X)−H(X0))‖

2

to see if there is a "best" linearization pointX0 within
the compact setK. The main difficulty arising in the
case of this double optimization is that there is no
general analytical/numerical solution to it. For this
reason, it is not obvious to warrant certain statistical
performances of the corresponding fault detection al-
gorithm.

4.3 A more convenient approximation scheme

The “best" approximation scheme for a non-linear
model like (1), taking into account the fact thatX
belongs to a compact setK, would allow to compute,
for each component functionhi of H, the optimal
coefficientsa∗

i ∈ Rm andb∗i ∈ R so that

(a∗
i , b

∗
i ) = arg inf

(ai,bi)∈Rm×R
J(ai, bi) (8)

whereJ(ai, bi) = supX∈K |hi(X)−aT
i X − bi|. This

leads to an approximationX 7→ aT
i X + bi of each



function hi and consequently to an approximation
X 7→ AX + B of the functionH adaptedto the
compact setK where the nuisance vectorX lies.

Unfortunately, these optimizations problems are again
intrinsically difficult if no particular assumption is
made on the structure ofH. To avoid this difficulty,
the expression of the criterionJ(ai, bi) can be re-
placed by a more tractable expression to allow easier
computations. For instance, if the componentshi of
functionH are accessible only via a discrete sample of
their ranges on the compact setK atk different points
X1,X2, . . . ,Xk of K, one may replaceJ(ai, bi) by a
"quadratic" criterion such as

J̃(ai, bi) =
∑

1≤j≤k

(

hi(Xj) − (aT
i Xj + bi)

)2
(9)

The above quadratic criterion yields straightforward
computations of the coefficients and will be used in
the rest of this contribution.

The coefficientsai andbi computed by a minimization
of an alternative criterionJ̃(ai, bi) are not optimal,
but they are useful for the statistical decision problem
under consideration. The quality of such an approxi-
mation should be assessed through the computation of
supX∈K |hi(X)− aT

i X − bi|, which is still a difficult
optimization problem. To overcome this new obstacle,
one can use the following easily computable expres-

sionρi =
√

J̃(ai, bi) or even

ρ̃i = max
1≤j≤k

|hi(Xj) − (aT
i Xj + bi)| (10)

as indicators of the approximation quality for each
functionhi. Indeedρ̃i is the only accessible estimate
of supX∈K |hi(X) − aT

i X − bi| if the functionshi

are only known via a discreet sample of values :
hi(X1), hi(X2), . . . , hi(Xk). As it will be shown in
section 5, this kind of situation can arise in some appli-
cations and it should not be considered as an excessive
simplification of the initial optimization problem.

The information contained in the values of̃ρi for
each componenthi of functionH can be used in the
following way. SettingE(X) = H(X) − AX − B
andZ = W · (Y − B), with W a linear projection
on the left null-space of matrixA, the non-centrality
parameter of theχ2 statisticsΛ(Y ) = 1

σ2ZTZ under
hypothesisH1 is λt(θ) = 1

σ2 ‖Wθ + WE(X)‖2 (with
θ 6= 0). This non-centrality parameter can be bounded,
independently of the value ofX ∈ K, using the norm
of vectorR = (ρ̃1, . . . , ρ̃n)T

λ1(θ) =
1

σ2
max(‖Wθ‖ − |||W |||‖R‖; 0)]2 ≤ λt(θ)

≤ λ2(θ) =
1

σ2
(‖Wθ‖ + |||W |||‖R‖)2,

with |||W ||| the Euclidean norm of the linear projec-
tion W (one can chose the projection matrixW so that
|||W ||| = 1), from the triangular inequality.

For a given test levelα, 0 < α < 1, the power
function βt of the test based on statisticsΛ(Y ) ∼

χ2
n−m,λt(θ) (with m = rank(W )) have to be en-

veloped by the power functionsβ1 andβ2 of the tests
of the same level, based respectively on the distribu-
tions χ2

n−m,λ1(θ) and χ2
n−m,λ2(θ). β1 and β2 reflect

the possible deviations of the power function of a test
based onΛ(Y ). Settingt = ‖Wθ‖, the linearization
error of the model may cause a power loss reaching
e1 = supt∈R+ [β(t)−β1(t)] or a power gain reaching
e2 = supt∈R+ [β2(t)−β(t)] with β the power function
of an "ideal" test based onχ2

n−m, t

σ2

(βt is not directly

accessible). Of course, both expressionse1, e2 are use-
ful, but for some applications (like the one described
in section 5) slightly modified indicators can be used
based on the idea that a potential loss of power is more
worrying than a power gain, especially for critically
important values ofθ.

5. APPLICATION : SAFE GNSS TRAIN
NAVIGATION

For many safety-critical applications, a major problem
of the existing navigation systems consists in its lack
of integrity. The integrity monitoring concept requires
that a navigation system detects faults and removes
them from the navigation solution before they suffi-
ciently contaminate the output. The recent researches
show that the detection/exclusion of the navigation
message contamination is crucially important for the
radio-navigation. It is proposed “to encourage all the
transportation modes to give attention to autonomous
integrity monitoring of GPS signals" (John A. Volpe
Center, 2001). Only detection function is discussed
in this paper; theexclusion functionof the integrity
monitoring algorithm is not studied here.

5.1 Navigation model

As it follows from (Nikiforov and Choquette, 2003),
the train navigation measurement model is based on
the assumption that the accurate train track is available
under the form(x, y, z)T = (φ(l), ϕ(l), η(l))T , where
l ∈ I is a curvilinear parameter andI is an interval.
The pseudo-rangesri from the locomotive to then
satellites of the GNSS constellation are given by

ri =di(φ(l), ϕ(l), η(l))+ctr+εi, i=1, 2, . . . , n, (11)

wheredi(l) = di(φ(l), ϕ(l), η(l)) is the true distance
between satellite numberi and the locomotive,tr
is the clock-bias of the receiver (unknown but non
random),c ≃ 2.9979 ·108m/s is the speed of light and
εi is a measurement noise, assumed to be Gaussian,
zero mean with varianceσ2

i .

This model is non-linear w.r.t.l but linear w.r.t.tr and
the "usual" linearization scheme of this model around
a "working point" writes

Y =(r1−d1(l0), . . . , rn−dn(l0))
T ≃H·(X−X0)+Ξ,

(12)



with H a Jacobian matrix andX = (l, ctr)
T the state

(the nuisance) vector of the model,X0 = (l0, 0)T the
working point of the model andΞ = (ε1, . . . , εn)T

the measurement noise. This linearized model is used
iteratively to obtain an estimatêX = (l̂, ct̂r)

T of X
by minimizing the following quadratic function

X 7→ [Y − H · (X − X0)]
T

Σ−1 [Y − H · (X − X0)]

whereΣ is a diagonal covariance matrix of pseudo-
range variancesσ2

i (1 ≤ i ≤ n). The “snapshot"
(i.e. based on one observation vector) Receiver Au-
tonomous Integrity Monitoring (RAIM) algorithm is
defined by the following stopping rule :

Ns = inf{k : Λ(Yk) ≥ hs} (13)

where the thresholdhs is defined by using
the characteristics of the statisticsΛ(Yk) =
(WYk)T Σ−1(WYk) and the knowledge of the
maximum acceptable false alarm rateα (whose value
is givena priori) andW is a linear projection on the
left null-space of matrixH to detect a potential fault
θi in model (11).

5.2 Integrity monitoring

The integrity monitoring of such a navigation system
is based on the concept of an unacceptable positioning
error, so-called “positioning failure", i.e. a situation
when a positioning error of the locomotive is incom-
patible with some predefined safety requirements. For
this purpose, an “Along the Track Protection Inter-
val" (ATPI) can be defined as a curvilinear segment
[C(l);C(l)] centered on the true position of the loco-
motiveS(l), which is required to contain the indicated
locomotive position with a given probability1 − pr.
The “length"L of this interval can be stated directly
through a range of values of the scalar parameterl
(see details in (Nikiforov and Choquette, 2003)). It is
assumed that only one satellite channel can be con-
taminated by an additional biasθ in the measurement
model (11).

Because the linearized model given by equation (12)
is used, it is assumed that at each timek, Λ(Yk)
has a centralχ2 distribution with n − 2 degrees of
freedom ifθ = 0 (no positioning failure), and a non
centralχ2 distribution with a non-centrality parame-
ter λ(θ) if a positioning failure occurs,θ 6= 0. The
performances of the RAIM algorithm are adjusted
by the definition of its maximum false alarm rate
α and availability. The value ofα allows the com-
putation of a thresholdhs that defines thestopping
rule of the algorithm (see equation (13)). If a fault
θi = (0, . . . , 0, vi, 0, . . . , 0)T 6= 0 (1 ≤ i ≤ n)
occurs at timek, Λ(Yk) has a non centrality parameter
λ(θi) = λ(vi) whose magnitude depends onvi. The
corresponding non-detection probabilityPrnd can be
expressed byp(i, vi) = Prnd =

∫ hs

0
fλ(θi)(u)du with

density fλ(u) = f0(u)e−
λ

2 G
(

n−2
2 , λu

4

)

. For each

satellite channel, the lengthL of the ATPI interval
determines a critical absolute valuev∗

i below which
a fault θi = (0, . . . , 0, vi, 0, . . . , 0)T is acceptably
"small". These computations involve the probability of
integrity riskpr (used to define the ATPI interval), the
probability pf of a GNSS satellite channel integrity
failure and the distribution of the statistics|l̂k − lk|,
wherel̂k is the estimated curvilinear parameterlk. By
computing the probabilityp∗ = max1≤i≤n p(i, v∗i ),
the algorithm is considered as “available" ifp∗ ≤ γ
with γ the upper bound fixed for the non-detection
rate.

As it follows from the above discussion, the integrity
risk analysis is heavily based on the linearity hypoth-
esis. The goal of the following section is to study the
relation between the train track non linearity “mag-
nitude" and its impact on the probabilities of non-
detection and false alarm.

5.3 Non linearity magnitude and risk analysis

Instead of linearizing model (11) around a working
point, a compact intervalK = [lmin; lmax] can be
defined for lk according to physical considerations
on the motion of the train. Since the clock biastr
interferes linearly in (11), this allows the computation
of a affine approximation, as suggested in 4.3,

Yk = (r1, . . . , rn)T − B ≃ AXk + Ξk[+θ].

The vectorR = (ρ̃1, . . . , ρ̃n)T (see equation (10))
is an indicator of the “quality" of this approximation.
The “new" statisticsΛ(Yk) = (WAYk)T Σ−1

k (WAYk)
uses a projectionWA = W (A) on the left null-
space of matrixA and the consequences of the linear
approximation on the statistical quality of a test based
on Λ(Yk) can be assessed as follows. A critical value
of the non-centrality parameterΛ(Yk) is defined as

λmax = max
1≤i≤n

‖W (0, . . . , v∗i , . . . , 0)T ‖2

and allows a better estimation of the availability of the
RAIM-snapshot algorithm. Indeed, for some faultθ,
the following situation may occur

‖Wθ + W (D(lk) − AXk − B)‖2 < λmax

with ‖Wθ‖2 > λmax

(whereD(lk) = (d1(lk), . . . , dn(lk))T ) and certain
fault could be hidden by the linearization error com-
mitted. To avoid the underestimation of the non-
detection rate, the following indicator can be used
e1 = β(λmax) − β1(λmax).

For the RAIM algorithm based on the statisticsΛ(Yk),
this indicator represents the potential power loss,
due to non-linearities, for a given false alarm level
within the critical range of non-centrality parameters
of this statistics. A more accurate estimate of the
non-detection risks attached to this algorithm is then
p∗ + e1 and the availability of the algorithm has to



be decided on the basis of the following comparison
p∗ + e1 ≷ γ with γ the pre-requested non-detection
rate.

Another useful indicator interfering with the perfor-
mances of the algorithm is the value ofe2 = β2(0) −
β(0) which corresponds to a potential increase of
the false alarm rate of the algorithm. Indeed, if the
effective false alarm rate of the algorithm is much
greater than the value ofα (requested by the user),
the algorithm becomes hardly useable generating too
many false alarms.

A numerical simulation has been performed with the
following track equation







x(l) = x0 + kdl
y(l) = y0 + υ sin(2πl)
z(l) = z0

, l ∈ [0; 1]

where the parameterυ is used to vary the “non-
linearity" of the track. The values ofα and γ have
been chosen as, respectively,10−5 and10−3 that cor-
responds to typical integrity monitoring requirements.
Figure 2 shows clearly thate1 ande2 quickly become
non negligible in comparison toα andγ asυ (x axis)
increases. The influence of the linear approximation
error is thus to be taken into account for such integrity
problems.

0 10 20 30 40 50
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Non linearity «magnitude»

P
o

te
n

ti
al

 p
o

w
er

 f
lu

ct
u

at
io

n
 in

d
ic

at
o

rs

e
1

e
2

Fig. 2. Evolution of indicatorse1 et e2 as functions of
the non-linearityυ of the track.

6. CONCLUSION

The detection of a target fault in a stochastic model
with non-linear nuisance parameters (or nuisance
faults) is discussed in the paper. It is assumed that
the nuisance parameters belong to a given compact
set. The linearization of such a non-linear model al-
lows the partial elimination of the nuisance parameter
from the decision process but the usual linearization
schemes does not warrant that the impact of such
approximation errors on the statistical performances
of an invariant test adapted to a linear model are neg-
ligible in every situation. The original aspect of the
linearization scheme proposed in the paper is that the

impact of the non-linearity of the model on the false
alarm and non-detection rates of the test based on the
corresponding linear approximation can be assessed
through adequate indicators.

The developed theoretical results are applied to the
risk analysis of the RAIM algorithm in the case of
the GNSS-based along the track train navigation. It
has been shown that replacing a non-linear measure-
ment model by an approximate linear model is not
always without serious consequences. Indeed, the ex-
ample developed in this paper illustrates how a RAIM
algorithm, working properly when the measurement
equation is “mildly" non-linear, becomes useless and
even dangerous for the user in the case when the non-
linearity of this equation is too “strong".
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