TRACKING CONTROL BASED ON NUMERICAL METHODS
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Abstract: This work proposes a methodology to find a control structure such that a system
may follow a pre-established trajectory. To accomplish this, a system of linear equations
should be solved for each sampling period. This approach can be applied to systems that
are either linear or non-linear, time-varying or non-varying. For the case of non-minimal
phase, a trajectory tracking is made after a finite-time interval.

The proposed control structure is simple and acceptably robust under uncertainties about
model knowledge. Three cases of study, applying the proposed control structure, are
presented: a pendulum with friction, a system of non-minimun phase and a trajectory
control of a mobile robot. Some conclusions about the performance of the control
structure are also sketched. Copyright © 2005 IFAC.
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1. INTRODUCTION

Several works dealing with the problem of trajectory
tracking have been published in the literature, which
nevertheless, are focused onto specific system types.
For example, (Kim,2003) proposes a receding
horizon tracking control for time-varying linear
systems with constraints both on the control signal
and on the tracking error, on which it is based the
minimization of a functional for finite-time costs.
Besides, Linear Matrix Inequalities (LMI) are used in
order to synthesize the controller. In (Chem et
al.,1995) a controller is proposed only for linear,
non-varying systems which are exponentially stable
and of non-minimum phase, which needs a set of
input/output data.

In (Fujimoto et al.,2001), a perfect-tracking control is
presented that is based on multirate feedforward
control for linear systems. Specifically, the design is
made for a SISO system which, nevertheless, can be
extended for a MIMO system. In this latter case, it is
also necessary that the system be completely
controllable, which could thus pose a limitation.

The present work proposes a methodology which
does not require that the system be controllable but,
instead, that the desired state can be reach for the
system. If this were not the case, the control actions
will lead the system to the reachable state closest to
the desired state.

The main idea of this paper is to propose an
approximation of the system wusing numerical
methods, and then to find the best control actions that
lead the system from actual state to the desired one.

Here, the proposed methodology is applied to non-
linear SISO systems (through a case of a pendulum
with friction), to non-minimum phase linear systems
(considering a general problem) and to multivariable
non-linear systems (considering the problem of
tracking trajectory of a mobile robot). Experimental
and simulation results for this last case, show the
advantages of the proposed methodology.



2. STATEMENT OF THE PROBLEM

Let’s consider the following differential equation:
V=f0 y(0)=y, (D

where the aim is to know the value of y(¢) at
discrete time instants ¢=nTo, where Tois the
sampling period and n e {0,1,2,3 ..... }, the value for
variable y(¢) at t =nTo will be denoted as y,. If,
for example, one wishes to compute the value for
Yn1 by knowing the value y,, one should integrate
Eq. (1) over the time interval n7o <t <(n+1)To, as
shown in Eq. (2),

(n+1)To
Yu =¥+ [f(0)dt
nTo (2)

There are several numerical integration methods,
with their corresponding algorithms to calculate the
value of y,,,. For instance, an approach could be

through Egs. (3) and (4),
yn+1§yn+TOf(ynatn) (3)

yn+lg.yn +%{f(yn’tn)+f(yn+l’tn+l)} (4)

where y,,; on the rigth-side member of Eq.(4) is not

known and, therefore, can be estimated by Eq. (3). In
numerical methods, these approximations, given by
Egs (3) and (4), are called the Euler and 2" order
Runge-Kutta methods, respectively.

3. APLICATIONS TO HIGHER-ORDER
SYSTEMS

3.1 Non-linear system of second order: Pendulum
with friction.

The pendulum with friction is described through a
2" order differential equation (see Eq. (5)). The
procedure to solve the system is by expressing the
model as a set of coupled 1% order differential
equations, as shown by Egs.(6) and (7),

lzmé+b9+mglsin(9) =u(t) (5)
x1=0 ; x,=0 (6)

X1 = X2
Xy = i(— mglsin (x1)—bxy +u) 7

where [ is the pendulum’s length, m is its mass, b is
the friction coefficient at the hinge, and g is the

gravity constant. By applying the procedure used for
Egs. (3) and (4) to Eq. (7), yields in,

To
Xl = X +E[x2n +x2n+l]

®)

Ml = X +% (—mglsm (xln) _ben +u, +
2A'm
—mglsin (xy,,1) —bXy 1 +hyyy )

Now, by approaching x, ,,, and x, ,,; through the

Euler method on the rigth-side member of (8), and by
re-arranging the new equation,

To Tob To’g .
Xins1 = X1p T X2y 7 - 12 - 2] sin (xln)
m
+ T02 u
20%m "

1+ Tob | N To /i _
X2n+1 2[2m =Xon 2]2m[ mg Sln(xln) (9)

bx,, +u, —mglsin(xy, +To x,5,)+u, ]

Eq. (9) expresses the influence of u,,u, , and of

[xln xzn]T(the state vector at the current time

instant) on the state vector on a later time instant.
Therefore, by knowing the desired trajectory to be
followed by the system states, which henceforth will
be called x;; and x,,, the control actions can

consequently be computed in order to reach the

Then, by

. T
desired state [xu ail X2g ,M]

o T T,
substituting [x,,,; x5, ]" by [Xig s X2 i) "in
Eq.(9) and defining,

e Mdnt1

n = TOb —

o || X2dntl 1+%
To[z_Tobj_Tozg

Mn +%n N lzm sin (xln)

2 2

Xy, +2]TTO [-mglsin(x,,) —bx,, —mglsin(x,, +Tox,,)
m

(10)

To 0
p=to |10 (11)
20%m| 11

Then, operating with Egs. (9), (10) and (11), it yields,

o
B - , (12)
Upi1 €

which is a system of two equations with two
unknowns that can be solved before implementing
the controller. This set given by Eq. (12), can also be
computed on line by using an iterative method, for
example, the Gauss-Seidel method (Strang, 1980),
because the value for u,,, is already available and it

can be used at a future time as the first value for u,
to begin the iteration.

Then, the values for u,and u,,,, attained through
Eq. (12), are:



20%m
To?
e, 20%m

To) To

u, =ej,

(13)

Uy = (e2n -

where u,, is the control signal at the instant n7o and
u,11s the control signal at the instant (n+1)To,
which is computed at instant n70 .

On account of the type of approximation used (a
trapezoidal approximation, see Eq. (4)), the system
output may present small oscillations about the
desired value and, consequently, the control action
will oscillate as well.

Figures 1 and 2 show the system response and the
control action, respectively, when the following
parameters are considered in Eq. (5):/ :1[m],
m=1{kg],b=1[Nm/(rad /sec.)], g = 9.8|m /sec .2 |
and To=0.1sec. (Eq. (5)). Now, it is proposed to
define x,; ,,;asin Eq. (14), yielding in,

Xd nt1 ~— *1n

X2d nt1 =
' To (14)

The initial conditions of system (5) are given by
b 60)]" =[-05rad ~0.5rad /5] 7.
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Fig. 1: Desired trajectory x4 (t) and real x;(t) of the
pendulum with friction
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Fig. 2: Control action u(?)

Figure 1 shows that the system response presents
small oscillations about the desired value, whereas

Fig. 2 shows that u(¢) =u(nTo) =u, oscillate about

a certain value such that a smoother control action
can be attained when using a linear combination of

u,and u,,; in Eq. (13). In such a case, the new
control signal can be obtained through Eq. (15), as,

Upew (1) = Uy, (nTO) = oy * 1ty + ky *u

n+l (15)
where ki ,k, 20 and k +k, =1

Fig. 3 shows the system response when k] =0.8 and
k, =02 in Eq. (15), whereas Fig. 4 shows the

resulting control action, u,,,,, ().

When comparing Figs 1 and 3, it should be noticed
that the system response is less oscillatory in the last
one. Fig. 4 indicates that a smoother control action
than that of Fig. 2 has been obtained. An additional
advantage is that u,,,(f)depends now on u,,,

which is a function of x,,, defined by Eq. (14), and

also establishes the response speed of the system. It
is then proposed to re-define Eq. (14) as,

X —-X
k 1d n+l1 1n

, where 0<k <1 (16)
To

X2d n+l =

Figures 5 and 6 depict the system response and the
control action signal for k=0.2,k =0.7and
ky =0.3, respectively. From Fig. 5, it should be

noticed that the system response doesn’t show any
overshoot.
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Fig. 3: Desired and real trajectories, x;, (t) and x,(t),
respectively.
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Fig. 4: Control action u,,,, (f)
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Fig. 5: Desired and real trajectories x,,(t) and x,(t),
respectively.



< " Time [sec.)
g0

Ei
10
-20 zoom

o 2 4 6

® Tinf [sed] wom
Fig. 6: Control action u,,,,, (¢)

The fact that the control action depends on x,, is

advantageous, because this allows to decrease the
overshoot of the system response, as shown in Fig. 7,
when xy; =1.75 V t>0. Fig. 7 also shows the

system response for different values of &, k; and k),
and for two different instances: one case with errors
in 15 % of system parameters, and another when
there is no error.
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Fig. 7: Desired and real trajectories x;,(t) and x,(t),
respectively.

The system response with & =0.1is smoother and

with less overshoot than what it was for k£ =1. It can
also be noted that the system response against errors
in the parameters is acceptable. This demonstrates as
well the robustness of the proposed controller against
parametric uncertainty.

3.2 Linear System of Non-Minimum phase

The non-minimum phase linear system to be
considered is described by Eq. (17), as,

—2s+1
G(s)=—— (17)
s +s+1

If the procedure used in Section 3.1 is applied to
system (17), a precise tracking of the trajectory will
be attained, though the control signal is not bounded.
On this account, the controller will be computed with
the following model (Morari ,1989):

Y(s)  25+1

G(s) = =T
TP

(18)

A model of state variables of Eq. (18) is given by the
system of Egs. (19), as,

)‘Cz = X1

y

x; +0.5x, (19)

If the Euler’s approximation is applied to the system
(19), it yields,

{xlnﬂ =
Xon+l =
Yn =

where 7o =0.1sec.
Since x;(¢)# y(t), it is proposed to find x14(¢) as

X1 +T0*(—x1,, — Xy, +2u,,)

*
Xy, +To*x,,

Xin +0.5x2n (20)

follows: y,, from Eq. (20) should comply with
Ydn = X1dn +0.5x24y, , with,

Ydn : Desired output value at time instant n7o .

X14p : Desired value of x at time instant n7o .

Xp4n - Desired value of x, at time instant n70 .
Then:

Yy, - X
X2d n4l = dl’H—lO 5 1d n+1 (21)

By repeating the procedure of the previous example
(given by Eq.14), it yields,

_ X2dn+l —Xon
X1d n+l1 _—To
(22)

By substituting Eq. (22) into Eq. (21):

(1705%70) 05*To  To @3

X1d

where n+1 is not denoted, for simplicity reasons.

Now, by substituting Eq. (23), instead of x,,, into
Eq. (20), and arranging the result to obtain u,, it
yields,

€= Xid nt1 ~X1n _TO*(_xln _x2n) (24)
e
2*To
where Eq. (25) represents the control action.

u(t)=u(nlTo)=u, = (25)

Figure 8 shows both the real and desired trajectories
of the system given by Eq. (17), and Figure 9 depicts
the control action of the system (17).
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Fig. 8: Desired and real trajectories yd(¢), and y(t)
of system (17).
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Fig. 9: Control action u(¢) of the system (17).

It should be noticed from Fig. 8 that the system
output follows the reference trajectory after a finite
interval (At), which is a function of the desired
trajectory. Figure 9 shows that the control action
remains bounded.

Therefore, if the trajectory is known in advance,
y4(t+At) can be used in Eq. (23) instead of
y4(t+To). Figures 10 and 11 respectively show the
system response and the control action, when
At =35*To . In order that u(t)be “smooth”, At
was increased progressively at each sampling time
until reaching the desired value (At =35*T0).
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Fig. 10: Desired and real trajectories yd(¢)and y(t)

0 a 10 15 20 25 30 35 40 45 50
Time [sec.]

Fig. 11: Control action u(¢)

Figure 10 shows that the system output follows
precisely the reference trajectory after a finite time,
and it should be noticed that this is achieved with
bounded control energy (Fig. 11).

3.3 Non-linear multivariable system: Trajectory
control of a mobile robot.

In this part of the work, a non -linear kinematic model
for a mobile robot, represented by Egs. (25), will be
used (Campion et al.,1996), as shown in Fig. 12.

x = Vecosf
j/ = Vsin@ (25)
6 = W

where V' = linear velocity of the mobile robot, W =
angular velocity of the mobile robot, (x, y) = Cartesian

position , @ = orientation of the mobile rob ot.

{R} X
Fig. 12: Geometric description of the mobile robot

In this case, the aim is at finding the values for V and
W at each sample time, such that the mobile robot may
follow a pre-established trajectory.

Through Euler’s approximation for the kinematic
model of the mobile robot, the following set of
equations is obtained,

X = x,+ToV, cosé,

n+l T
Ynst = Vn +T0VnSin9n (26)
0n+1 = 0’,’ +TOWn

which can be expressed in vector form as,

0 v
0 { " } 27).
) w

X cos 6,

n+l X

Yu1 | = | Va +To Sinen
9n+l Hn 0

n

where To =0.1sec.

If the
known, then it can be replaced into Eq. (27) instead

desired  trajectory [xd,m Vansl anH]T is

of [x,m Vil Onsi ] " and, thus, be able to calculate

the control actions V,,,W, necessary to make the
mobile robot go from the current state, [x,, YV, 0,1]T to

the desired one [xdn,r1 Vil Hdml]T at the next sampling
instant. By defining,

Ax X gps1 — X, cosd, 0
Ay |=| Va1 =Vn | » B=|sin6, 0 (28)
A6 01—, 0 1

from Egs. (27) and (28), it yields,

Ax
B Va | A (29)
w, " To Y

AG

Equation (29) is a set of three equations of two
unknowns each, whose optimal solution is given by
(Strang ,1980),

y . Ax
B"B "}:—BT Ay (30)
w,| To
- A8
% gcos 0, +£cos g,
{ n}: To 6’T0 (31)
w, A9
L To



where Eq. (31) represents the proposed controller .

Experimental studies were carried out with a mobile
robot PIONNER 2DX available at INAUT
laboratories to test the proposed controller
performance. Fig. 13 depicts the Pioneer 2DX
structure and the laboratory facilities where the
experiences were carried out.

Figure 13: Pioneer 2DX mobile robot and its
laboratory environment.

The reference trajectory for the experiments was a
circle of 600mm radius. The robot was placed
initially at the centre of the circle. Figs. 14 and 15
show the time-evolution of coordinates X and y of

the mobile robot. Figure 16 shows the path followed
by the mobile robot on the x—yplane. The

maximum robot speed was 200mm /s .
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Fig 14:Evolution ofxd(¢)and x(¢)of the mobile
robot.
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Fig 15:Evolution of yd(t)and y(¢#) of the mobile
robot

y Coordinate [mm]
g o 8 8

8

5 8

40

200 0 00 40 B0 600
x Coordinate [mm]

Fig. 16: Trajectory followed by the mobile robot in
the x-y plane

From Fig. 16, it can also be noticed that the

difference between the trajectory followed by the

mobile robot and the desired one is only 20 mm,

maximum, which compared with the distance

between wheels (330 mm), it turns to be very small,

showing the precision of the proposed control
structure.
CONCLUSIONS

This paper has proposed a methodology to find the
control action in such a way that the system may
follow a desired trajectory, provided the desired
states are reachable by the system. If this were not
the case, the system will find the control actions that
may lead it to the closest state to the desired one
within the set of reachable states.

This methodology is applicable to systems that can
be approached through numerical methods, by
intervening into the model straightforwardly for the
generation of control actions. This is advantageous
because any decrease in system uncertainty will
mean an improvement on controller performance.

The necessary precision of the numerical method
used here is smaller than that required to simulate a
system. This is so because, when using state
feedback at each sampling time, any shift between
the approximation and the real system can then be
corrected. The approximation is used only to find the
best way to go from the current state to the following
one, and not to duplicate the system’s evolution.

Future work will entail the generalization of this
methodology to the cases where the states cannot be
measured and, consequently, observers are needed.
Simulation tests were performed, on systems where
the state variable is the derivative of another one, by
using derivative filters. These devices have given
good results when wusing the Runge-Kutta
approximation. An additional future work is to find a
synthesis procedure that explicitly address questions
of modelling errors.

ACKNOWLEDGMENTS

This work was partially funded by the Consejo Nacional de
Investigaciones Cientificas y Técnicas (CONICET -
National Council for Scientific Research), Argentina.

REFERENCES

Campion G., Bastin G., d’Andrea-Novel B. (1996).
Structural Properties and Clasification of Kinematic
and Dynamic Models of Wheeled Mobile Robots.
IEEE Transaction on Robotics and Automation, vol
12 No 1, February 1996, pages 47-62.

Chen M. And Chiou F.(1995). Data-Based Tracking
Control for Nonminimun-Phase Systems.(1995).
Proceeding of the American Control Conference,
Seatle, Washington, June 1995.

Fujimoto H., Hori Yoichi and Kawamura Atsuo. (2001).
Perfect Tracking Control Based on Multirate
Feedforward with Generalizad Sampling Periods.
IEEE Transactions on Industrial Electronics, Vol. 48
NO.3, pp. 636-644. June 2001.

Kim,K (2003). Receding horizon tracking control for
constrained linear continuous time-varying systems.
IEE Proceedings, Control Theory and Applications
Volume: 150, Issue: 5, ISSN: 1350-
2379.0npage(s):534-538.

Morari M and Zafiriou E. (1989). Robust Process Control.
Prentice Hall Englewood Cliffs, New Jersey 07632.

Strang G. (1980). Linear Algebra and Its Applications,
Academic Press, New York, 1980.



