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Abstract: In this article the problem of inventory management of a single-stage single-
product and two-machine-state continuous-flow manufacturing system with constant 
demand is considered. The machine is subject to operation-dependent failures. All the 
random variables are exponentially distributed. The goal is to obtain, in this case, the 
optimal policy which minimizes the discounted cost function. It is then proved that the 
optimal control is of hedging point type and that the value of the hedging point is 
nonnegative. This value is estimated by simulation.  
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1. INTRODUCTION  

 
This paper considers a continuous-flow model of a 
failure-prone manufacturing system. The system 
produces a single product and it is characterized by 
two-machine-state (up and down). The objective is to 
determine, in this case, an optimum production 
control policy, which minimizes the discounted cost 
function. The problem of optimal control and design 
of manufacturing system has been studied in many 
works. 
 
First of all, Kimenia and Gershwin formulated the 
production control of a manufacturing system with 
stochastic capacity (Kimemia and  Gershwin, 1983). 
They determined that the optimum production policy 
has a special structure called hedging point in which 
a nonnegative production surplus of part-types 
should be maintained at times of excess capacity in 
order to hedge against future capacity shortages 
caused by machine failures. A very interesting result 
is the concept of hedging point that actually controls 
the throughput. 
 
Moreover, Akella and Kumar found an exact value 
of the optimum hedging point for the case involving 
a single-stage single-product and two-machine-state 

system with constant demand rate described by 
continuous-flow with time-dependant machine 
failures, i.e., a machine can fail even if it is forced 
down (Akella and Kumar, 1986). Bielecki and 
Kumar assumed that the hedging point is known 
(Bielecki and Kumar, 1986) . Their result shows that 
for an unreliable manufacturing system under a 
continuous time, a zero hedging point or a zero-
inventory policy can actually be optimal. 
 
Two types of models are considered in the literature: 
continuous flow models and discrete flow models. 
Discrete flow models are often considered more 
realistic for discrete manufacturing but the discrete 
processing of parts makes the performance analysis 
difficult especially when simulation is used 
(Mourani, and al., 1983, and, Song and  Sun, 2001 ). 
Continuous flow models (see Hu, and al., 1994, 
Sharifnia, 1988, Glasserman, 1995, Hu, 1995, 
Perkins  and Srikant, 1998, Veatch and Caramanis, 
1999, and Xie, 1989 ), offer a good approximation of 
material flows and makes the performance analysis 
more efficient without the need to track each 
individual part. 
 
The failure model is chosen to be operations-
dependant failure model (ODF), i.e. the machine can 
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only fail when it is working. This model is the more 
realistic, 79% of the failures are ODF (Buzacott and 
Hanifin, 1978), but another possible failure model 
exists, called time-dependant failure. In this case the 
machine can fail even if it is forced down. 
 
Our objective in that case is to find the optimal 
control policy which must be applied to the 
production speed  of the machine when it is up in 
order to minimizes the discounted cost function and 
satisfy the constant demand by time unit.  
 
This article is organized as follows. Section 2 
addresses the elementary manufacturing system and 
the continuous-flow model and formulates the 
problem. Section 3 presents the discounting cost 
function and shows that the optimal policy is of 
hedging point type and that the hedging point is 
nonnegative. The value of the hedging point is given 
by simulation in section 4. We conclude the paper in 
section 5. 
 
 

2. CONTINUOUS-FLOW MODEL 
 
In this paper a single-stage single-product 
manufacturing system is considered. It is composed 
by a buffer, denoted by B, a machine M, and a 
constant demand D (Fig. 1). 

 
 
 
 
Fig. 1. Manufacturing system 

 
2.1 Manufacturing system. 
 
The machine is either up or down, and its state is 
denoted by: 



= down. is machine  theif          0 

up is machine  theif          1 )(tα  
 

All the random variables are exponentially 
distributed (memoryless property) with rate p et r 
respectively. Mean time between failures (MTBF) is 
equal to p-1  and mean time to repair (MTTR) is r-1. 
The failure/repair process is an independent random 
process. It does not depend on the system 
parameters.  
When the machine fails it can not work at all and 
when it is up it can work with a production speed u(t) 
such as U≥u(t)≥ 0 where U is the maximal 
production speed of the machine. In the case of U≤D, 
even if the machine works always at the maximal 
production speed, the demand can not be satisfied. In 
this paper in order to satisfy the demand, we suppose 
that U>D. The machine is of a single-product type.  
 
The failure are operations-dependant failures, i.e. the 
machine can only fail when it is working. This model 
is the more realistic but another possible failure 
model exists, called time-dependant failure. In this 
case the machine can fail even if it is forced down.  

The inventory level at time t, denoted x(t), is 
described by a continuous-flow model is given by : 
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x(t) could be negative or positive which respectively 
represents a backlog cost and a holding cost. 
 
The demand, denoted by D, is supposed to be 
constant by time unit.  
 
2.2 Cost function. 
 
The cost criterion J(x,α), which depends on the 
buffer level and the machine state, is given by: 

 
∫ −

∞→

t

t
dxgeE

0

))(([lim θθβθ                      (2) 
 

 
with β > 0 and the inventory cost g(x) given by: 
 

   
 g (x) =                                                            (3) 

 
 

with x+ = max (x ,0), x- = max (- x , 0) where c+, c- 
denote the holding cost and backlog cost respectively 
(c+ > 0, c- > 0). 
 
Generally the inventory cost is convex and 
nonnegative in function of x (Fig. 2).  
                                            g(x) 
                                   c- x-                        
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Fig. 2. Inventory cost 
 
The mathematical study in case of discounting cost 
function is more complicated than average cost but is 
more simple to simulate.  
 
The hedging point has been first defined by Kimemia 
et Gershwin (Kimemia and  Gershwin, 1983). For the 
production control of a manufacturing system with 
stochastic capacity buffers, they have determined that 
the optimal policy has a special structure, called  
hedging point in which a  nonnegative products 
surplus should be maintain in order to satisfy the 
demand when failures occur. Our objective is to find 
the optimal control policy which must be applied to 
the production speed  u(t) of the machine when it is 
up in order to minimizes the discounted cost function 
and satisfy the constant demand by time unit.  
 
 
 
 
 



3. OPTIMAL POLICY  
 
In a first step some hypothesis are given, thereafter 
the optimal policy is studied and we prove that this 
policy is of hedging point type and that the hedging 
point is nonnegative.  
 
3.1 Hypothesis. 
 
Hypothesis 1: there exists an optimal policy, 
denoted ut, to apply to the production speed of the 
machine M which is stationary  and deterministic:  ut 

= f (xt,αt).     
 
Hypothesis 2: J(x,α), the discounting cost, is 
continuously differentiable in x, i.e. 

x
xJ

∂
∂ ),( α  is 

continuous in x.  
The proof for this last hypothesis is similar to the 
proof given in (Akella R., Kumar P., 1986). 
 
In what follows, we prove that the optimal policy is 
of hedging point type, i.e. there exists a buffer level 
z* which minimizes the discounting cost function. 
When the buffer level is less than z*, the machine 
works at maximal production speed in order to have 
a stock level equal to z*. When the buffer level is 
equal to z*, the machine works in order to satisfy the 
demand and stay at z*. When the buffer is greater 
than z*, the machine stops working in order to come 
back to z*. The hedging point policy is then given 
by: 

u(t)= 

                         (4) 
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3.2 Hedging point 
 
The optimal policy of the production speed is 
stationary (Hypothesis 1) and satisfies the following 
HJB equations (Sage and  White, 1977): 
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From equations (4) and (6) we can note that u(x) 
depends on the evolution of ŋ(x):    
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Indeed, in order to satisfy equation (5),  we can 
obtain the following relation between ŋ(x) and u(x) : 

               u(x)= 

                 (8) 
 =

<
>

0(x)
0(x)
0(x)     0

η
η
η

ifdunspecifie
ifU
if

 
Suppose that ŋ(x) have the following behavior (Fig. 
3): 

                       ŋ(x)=0                     ŋ(x)=0      
 
           ŋ(x)<0              ŋ(x)>0                   ŋ(x)<0 
 
  
                            z1                             y1                         x 

 

Fig. 3. Behavior of ŋ(x) 
 
From Figure 3, we obtain that u(x) = D when ŋ(x)=0, 
so we have for u(x): 
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We will show in what follows that there exists a 
buffer level called hedging point, denoted by z*, 
which minimizes the cost function and assures that 
the production speed follows equation (4). 
 
3.3 Theoretical results. 
 
Theorem 1:  

              J(x,0) ≥ J(x,1)    ∀ x                       (10) 
The proof is given in Annexe1.  
Indeed, it is better to start with an up-state machine 
than a down-state machine. 
 
Theorem 2: The optimal policy applied to the 
production speed of the machine is of hedging point 
type. 
  
There exists only one z, i.e. in Figure 3 z1 is the 
hedging point and y1 does not exist. 
In this case we obtain the following relation between 
z1 and ŋ(x) : 
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By equation (9), we obtain the following relation 
between the production speed u(t) and z1:  
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The proof of this theorem is given in Annexe 1. 
 
Theorem 3: The hedging point is nonnegative.  
 
By equation (4) we know that if we can prove that 
when a backlog occurs in our system, the machine 
will produce at the maximal production speed 
u*(x)=U  ∀ x<0. Then, we know that when the 
buffer is null, the production speed could be equal to 
the demand rate D or to the maximal production 
speed U, i.e. the hedging point is null or greater than 
0. So, we can conclude intuitivly that the hedging 
point is nonnegative. The proof is given in Annexe 1. 
 



We did not found the exact value of the hedging 
point so we propose to estimate it by simulation in 
the following section. 
 
 

4. NUMERICAL RESULTS 
 
In order to simplify the simulation we have 
digitalized the continuous-flow model which allows 
us to estimate the value of the hedging point. Indeed, 
Xie gives us an example for the discrete-flow model 
(Xie, 1989 ). The equations are detailed in Annexe 2.     
 
By equation (3) we obtain the following dynamical 
equations (Annexe 2): 
 
J(x, 0) = g(x)*∆t+(1-r*∆t)J(x-D*∆t, 0)e-β∆t+r*∆tJ(x, 

1)e-β∆t 

 

J(x, 1) = g(x)* ∆t+(1-∆t *p*u/U) e-β∆tJ(x+(u-D) *∆t, 
1)+ ∆t *p*u/UJ(x,0) e-β∆t 

 
Then, with a C program and with only one varying-
parameter at each simulation, we obtain the 
following results. 
 
Table 1 Results when the failure rate p varies 

 

Failure rate 
p 

Optimal buffer 
level  z* 

Minimum cost 
J* 

0,01 35  925,48 
0,02 43 1143,66 
0,03 49 1282,25 
0,04 52 1388,80 
0,05 56 1477,95 

r=0,05    β=0,05   c+=1   c-=250   ∆t=1   D=1   
U=3 

 
Table 2 Results when the repair rate r varies 
 

Repair rate r Optimal buffer 
level  z* 

Minimum cost 
J* 

0,06 31 814,17 
0,07 27 722,68 
0,08 26 648,10 
0,09 22 582,65 
0,1 20 480,94 

p=0,01   β=0,05   c+=1   c-=250   ∆t=1   D=1   
U=3 

 
The more important is the failure rate, the more 
important is the cost function. Indeed, the number of 
failures in this case are more important and it is then 
necessary to have an important number of products 
in the buffer in order to limitate the backlogs. We 
have the same results when the repair rate is small. 
 
Table 3: Results when the discount factor β varies  
 

Discount 
factor β 

Optimal buffer 
level  z* 

Minimum cost 
J* 

0,06 31 679,23 
0,07 27 517,53 

0,08 24 405,84 
0,09 22 325,63 
0,1 19 266,03 

p=0,01   r=0,05   c+=1   c-=250   ∆t=1   D=1   
U=3 

 
We can note that the more important is the discount 
factor the more smaller is the hedging point.  
 
Table 4: Results when the demand rate D  varies  
 
Demand rate D Optimal buffer 

level  z* 
Minimum cost 

J* 
1 3 80,18 

10 200 5298,59 
20 560 14885,39 
30 990 25964,21 

p=0,01    r=0,05    β=0,05   c+=1    c-=250   ∆t=1   
U=100 

 
The more important is the demand rate, the more 
important is the buffer level z* to satisfy this 
demand.  
 
To conclude, we can note that the hedging point 
depends on the failure rate p, the repair rate r, the 
demand D, the backlog cost c-, the holding cost c+,  

the discount factor β  and the maximal production 
speed U . 
 
 

5. CONCLUSION 
 
This paper considers a continuous-flow model of a 
failure-prone manufacturing system. The system 
produces a single product and it is characterized by 
two-machine-state (up and down). The machine 
failures are defined to be operation-dependant 
failures, i.e. they depends on the production volume 
and the machine can only fail when it works. All the 
random variables are exponentially distributed. ). The 
demand is constant by time unit. The objective is to 
determine, in this case, an optimum production 
control policy, which minimizes the discounted cost 
function.  
 
We have proved that the optimal policy is of hedging 
point type and the hedging point is nonnegative. The 
exact value of this hedging point is then obtained by 
simulation. In order to simplify the simulation, we 
have digitalized the continuous-flow model and 
obtain discrete equations. 
 
As a perspective of our work, it would be very 
interesting to find the exact value of the hedging 
point in our case. It would be also important to 
generalize these results to other manufacturing 
systems such as assembling/disassembling systems 
and to study the case of stochastic demand. 
 
 

 



ANNEXES 
 
Annexe 1: Proof of theorems 
 
Proof of theorem 1 
Compare two systems:  

• a system denoted Sx,0  which starts with a 
failure machine and an initial buffer level 
equal to x,  

• another system denoted Sx,1 which starts 
with an up-state machine and the same 
initial stock level as system Sx,0.  

Define tx,0 as the time repair for Sx,0.  
We suppose that system Sx,1 does not product (u = 0) 
until tx,0 .  
We couple these both systems until tx,0 , i.e. the 
production speed of the machine and the buffer are 
the same in ( 0, tx,0 ). We have: 
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So for this periode of time the inventory cost is the 
same for the both systems, consequently we have: 
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It is obvious that u = 0 is not the optimal policy for 
the production speed unless if the holding is very 
important, so we obtain: 
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where Ju*(x,1) is the cost function for the system with 
optimal control policy.        
Q.E.D 

                               Compare two policies: u*(x0)=0 x∀ 0<0  and the 
hedging point policy  u0 with a null hedging point: 

 
Proof of theorem 2 
By definition we have:   and 0)(lim
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Suppose that z1 < x < y1, and by equation (9)  we 
know that u = 0. So the cost function J(x,α) could be 
evaluate with s the time where x = z1 : 
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Thereafter we calculate  ŋ(x) by equation (7): 
           

J(x,0)-J(x,1) = e -1)[  - ] rss e −− (β )0,( 1zJ )1,( 1zJ

)1,(/)1(/)1,(
11 zJeecDezcx

xJ sss βββ ββ −−+−+ −−+=∂
∂

 













−−+−−

+=

−
++

−
+

)]1,()0,()[1()1,(

)(

111
1 zJzJeU

pzJc
D

zc

ecx

rs

s

ββ

βη β

   (12) 
 
 
 
 

Equation (12) could be written as:  
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By Fig. 3 we know that ŋ(x) >0  zseβ ∀ 1<x<y1 with 
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∀ x  J(x,0) ≥ J(x,1) (Theorem 1), then we obtain: 
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We know that ŋ(x) >0 and ŋ(x) increase in xseβ ∀  
z1< x <y1  with 0)(lim

11

=
→zx
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So y1 does not exist.   Q.E.D. 
 
Proof of theorem 3  
We will prove this result by contradiction. In a first 
step, suppose that the optimal policy is u*(x0)=0 
∀ x0<0.  
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The both systems have the same initial state (x0,1).  
Thereafter, define the following parameter, TP to be 
the total production made during a period of time  
For the system  u*(x0)=0 ∀ x0<0, we know that the 
machine does not fail because failures are operation-
dependant failures.  
For the hedging point policy system we know that  
u0(t=0) = U because x0<0.  
Suppose that the machine of the hedging point policy 
fails for the first time at t1. We note that during (0, t1) 
u0 > u*=0, so we have: 

TP u0( t1)> TP u*( t1)=0 
 

This machine is repaired at t2 . We see that between 
(t1, t2) the production is the same for the both 
systems. Consequently, we obtain the following 
result: 

TP u0( t2)> TP u*( t2)=0 ∀ t in (0, t2). 
By recurrence it is obvious that even for an important 
number of failures n, we have the following result: 
TP u0> TP u*=0. 

Define  as the buffer level for the backlog 

and u
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holding and u0 issue from (x0,1) and S  is the 
buffer level for u*.  
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Consequently, the optimal policy could not be u*=0, 
so the production speed should not be null when the 
buffer is in backlog. As the optimal policy is of 
hedging point type, we have the following optimal 
policy for the backlog:  

0<∀x , u*=U 
So we know that for our system the hedging point is 
nonnegative.     Q.E.D. 
 
Annexe 2 : Dynamical equations used in the 
simulation 
 
We could write the discounted cost function as:  
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where ∆t is a very little period of time.  
We have:  
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so we obtain: 

J(x,0)=g(x)*∆t+(1-r*∆t)J(x-d*∆t,0)e-β∆t 

+r*∆t*J(x,1)e-β∆t+0(∆t). 
 
 

By a similar process, we obtain: 
  J(x, 1) = g(x). ∆t+(1-∆t .p.u/U) e-β∆t* 

 J(x+(u-D) *∆t ,1)+ ∆t *p*u/UJ(x,0) e-β∆t 
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