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Abstract: In this paper a new excitation control is developed for multimachine power 
systems that improves the transient stability. The design is based on the sliding mode 
technique which is applied on an equivalent model of the system obtained by using the 
backstepping technique. However, the conventional “sign” method with constant gains is 
replaced by the boundary layer sliding mode technique with time-varying gains, which 
are on-line selected in accordance to a suitable adaptation law. Stability analysis and 
extensive simulation results on a three-machine power system, indicate that the proposed 
control scheme ensures uniformly ultimately boundedness of all the system variables, 
reduction of chattering and fast response of the system.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Several linear or nonlinear control techniques have 
been applied to the excitation control of power 
systems in order to improve transient stability. 
Conventional excitation controllers are mainly 
designed by using linear control theory. Especially 
for the case of a single machine to infinite-bus power 
system a method that extensively has been used is 
based on the linearization about an operating point 
and the design of linear excitation controllers 
(Anderson, 1971; Yu, 1983). Main disadvantages of 
this design such as lack of reliability and robustness 
are well-known. Nonlinear control techniques have 
been proposed mainly based on the feedback 
linearization technique (Chapman, et al., 1993). 
Feedback linearization is recently enhanced by using 
robust control designs such as H∞ control and L2 
disturbance attenuation (Wang, et al., 1998; Xi, and 
Cheng, 2000; Wang, et al., 2003).  
 
In recent years new approaches have been proposed 
for power stability designs based on advanced 
nonlinear schemes such as fuzzy logic control (El-
Metwally, and Malik, 1995), adaptive control 
(Psillakis, and Alexandridis, 2005) and neuro-control 
(Liu, et al., 2003). Combinations of the above 

techniques are also proposed (Mrad, et al., 2000) in 
order to exploit the advantages of each method under 
the cost of the increase of complexity. Among others 
the sliding-mode control technique has been applied 
on power systems providing rather simple control 
schemes (Matthews, et al., 1986; Pourboghrat, et al., 
2004). However, the well-known performance 
disadvantages of this technique such as chattering or 
standard response decays etc., remain some of the 
most significant drawbacks.  
 
In this paper, increasing the complexity within 
reason, we propose a modified sliding mode control 
scheme that overcomes the above significant 
drawbacks. Particularly, we consider a multimachine 
power system wherein each machine is represented 
by its third order nonlinear dynamic model and the 
transmission net is described by the admittance 
matrix. On this model the well-known backstepping 
technique (Krstic, et al., 1995) is used in order to 
obtain the most possible partially linear form of the 
system. On this form we use the most simplified 
feedback linearization scheme in order to obtain a 
local feedback control law while all the other 
nonlinearities that are dependent from locally 
unmeasurable variables or variables that are not 
states are left on an unknown nonlinear term. 



Consequently we apply the proposed nonlinear 
feedback controller where the conventional “sign” 
method with constant gains is replaced by the 
boundary layer sliding mode technique with time-
varying gains, which are on-line selected in 
accordance to a suitable adaptation law.  
 
By this control design we prove that the third error 
variable of each generator model is driven in finite-
time in a neighbourhood of the origin of arbitrary 
small dimensions. As soon as this happens, the other 
two error variables insert in finite time in a circle 
around the origin of arbitrary small radius (Theorem 
1). The boundedness of all signals is proved. The 
adaptation mechanism used belongs to the class of 
direct adaptive algorithms in the sense that it 
guarantees the uniform ultimate boundness (UUB) of 
the error variables while the estimated parameter 
errors remain bounded. Furthermore, as it is proved 
(Theorem 2) the power angle deviations converge to 
an even smaller region as time increases. This is 
important for the selection of the design constants 
since it leads to significantly smaller values for the 
control gains. Simulation results after a symmetrical 
three-phase short circuit fault on a two machine-
infinite bus test system demonstrate the effectiveness 
of the proposed scheme. 
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2. DYNAMIC MODEL 

 
The classical third-order single-axis dynamic 
generator model is used for the design of the 
excitation controller, whereas differential equations 
that represent dynamics with very short time 
constants have been neglected as pointed out in 
Psillakis, and Alexandridis (2005). In general for an 
n-generator power system, the dynamic model of the 
i-th generator is  
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The symbols used in the above equations are 
explained in the Appendix. 
In order to obtain a partially linear system we use the 
backstepping technique as explained in the next. 
 
2.1 Backstepping design. 
Introducing the first error variable 
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Viewing  as a virtual control, we introduce the 
third error variable 
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So if we take 
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is a term that contains all the complex nonlinearities 
of the system. For the Lyapunov function 
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i.e. selecting the excitation control law 
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where the constant gains are given by 
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and  is an arbitrary external input, we have ( )i iv v t=
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At this point one can easily arrive at the following 
thoughts: the unknown term  can be considered 
to be bounded (that is always the case since the 
machine voltages and currents and their rates cannot 
take infinite values) , i.e. there exists an unknown 
positive constant 

( )if t�

0iM >  such that 

 ( )i if t M≤ <� ∞
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Therefore, a choice of a discontinuous external input 
  ( ) ( )0 3sgni iv t K z= −

with 0 0i iK M≥ ≥  together with a suitable selection 
of the coefficients  ensures asymptotic 
stability of the closed-loop system. The -
dynamics then takes the following form 
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However, the use of such a controller yields several 
drawbacks as explained in the Introduction. 
 
Instead, in the next section, a direct adaptive gain 
sliding-mode controller with boundary layer  is 
designed that ensures finite-time uniform ultimate 
boundedness for all the error variables, while 
provides best response performance without 
chattering on the sliding surface. 
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3. CONTROL DESIGN & STABILITY ANALYSIS 

 
The proposed control law is selected to be  
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This is sliding-mode boundary layer control that 
reduces the chattering effect (Slotine, 1984).  
Instead of a constant  a time varying gain  
is used such that 
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The adaptation law is selected in such a way that 
when 3iz ≥∈i  the gain increases continuously to 
drive fast the system inside the desired stability area. 
However, the choice of the adaptation law for 

3iz <∈i  is made to reset  at the initial value 
after the fault is removed.  
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we have for the control law (20) 
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which sequentially yields 
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So we have proven that 
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Using the comparison principle (Lakshmikantham, 
and Leela, 1969) we have 
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Thus we have proved the following theorem. 
 
Theorem 1:  For the n-machine system defined by 
(1)-(13) and the excitation input given by (17)-(21) 
there exists  such that for every  the 
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Theorem 1 directly gives a bound for  1i izδ∆ =
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Theorem 2: For the n-machine system defined by (1)-
(13) and the excitation input given by (17)-(21) the 
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4. CASE STUDY 
 
The two-generator infinite bus power system that is 
used to demonstrate the efficiency of the proposed 
controller is shown in Fig. 1. The system parameters 
are as follows: 
xT1 = 0.129 p.u., xT2 = 0.11 p.u., x12 = 0.55 p.u., 
x13 = 0.53 p.u., x23 = 0.6 p.u.,  01 6.9 secdT ′ =

1 1.863dx =  p.u.,  p.u.,  p.u., 1 0.257dx′ = 1 5.0D =

1 8.0M =  sec,  sec,  p.u., 2 10.2M = 2 3.0D =

2 2.36dx =  p.u.,  p.u.,  sec 2 0.319dx′ = 02 7.96dT ′ =
 
 

     

 
 
 
 
 
 

 
Fig. 1: Two machine infinite bus test system. 

 
For a more accurate evaluation of the proposed 
controller, we take into account in the simulation the 
physical limits of the excitation voltage which are: 
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The following case is simulated. 
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second. The fault is removed by opening the 
brakers of the faulted line at  second and the 
system is restored at seconds. If we use  to 
represent the fraction of the fault, simulations are 
made for  i.e. for a fault near the middle of 
the line and towards Generator #2. The operating 
point considered in the simulation is: 
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The simulation results are given in Figures 2-8. 
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Fig. 2. Power angle deviations and their bounds for generator #1 

(in degrees) 
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(in degrees). 
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Fig. 4. Excitation voltages (in p.u.) for generator #1 
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Fig. 5. Excitation voltages (in p.u.) for generator #2. 
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Fig. 6. Nominal frequency deviations ( in rad/sec) for generators 

#1 and #2. 
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Fig. 7.Terminal voltages (in p.u.) for generators #1 and #2 
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Fig. 8. Sliding mode controller gains for generators #1 and #2. 

 
 

The response of the system appears to be very 
satisfactory since the system maintains stability after 
the transient period. Comparisons between the two 
control schemes, i.e. the boundary layer sliding mode 
scheme with constant and adaptive gains 
respectively, clearly shows the superiority of the 
latter since the system returns to the nominal state 
significantly faster. 
 

5. CONCLUSIONS 
 
The proposed controller is completely decentralized 
with a simple structure given by (17) and (18) where 
the nonlinear control term vi is calculated easily from 
the adaptation sliding mode control law given by 
(19)-(21). As it is shown by an extensive analysis 
this control scheme ensures stability while permits 
the selection of the control parameters in a desired 
way (in accordance to the desired region width Ri1). 
The simulation results confirm the theoretical 
analysis and verify the effectiveness of the control 
scheme. 
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APPENDIX 
 

( ) :i tδ  power angle, in radian; rotor speed, in 
rad/sec;  synchronous speed, in rad/sec;  
mechanical input power, in p.u;  active 
electrical power, in p.u.;  damping constant, in 
p.u.; 

( ) :i tω

0 :ω :miP

( ) :eiP t
:iD

:iM  inertia coefficient, in sec;  

transient EMF in the q-axis in p.u.;  EMF in 

the q-axis, in p.u.;  equivalent EMF in 
excitation coil, in p.u.;  d-axis transient short 
circuit time constant, in sec; 

( ) :qiE t′

( ) :qiE t

( ) :fiE t

0 :d iT ′

( ) :fiI t  excitation 

current, in p.u.; ( ) :qiI t  q-axis current, in p.u.; 

( ) :diI t  d-axis current, in p.u.;  reactive 

electrical power, in p.u.;  generator terminal 
voltage, in p.u.;  gain of generator excitation 
amplifier, in p.u.;  input of the SCR amplifier, 
in p.u.; 

( ) :eiQ t

( ) :tiV t
:cik

( ) :u tfi

:dix′  d-axis transient reactance, in p.u.; :dix  
d-axis reactance, in p.u.; :adix mutual reactance 
between the excitation coil and the stator coil, in p.u.; 

 the ith row and jth column element 
of nodal admittance matrix, in p.u.; 

; ; 

. 

:ij ij ijY G jB= +

( ) ( ) 0i it tδ δ∆ = − iδ ω( ) ( ) 0i it tω ω∆ = −

( ) ( )ei ei miP t P t P∆ = −

 

     


