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Abstract: The paper examines the conditions for isolating the unknown input
detection from the effects of the measurements noise in the important family of
positional control problems. The study is motivated by the need of improving
the homing performance of interceptor missiles against randomly maneuvering
targets. The required isolation is possible if, in addition to noisy relative position
measurements, noise-free measurement of the line of slight rate or the relative
lateral velocity is available. Although with noisy measurement of line of slight rate
the isolation of the input is not possible, the detection filter designed for the noise-
free case succeeds to provide a satisfactory estimate of target acceleration, which
is needed for an improved homing performance.Copyright c©2005 IFAC
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1. INTRODUCTION

Positional control problems are extensively treated
in the classical control literature, in particular
in the Russian (Pontryagin, 1972; Krasovskii and
Subotin, 1988). Such problems have a terminal
payoff function depending on the distance between
two objects at the final time. The mathematical
model consists of the equations of motion con-
trolled by accelerations. In real systems, there
is a certain dynamics between the actual and
the commanded value of the acceleration. Mostly
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these problems were analyzed assuming perfect
information. In reality, however, the controls are
based on available noise corrupted measurements.
The available measurements of each object are
its own state variables and the relative position
and velocity of the other. Relative acceleration
(or the acceleration of the other object) cannot
be measured. It has to be reconstructed by an
estimator.

For a linear process with zero-mean Gaussian
white noise the Kalman filter (Kalman, 1960) is
the optimal estimator in the sense of minimum
variance, if its design is based on the correct
dynamic system model, which includes also the
(deterministic) input. Unknown inputs can be



considered as a stochastic process and are approx-
imated by the output of a (linear) ”shaping filter”
driven by Gaussian white noise (Zarchan, 1979).
The estimation process has inherent dynamics,
creating a time delay of the information on the
estimated variables. Such a delay leads to control
performance deterioration.

In this paper the positional control problem is a
simple zero-sum pursuit-evasion game. It assumes
planar motion with bounded controls and linear
first-order control dynamics (Shinar, 1981). The
problem of the pursuer is to find a feedback
control, based on the available measurements,
which minimizes the final distance against any
admissible bounded control of the evader, which
is considered as a disturbance input.

Both analysis and simulations (Shinar and Stein-
berg, 1977; Shinar and Zarkh, 1994) showed that
the worst disturbance has a ”bang-bang” struc-
ture (a ”jump” process with infinitely fast dy-
namics). If the timing of the ”jump” is known,
the input of the estimator model can be ”tuned”
to represent a correct dynamic model. Moreover,
even if the ”jump” occurs shortly after the time
anticipated by the estimator, the estimated state
variables will have rather small errors. Conse-
quently, a set of ”tuned” estimators can provide
good estimates, if the time of the ”jump” is de-
tected without a significant delay (Shinar et al,
2004.). Therefore, there is a need for fast detection
of the unknown disturbance input (the ”jump”)
with a small false alarm rate.

From the various options to detect an unknown
input, in this paper the detection filter approach
(Massoumnia, 1986) was selected for reasons de-
tailed in the sequel. The objective of this pa-
per is to develop a detection filter that isolates
the unknown (disturbance) input from the effect
of the measurement noise and to test it in a
generic pursuit-evasion example with noise cor-
rupted measurements.

Fig. 1. Interception geometry

2. DYNAMIC MODEL

Let us consider a positional control problem in
the horizontal plane with two independent con-

trollers and noisy measurements, representing an
endgame of intercepting a maneuverable target
(evader) by a guided missile (pursuer). The rel-
ative geometry is depicted if Fig. 1. The X-axis
of the coordinate system is parallel to the ini-
tial line of sight connecting the pursuer and the
evader. The equations of planar motion, assuming
constant velocities (VE , VP ) and bounded lateral
accelerations (aE , aP ) are:

ṙ = VE cos(φE − λ) − VP cos(φP − λ) (1)

r(0) = r0

rλ̇ = VE sin(φE − λ) − VP sin(φP − λ) (2)

λ(0) = 0

φ̇E = aE/VE φE(0) = φE0
(3)

φ̇P = aP /VP φP (0) = φP0
(4)

If the angles φE and φP are near to the nominal
values of a collision course defined by

VP sin(φPcol
) = VE sin(φE0

) (5)

and also the current line of sight angle λ(t) is
small, Eqs. (1) and (4) can be linearized. In this
case

ẋ ≈ ṙcol = VE cos(φE0
) − VP cos(φPcol

)

, −Vc = const. x(0) = r0 (6)

From Eq. (6) one obtains the final time

tf = r0/Vc (7)

and its integration yields

x(t) = Vctgo (8)

where
tgo = tf − t. (9)

Due to the linearization the state vector in the
equations of relative motion normal to the initial
line of sight is

XT = (x1, x2, x3, x4) = (y, ẏ, āE , āP ) (10)

where
y(t) , yE(t) − yP (t) (11)

and āE , āP are the respective accelerations normal
to the initial line of sight. If the initial conditions
of the engagement are near to a “head-on” ge-
ometry, i. e. the angles φP0

and (π − φE0
) are

small, then āE ≈ aE , āP ≈ aP and Vc ≈ VE +VP .
The corresponding equations of motion and the
respective initial conditions are

ẋ1 = x2, x1(0) = 0, (12)

ẋ2 = x3 − x4, x2(0) = VEφE0
− VP φP0

, (13)

ẋ3 = (ac
E − x3)/τE , x3(0) = 0, (14)

ẋ4 = (ac
P − x4)/τP , x4(0) = 0, (15)

where ac
E and ac

P are the respective commanded
lateral accelerations of the evader and the pursuer,
expressed by

ac
E = amax

E v; |v| ≤ 1 (16)

ac
P = amax

P u; |u| ≤ 1. (17)



Eqs. (14) and (15) represent the simplest (first-
order) control dynamics of the evader and the pur-
suer with time constants τE and τP , respectively.

The problem involves two non-dimensional pa-
rameters of physical significance: the pursuer/evader
maximum maneuverability ratio

η , amax

P /amax

E (18)

and the ratio of the evader/pursuer time constants

ε , τE/τP . (19)

The pursuit-evasion game based on Eqs. (12)–(19)
with the terminal pay-off function

J = |x1(tf )| (20)

was solved assuming perfect information (?). The
optimal strategies of the players are of the “bang-
bang” type

u∗ = v∗ = sign{Z}, ∀Z 6= 0, (21)

where Z is the zero effort miss distance, expressed
explicitly by

Z = x1 + x2tgo − ∆ZP + ∆ZE (22)

with

∆ZP = x3(τP )2[exp(−θP ) + θP − 1] (23)

∆ZE = x4(τE)2[exp(−θE) + θE − 1] (24)

while θP = tgo/τP and θE = tgo/τE.

The perfect information game solution indicates
that from all initial conditions of practical impor-
tance zero miss distance is guaranteed if ηε ≥ 1.
For guidance law implementation one needs also
the time-to-go. The available measurements are:
range r, the range rate ṙ and own acceleration
(ap = x4), all measured with good accuracy. From
the measurements of the range and the range rate
one obtains

tgo =
r

|ṙ|
=

r

Vc
(25)

Implementation of the optimal missile guidance
law, denoted as DGL/1, requires the knowledge
of the zero effort miss distance, which includes
the lateral acceleration of the target. This variable
cannot be measured, it has to be estimated based
on the available noise corrupted line of sight
angle λ and line of sight rate λ̇. These noisy
measurements can be represented by:

y1 = rλ + ξ1 (26)

y2 = rλ̇ −
x1

tgo
+ ξ2 (27)

where ξ1 and ξ2 are supposed to be normally
distributed random signals with known standard
deviations proportional to r. The state estimator
using the measurement inputs has its inherent
dynamics that introduces some delay between the

estimated and the true state variables. If the pur-
suer uses DGL/1, the evader can take advantage of
the estimation delay and achieve a large miss dis-
tance by adequate optimal maneuvering (Glizer
and Shinar, 2001.).

In the last years several efforts were made (Shinar
and Shima, 2002; Shima et al, 2002; Shima et
al, 2003) towards achieving robust homing perfor-
mance with respect to random target maneuvers
and to reduce the guaranteed miss distance. In
a recent paper (Shinar et al, 2004.) a new inte-
grated logic based estimation/guidance algorithm
is based on a set of innovative concepts, was pro-
posed. The new algorithm uses separate estimator
elements for the different tasks of target model
identification, proper state estimation and ”jump”
detection. The crucial element for the successful
application of the new algorithm is the existence
of a sufficiently fast ”jump” detector, which is the
topic of this paper.

3. UNKNOWN INPUT DETECTION

There are various options to detect an unknown
input in a dynamic system. The most promising
approaches are the design of an unknown input
observer(UIO) (Chen and Patton, 1999), a sys-
tem inversion for the unknown input (Szigeti et

al., 2002), detection filter design for a complete
isolation of the unknown input and the noise effect
in the filter output error space (Hammouri et

al., 1999; Massoumnia, 1986) or the parity space
approach (Gertler, 1998).

For this particular problem we can come to the
following conclusions.

For a separation of the unknown input detection
from the sensor noise on the relative position
measurement one needs at least two sensors. The
use of the pursuer acceleration measurement x4

does not make the isolation solvable.

The design of an UIO is not possible since the
relative degree of the system w.r.t. the unknown
invader input is r > 1.

System inversion (Szigeti et al., 2002) suffers from
the same problem as above since it requires the
use of 3rd-order derivatives of the noisy output
(position) measurement.

Parity space approach can be considered as special
case of detection filter design if assigning all filter
poles to the origin (i.e. we design an open loop or
MA filter). This might not be suitable for model
uncertainties, thus we will focus on the possibility
to find a detection filter for an independent de-
tection of the effect of evader input to the output
(position) noise. This will be investigated in the
sequel.



The detection problem for LTI systems can be
formulated as follows. Given a dynamic system:

ẋ = Ax + Bu + Lν

y = C(t)x + eiµ,

where ei is a unit vector and ν, µ are the unknown
input and an output noise, respectively. The goal
is to design an input observer (or detection filter)
such that its output reconstructs the unknown
input and this is not effected by the sensor noise
µ.

In order to formulate the problem more precisely,
rewrite first the above system equations as follows:

ẋ(t) = Ax(t) + Bu(t) + L1ν(t) + L2µ(t) (28)

y(t) = C(t)x(t),

where L1 = L and L2 is the so called pseudo
actuator direction representing the sensor noise
effect in measurement. In the LTI case one can
show that L2 = [Afi, fi], where Cfi = ei.

The detection of the unknown command ν will be
performed by designing a filter that is sensitive
to the signal associated with the L1 direction and
insensitive to the signal associated with the L2

direction. More precisely, one has to design a filter
with output denoted e.g. by rν , such that if ν 6= 0
then rν 6= 0 and if ν = 0 then limt→∞ ||rν(t)|| = 0,
i.e., the filter is stable. This problem is called in
the fault detection literature as the fundamental
problem of residual generation (FPRG).

In the solution of this problem a central role is
played by the (C,A)-invariant and by the unob-
servability subspaces (Basile and Marro, 1987).

It is known for LTI systems that a subspace W
is (C,A)-invariant if A(W ∩ KerC) ⊂ W . This
is equivalent to the existence of a matrix G such
that (A + GC)W ⊂ W . A (C,A)-unobservability
subspace S is a subspace such that there ex-
ist matrices G and H with the property that
(A + GC)S ⊂ S, i.e., S is (C,A)-invariant, and
S ⊂ KerHC. The family of (C,A)-unobservability
subspaces containing a given set L has a minimal
element S∗.

Denote by Li = ImLi, i = 1, 2, and denote by W∗

the smallest (C,A)-invariant subspace over L2, i.e.
the reachabilty subspace of µ. Denote by S∗ the
smallest unobservability subspace containing W∗.
Then for LTI systems one has the following result.

Proposition 1. If S∗ ∩ L1 = 0, then ν(t) can be
reconstructed from the output of the detection
filter

ẇ(t) = Nw(t) − Gy(t) + Fu(t) (29)

rν(t) = Mw(t) − Hy(t),

where u, y are the known input and measured
output signals of the original system, w ∈ Xc/S∗

is the filter state and rν → gν where g is the
steady state filter gain.

The matrices in the above filters can be obtained
as follows. Denote by P the projection operator
P : X → X/S∗. The state matrices can be
determined as follows: H is a solution of the
equation Ker HC = Ker C + S∗, and M is
the matrix associated to the unique solution of
MP = HC. Design a gain matrix G0 such that
(A + G0C)S∗ ⊂ S∗, (i.e. G0 makes S (C,A)-
invariant), and denote the restriction to the factor
space by A0 = A + G0C|X/S∗ . It can be shown
see e.g. (?), that on this factor space one can
assign the eigenvalues arbitrarily, i.e., there is a
gain matrix G1 such that N = A0 + G1M has
prescribed eigenvalues. Then set G = PG0 +G1H
and F = PB.

The proofs for the existence of the above con-
structions can be found e.g. for LTI systems in
(Massoumnia, 1986), for LPV systems in (Bokor
and Balas, 2004) and for input affine nonlinear
systems in (Persis and Isidori, 2001), and will not
be repeated here.

4. DESIGN OF THE UNKNOWN EVADER
INPUT DETECTOR

The system discussed in (12-16) can formally be
written as in (28), where e1 = [1 0]T and

A =









0 1 0 0
0 0 1 −1
0 0 a 0
0 0 0 b









; a = −
1

τE
, b = −

1

τP
,

C =





1 0 0 0
1

tf − t
1 0 0



 , B =











0
0
0

amax
P

τP











,

and

L1 = [0 0
amax

E

τE
0]T .

This system is clearly an LTV one due to the time
varying observation equation. It will be shown,
however, that LTI methodology can still be ap-
plied when utilizing some specific properties of
this system.

The pseudo actuator direction L2 = [1 0 0 0]T will
be chosen since this will produce the same noise
effect in y1 as the presence of µ.

In the design procedure the first step is to compute
two invariant subspaces. Denote by W∗ the mini-
mal (C,A)-invariant subspace containing L2. If the
dynamics is linear, this can be computed using e.g.
(C,A)-invariant subspace algorithm (CAISA).



We discuss here only those design steps and results
that are relevant to our specific system and lead
to the the detection filter in 29.

Step 1. Since L2 is one-dimensional and KerC
is not time varying, it can be proved by using
CAISA, that

W∗ = L2 + AL2 + . . . + Ar−1L2,

where ri − 1 is such that Ar−1L2 /∈ KerC, i.e. ri

is the relative degree of the system w.r.to µ. For
this specific case r = 1 and W∗

µ = L2. This means
that the effect of µ shows up in a one dimensional
subspace of the state space.

Step 2. The next step is to construct S∗, i.e.
the smallest unobservability subspace containing
W∗. Since KerC is not time varying, it can
be proved that S∗ is a constant 2-dimensional
subspace, spanned by the by the vectors [1000]T

and [0011]T .

At this point one can check that the solvability
condition is satisfied, i.e. S∗ ∩ L1 = 0.

Step 3. Computation of the filter gain G0. The
subspace S∗ is A−invariant resulting in that (A+
G0C)S∗ ⊂ S∗ can be satisfied with G0 = 0. This
is an important special case, since this implies that
we can design an LTI detection filter even if the
system is a (specific) LTV one due to time varying
C(t).

Step 4. The canonical projection P : X → X/S∗

can be found as

P =

[

0 1 0 0
0 0 −.701 .701

]

,

i.e. the factor space is two dimensional and P is
a constant matrix. The equation MP = HC(t)
allows a solution with constant M = [−1 0] and
H = [0 − 1].

For the restriction of A on the factor space we get

A0 =

[

0 −1.4
0 −5.0

]

.

Step 5. Since M, A0 is observable, one can as-
sign the poles on the factor space X/S∗ e.g. to
{−11,−12}. This results in the following filter
gain

N =

[

−18 −1.4
29.6 −5.0

]

,

The complete filter designed to detect the un-
known evader command ν is given as in Eq.30,
where:

G =

[

0 −18
0 −29.6

]

, F = [0 − 3.5]T

As it can be seen, the filter output rν will not be
effected by the sensor noise µ and will reconstruct
the signal ν modulo the filter gain g , i.e. rν → gν.

Table 1. Horizontal end game parame-
ters

Parameter Value

Interceptor velocity VP = 2300m/sec
Target velocity VE = 2700m/sec
Interceptor lateral acceleration limit amax

P
= 20g

Target lateral acceleration limit amax

E
= 10g

Time constant of the interceptor τP = 0.2sec
Time constant of the target τE = 0.2sec
Initial range of the endgame R0 = 20km
Duration of endgame engagement tf = 4sec
Measurement noise in λ σλ = 0.1mrad

Measurement noise in λ̇ σ
λ̇

= [0− 0.5]mrad

sec

Sampling rate f = 100Hz

The detection problem can be solved by simple
thresholding and the detection delay van be tuned
by assigning the filter poles properly.

Repeating the above procedure it is possible to
design a detection filter for the sensor noise, too.

5. SIMULATION RESULTS

In this section the simulation results testing the
performance of the detection filter and its effect
on the homing accuracy are summarized. The
target acceleration command is a ”jump” process,
where v changes it sign during the endgame. The
guidance law of the missile is implemented, based
on Eqs. (21)-(24), using the available information
on state variables of the linear model (12)-(15).
This information includes the accurate values of
the time-to-go and x4, the noise corrupted values
of y1 and y2 as well as the value of x3 estimated
by the detection filter. The endgame parameters
are summarized in Table 1.

In the examples tested in this paper the com-
manded target acceleration started from the nor-
malized value of v = −1 at the beginning and the
”jump”s from v = −1 to v = +1 may occur any
time during the endgame.

The simulations of case with σλ̇ = 0 demonstrated
a perfect isolation of the input disturbance (the
commanded target acceleration) from the mea-
surement noise in the relative position. This iso-
lation allows to use a fast detection filter that
succeeds to identify the ”jump”, leading to a very
small error in the estimated target acceleration,
as it can be seen in Fig. 2.

Since the noise free measurement of λ̇ is an ideal

situation, the simulations were repeated with dif-
ferent levels of σλ̇. The simulation results indicate
the even for rather small noise levels the isolation
of the input (the commanded target acceleration)
from the measurement noise is not possible; there-
fore the ”jump” cannot be identified. Neverthe-
less, the actual target acceleration is estimated
reasonably well with a rather short delay, as it can
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Fig. 2. Real and estimated evader command and
acceleration with nois-free line of sight rate
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Fig. 3. Real and estimated evader command
and acceleration with noisy line of sight
rate/Cumulative miss distance distribution

be seen in Fig. 3 for σλ̇ = 0.1mrad/sec. As a con-
sequence the resulting miss distances are rather
small as it can be seen in Fig. 4 that represents
the cumulative probability distribution function
of 4000 Monte Carlo simulation runs assuming
uniformly distributed timing of the ”jump”.

6. CONCLUSIONS

In the course of the investigation described in this
paper the following results relating to the particu-
lar dynamics of position control problems, not yet
found in the technical literature, were obtained.
If the only available measurement are the relative
position and the pursuer’s own acceleration, the
unknown input cannot be isolated from the effect
of the measurement noise on the relative position.

If an additional noise free measurement of the rel-
ative velocity (or the line of sight rate) is available,
then the unknown input can be perfectly isolated.
As a consequence, abrupt changes of the input can
be detected extremely fast.

If the measurement of the relative velocity is also
noise corrupted, the unknown input cannot be
isolated and the detection of abrupt input changes
is not possible.

In spite of the negative results for the detection
in case of noise corrupted velocity measurement,
the detection filter designed for noise free case

succeeds to reconstruct the target acceleration in a
rather satisfactory manner, leading to acceptable
guidance accuracy. These results indicate that a
detection filter can be an attractive candidate in
guided missile systems.
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