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Abstract: The theory of cyclostationarity has emerged as a new approach to
characterizing a certain type of nonstationary signals. Many aspects of the spectral
analysis of cyclostationary signals have been investigated but were essentially
based on the use of the smoothed cyclic periodogram. This paper proposes a
cyclic spectral estimator based on the averaged cyclic periodogram which benefits
from better implementation properties. It shows that an unexpected but important
condition for this estimator to be valid is to set enough overlap between adjacent
segments in order to prevent cyclic leakage. It proves that setting the percentage
of overlap to 75% with a hanning window, or 50% with a half-sine window fixes the
problem. It also shows that in certain situations the cyclic leakage associated with
the averaged cyclic periodogram can be made exactly zero, in contrast with the
smoothed cyclic periodogram. Illustrative examples finally confirm the obtained
results, where it is also demonstrated how to use them for efficiently estimating
the Wigner-Ville spectrum. Copyright c©2005 IFAC.
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1. INTRODUCTION

During the last two decades, the theory of cyclo-
stationarity has emerged as a new approach to
characterizing a certain type of nonstationary sig-
nals (Gardner, 1991),(Gardner, 1990),(Giannakis,
1998). Cyclostationarity extends the class of sta-
tionary signals to those signals whose statistical
properties change periodically with time. Such
signals are generally not periodic but random in
their waveform, yet they are inherently generated
by some periodic mechanism.
As opposed to stationary signals, CS signals con-
tain extra information due to their hidden peri-
odicities. In the time domain, this extra infor-
mation is carried by the temporal variations of
statistical descriptors such as the instantaneous
auto-correlation function (Gardner, 1990). Very
interestingly, the same information relates in the

frequency domain to correlations between spectral
components spaced apart by specific frequencies,
referred to as cyclic frequencies (Gardner, 1991).
As opposed to general nonstationary signals, CS
signals also enjoy a well-understood theory which
actually generalizes all the signal processing tools
historically developed for stationary signals. In
particular, the very powerful spectral analysis of
stationary signals finds an interesting generaliza-
tion. Actually many aspects of the spectral analy-
sis of CS signals have already been investigated in
the specialized literature (Gardner, 1986), (Hurd,
1989), (Roberts et al., 1991), (Dandawate and
Giannakis, 1994) but they were mainly based on
the smoothed cyclic periodogram. The aim of
this paper is to study the averaged cyclic peri-
odogram as an estimator of the cyclic spectrum.
The reason for this choice is that the averaged



periodogram is the most popular technique for
the spectral analysis of stationary signals due to
its high computational efficiency, its robustness
against outlying data and its ability to remove non
stationary trends. As far as we know, the averaged
cyclic periodogram has been rarely advocated in
the cyclostationary literature.
The paper is organized as follows. In section 2,
the basic terminology of cyclostationary signals
are reviewed. In section 3, an averaged cyclic pe-
riodogram is established on the basis of a general
quadratic form for cyclic spectral estimation. In
section 4, the spectral estimator introduced in
section 3 is studied in terms of bias and variance.
Finally, illustrative examples are provided in sec-
tion 5.

2. CYCLOSTATIONARY SIGNALS AND
THEIR TERMINOLOGY

In the following we will consider sampled signals
with ∆ denoting their sampling period and n
their temporal index. For simplicity we shall only
consider signals with zero mean and therefore
restrict our analysis to purely random signals.
This assumption is without loss of generality since
efficient techniques exist for centering non-zero
mean cyclostationary signals (Antoni et al., 2004).
Stricto sensu, a cyclostationary (CS) signal X[n]
is a signal whose joint probability density function
is a quasi-periodic function of time. This entails
that any typical statistical descriptor of signal
X[n] is also a quasi-periodic function of time
in particular the instantaneous auto-correlation
function

R2X [n, τ ] = E
{
X[n + βτ ]X[n− βτ ]∗

}
(1)

(where β + β = 1, the parameter β allowing
for a general formulation of various equivalent
definitions) accepts a Fourier series

R2X [n, τ ] =
∑

αi∈A
R2X [τ ;αi]ej2παin∆ (2)

over the spectrum A = {αi} of cyclic frequen-
cies αi associated with the non-zero Fourier co-
efficients R2X [τ ;αi] known as the cyclic auto-
correlation functions or cyclo-correlation func-
tions of signal X. The Fourier transform of the
cyclic auto-correlation function is a spectral de-
scriptor of signal X and is known as the cyclic
power spectrum or cyclo-spectrum

S2X(f ; αi) = ∆
∞∑

τ=−∞
R2X [τ ;αi]e−j2πfτ∆ (3)

The next section will focus on estimating the
cyclic power spectrum using the averaged cyclic
periodogram on the basis of a general quadratic
form.

3. CYCLIC SPECTRAL ESTIMATION USING
THE AVERAGED PERIODOGRAM

3.1 A General Quadratic Form

We claim that any non-parametric estimator
Ŝ2X(f ; α; L) of the cyclic spectrum S2X(f ;α) can
be deduced given a finite-length signal {X[n]}L−1

n=0

from the general quadratic form

Ŝ2X(f ; α; L) = ∆
L−1∑
p=0

L−1∑
q=0

QL[p, q]X[p]X[q]∗

e−j2π(f+βα)p∆ej2π(f−βα)q∆ (4)

where QL is a suitably chosen positive semi-
definite kernel such as to preserve the interpre-
tation of Ŝ2X(f ; α;L) as a power density and in
particular Ŝ2X(f ; 0; L) ≥ 0 for α = 0. Let us
define also QL(λ, η) the double DTFT (Discrete
Time Fourier Transform) of kernel QL which will
be used hereafter:

QL(λ, η) =

∆2
L−1∑
p=0

L−1∑
q=0

QL[p, q]e−j2πλ(p−q)∆e−j2πηq∆ (5)

Different kernels QL result in different spectral
estimators. Due to space limitations, we only con-
sider here the case of the averaged cyclic peri-
odogram. A more complete study will be pre-
sented in another paper.
Let {w[n]}Nw−1

n=0 be a positive and smooth Nw-
long data-window and let wk[n] = w[n−kR] be its
shifted version by R samples. Then the averaged
cyclic periodogram is

Ŝ
(W )
2X (f ;α; L) =

1
K∆

K∑

k=1

X
(k)
Nw

(f + βα)X(k)
Nw

(f − βα)∗ (6)

with X
(k)
Nw

(f) = ∆
∑R+Nw−1

n=R wk[n]x[n]e−j2πfn∆

the short-time DTFT of the kth weighted sequence
{wk[n]x[n]}R+Nw−1

n=R and K = b(L−Nw)/Rc + 1
(where byc stands for the greatest integer smaller
than or equal to y). The averaged cyclic peri-
odogram is obtained from (4) wherein

QL[p, q] =
1
K

K∑

k=1

wk[p]wk[q] ⇔ QL(λ, η) =

W (λ)W (λ− η)∗DR∆
K (η)e−jπηR∆(K−1) (7)

with W (f) the DTFT of w[n] and DR∆
K (λ) =

K−1 sin(πλR∆L)
sin(πλR∆) the Dirichlet kernel. Formula (6)

can be very efficiently implemented by means of
the FFT algorithm by imposing Nw to be a power
of 2. It remains to state which constraints must
fulfil kernel QL such as to yield a valid spectral
estimate in terms of (i) minimum estimation bias
and (ii) minimum estimation variance.
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Fig. 1. Illustration of the effect of cyclic leakage.

3.2 Bias Analysis

For the proposed quadratic estimator to have min-
imum bias, it must hold that E{Ŝ2X(f ; α;L)} '
S2X(f ; α) as closely as possible. Using Eqs.(4) and
(5), it comes that:

E{Ŝ2X(f ; α;L)} =
1
∆

∑

αi∈A

∫ 1
2∆

−1
2∆

QL(λ, α− αi)

S2X(f − λ + β(α− αi); αi)dλ (8)

This implies two conditions to be met, which we
now investigate.

3.2.1. Condition I (power calibration) The first
condition is to impose that the leading term
indexed by α = αi equals S2X(f ; α). This yields∑L−1

p=0 QL[p, p] = 1 which entails the well-known
calibration ‖w‖2 =

∑
n w[n]2 = 1.

3.2.2. Condition II (cyclic leakage minimization)
The second condition is to impose that the

terms indexed by αi 6= α in Eq.(8) be zero.
Such terms may be interpreted as interferences
resulting from the action of the smoothing kernel
QL(λ, η) on the cyclic spectra positioned at cyclic
frequencies αi 6= α. The phenomena is akin to
energy leakage in the cyclic frequency(see Fig.1);
we shall refer to it as cyclic leakage as first
discovered in reference (Gardner, 1986). It is in
general impossible to make these interferences
exactly zero (except in some special cases with the
averaged cyclic periodogram as shown hereafter),
however it is still possible to seek kernel QL such
as to minimize them. To see this, let us consider
the situation where S2X(f ;α) = Sα

2X is a constant
function in the f -frequency, so that condition II
becomes that of making function

BQ(η) =
1
∆

∫ 1
2∆

−1
2∆

QL(λ, η)dλ (9)

as close as possible to zero for any η 6= 0.
This boils down to seeking kernel QL such as to
minimize the bandwidth of |BQ(η)|. In the case of
the averaged cyclic periodogram:

|BQ(η)| = 1
∆

∣∣DR∆
K (η)

∣∣ · |W2(η)| (10)

where W2(f) is the DTFT of w[n]2. Although the
Dirichlet kernel DR∆

K (η) has a narrow central lobe
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Fig. 2. Structure of function BQ(η) in the aver-
aged cyclic periodogram.

of bandwidth 1/(KR∆) ∼ 1/(L∆), it also has
several other lobes with period 1/(R∆) - see Fig.2.
It is therefore important that function W2(η)
decreases fast enough in order to keep the effect of
those secondary lobes as small as possible. Since
the bandwidth of W2(η) is on the order of 1/Nw,
the condition is that R ¿ Nw, i.e. important
overlap must be placed on adjacent data-windows.
In practice, R = Nw/3 (67% overlap) will be
good enough with a Hanning or a Hamming
data-window. With a half-sine data-window R =
Nw/2 (50% overlap) will produce an excellent
cyclic leakage minimization because the secondary
lobes of DR∆

K (η) happen to fall on the nulls of
W2(η). These results are illustrated in Fig.3 and
summarized in the below table:

Secondary lobes roll-off for typical data-window

Hamming Hanning half-sine

height of 2nd lobe -2.0 dB -1.7 dB -3.0 dB

height of 3rd lobe -8.8 dB -7.8 dB −∞
height of 4th lobe −∞ −∞ −∞

Therefore the following rule:

Proposition 1. For the averaged cyclic
periodogram, Condition II requires that the

acquisition time be long enough so that L∆ is
significantly larger than the inverse of the

minimum α-spacing - say ∆min
α - to be resolved,

that is L∆ À 1/∆min
α and either R ≤ Nw/3 with

a Hanning and a Hamming data-window or
R ≤ Nw/2 with a half-sine data-window.

Last but not least, it is noteworthy that the av-
eraged cyclic periodogram can be made exactly
unbiased in α provided that the cyclic spectrum
A is known. The idea is to choose R∆ such that
∆min

α happens to coincide exactly with a zero of
DR∆

K (η). For instance, one case of practical impor-
tance is when the signal of interest is periodically-
correlated with a known cycle N , such that we
have ∆min

α = 1/(N∆). Then the following rule
applies:
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Fig. 3. Illustration of the effect of segments
overlapping on cyclic leakage in the av-
eraged cyclic periodogram: full lines =
function |BQ(η)|; dotted lines = functions
|DR∆

K (η)|/∆ and |W2(η)|. Hanning window:
a) no overlap, b) 50% overlap, c) 67% over-
lap. Half-sine window: d) no overlap, e) 50%
overlap, f) 67% overlap.

Proposition 2. For a periodically-correlated
signal with cycle N , setting R = kN/K, (k ∈ IN
but not a multiple of N) completely cancels the

effect of cyclic leakage.

3.2.3. General bias evaluation Conditions I and
II together guaranty that the proposed quadratic
spectral estimator of the cyclic spectrum is unbi-
ased in the case of CS white signals. The same
conclusion obviously does not hold true in the
general case of non-white signals.

Proposition 3. Provided that conditions I and II
are met, the proposed quadratic spectral

estimator has bias:

E{Ŝ2X(f ; α;L)} − S2X(f ;α) '
IQ

2
∂2

∂f2
S2X(f ; α) +O(1/L)

with IQ = ∆−1
∫ 1/2∆

−1/2∆
λ2QL(λ, 0)dλ the inertia

of kernel QL(λ, 0).

The proof follows from a trivial Taylor expansion
of Eq.(8). Proposition 3 generalises the bias for-
mula known in the spectral analysis of stationary
signals. However, care should be taken to meet
condition II which protects against the effect of
cyclic leakage, otherwise Eq.(3) becomes much
more intricate. To our knowledge this point has
rarely been addressed before.
Finally, provided that conditions I and II are
met, the resolution in the α-frequency essentially

depends on the acquisition time L∆ , i.e. ∆α ∼
1/(L∆).

3.3 Variance Analysis

It finally remains to prove that the proposed
quadratic estimator is consistent. We start with
the following general result (the proof is not given
here due to limited space):

Proposition 4. For large L:

V ar{Ŝ2X(f ; α; L)}'
EQ1 · S2X(f + βα; 0)S2X(f − βα; 0)

+ EQ2 · SXX∗(f ; α)SXX∗(f ;α)∗

where EQ1 = 1
∆2

∫∫ 1/2∆

−1/2∆
|QL(λ, η)|2 dλdη and

EQ2 = 1
∆2

∫∫ 1/2∆

−1/2∆
QL(λ, η)QL(λ− η,−η)∗dλdη

The above formula reveals the existence of two
terms carried by EQ1 and EQ2, respectively. How-
ever it happens that in many instances the sec-
ond term is non-zero only on a countable set of
frequencies in particular when the processes of
interest are real. Hence the following result:

Proposition 5. For large L, the variance of
Ŝ2X(f ;α; L) is

V ar{Ŝ2X(f ;α; L)}'
EQ1 · S2X(f + βα; 0)S2X(f − βα; 0)

almost everywhere.

This very simple formula can be checked to gen-
eralize the result obtained for stationary signals
(α = 0) and also accepts the results of refer-
ences (Hurd, 1989) and (Dandawate and Gian-
nakis, 1994) as particular cases. It states that
the variance of Ŝ2X(f ; α; L) is proportional to the
cross-spectra S2X(f+βα; 0) and S2X(f−βα; 0) at
frequencies f + βα and f − βα, and to the energy
EQ1 = ‖QL‖2 of kernel QL.
The particular expression taken by EQ1 in the case
of the averaged cyclic periodogram becomes after
some manipulations:

EQ1 =
K−1∑

k=−K+1

Rw[kR]2 · K − |k|
K2

(11)

where Rw[k] =
∑

n w[n − k]w[n] is the auto-
correlation function of the data-window w[n]. This
result is valid for any value of R. Assessment
of formula (11) with classical data-windows (e.g.
Hanning, Hamming, half-sine) shows that EQ1 is a
decreasing function of R/Nw where the minimum
is virtually reached as soon as R ≤ Nw/3. For
large L we have found that the minimum of EQ1

tends rapidly to ‖Rw‖2 /L.
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Fig. 4. Illustration of the effect of cyclic leakage
on the estimated cyclic coherence function.
The cyclic coherence function is that of a
stationary signal and is theoretically zero
everywhere (α 6= 0). A Hanning data-window
is used with a) R = Nw, b) R = Nw/2, c)
R = Nw/3, and d) R = Nw/4.

4. ILLUSTRATIVE EXPERIMENTS

The first experiment has for objective to illustrate
the necessity of properly setting the percentage
of overlaps in the averaged cyclic periodogram. A
stationary signal was synthesized (∆ = 1s) and its
cyclic coherence function (β = 1/2) - theoretically
nil at α 6= 0 - was computed for several values
of alpha in the range [0.001; 0.08] Hz in order to
check for the presence of cyclostationarity:

γ̂2X(f ; α; L) =

Ŝ2X(f ; α; L)
[
Ŝ2X(f + βα; 0; L)Ŝ2X(f − βα; 0; L)

]1/2

We used the averaged cyclic periodogram with
the following settings: Nw = 60, a Hanning data-
window, and FFT sizes of 128 samples; this pro-
vided a 1% level of significance of 0.002 to the
cyclic coherence function. Different values of the
increment parameter R were tested, i.e. R = Nw,
R = Nw/2, R = Nw/3, and R = Nw/4. Results
are displayed in Fig.4 for the four tested cases.
As expected from the analysis of section 3.2, the
case R = Nw - Fig.4.a - produces significant
cyclic leakage: instead of being statistically zero
as expected from the theory, γ̂2X(f ; α) carries
a significant amount of ”energy” at α = 1/Nw

leaking from α = 0. Similarly, a small amount
of leakage - but still statistically significant (!) -
is present at α = 2/Nw. The same phenomena
occurs at α = 2/Nw when R = Nw/2 - Fig.4.b.
However as soon as R ≥ Nw/3, it is checked that
cyclic leakage virtually disappears as established
in section 3.2 - Fig.4.c-d. Although not shown here
very similar observations were obtained with a
half-sine data-window except that cyclic leakage
then disappeared for R ≥ Nw/2 in accordance
with the discussion of section 3.2. This experiment
insists once again on the importance of correctly
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Fig. 5. a) Time signal and b) corresponding power
spectrum computed from the averaged pe-
riodogram with a half-sine window of 1024
samples and 67% overlap. The frequency res-
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setting R in the averaged cyclic periodogram, a
requirement that is truly specific to cyclic spectral
analysis.
The second experiment illustrates the use of

cyclic spectral analysis on an industrial system.
The system of interest is a hydraulic pump rotat-
ing at Ω ' 3000 rpm to be monitored by means
of vibration analysis. The vibration signal is cap-
tured by an accelerometer mounted on the pump
casing and is sampled at a rate of 50 kHz. The first
objective is to assess the origin of the pump vibra-
tions, and secondly to characterize the ”mechani-
cal signature” of these vibrations. Figures 5.a and
5.b display 0.2 seconds of the vibration signal and
the corresponding power spectrum, respectively.
Inspection of these plots suggests that the signal
essentially has a random structure: no clear har-
monic structure is revealed in the spectrum, but
two wide resonance peaks are found around 4.5
kHz and 10.5 kHz, the origin of which is to be
investigated. To this purpose, the cyclic coherence
function γ2X(f ; α) (β = 1/2) is computed for
different values of α ranging from 1 Hz to 500 Hz
with cyclic resolution ∆α = 1 Hz. The result is
displayed in Fig.6. There is clearly a region with
high cyclic coherence at α = 391 Hz, i.e. at eight
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Fig. 7. a) Wigner-Ville spectrum from the ana-
lytic signal, synchronized on the blade pass-
ing frequency and displayed over one rota-
tion. The frequency resolution is ∆f ∼ 0.3
kHz. The finest time resolution is ∼ 1 ms.
Only values above 3 standard deviations of
the stationary hypothesis are displayed. b)
Smoothed pseudo-Wigner-Ville distribution
displayed over one rotation. Frequency res-
olution ∆f ∼ 0.4 kHz. The finest time reso-
lution ∼ 1 ms.

times the pump rotation speed. Note that this
harmonic is not present in the power spectrum,
so it does not relate to periodic vibrations but
to some kind of periodic modulation of random
carriers. The origin of this modulation is actually
recognized as the passing frequency of the eight
blades of the pump propeller, i.e. 8×Ω = 391 Hz,
with Ω = 48.9 Hz. Because the cyclic coherence
function at α = 391 Hz is above the 1% level of
significance, it confirms that the vibration signal
effectively exhibits a certain amount of cyclosta-
tionarity at this cyclic frequency. The final step
is to characterize more finely the structure of this
cyclostationary source by means of the Wigner-
Ville spectrum

W2X [n, f) = F{R2X [n, τ ]}
=

∑

αi∈A
F{R2X [τ ; αi]} =

∑

αi∈A
S2X(f ; αi).

where F{·} stands for the Fourier transform. The
Wigner-Ville spectrum is computed by using αi’s
equal to all multiples of 391 Hz so that the
blade time-frequency signature can be extracted
from the remaining signal. The result is dis-
played in Fig.7.a, revealing that the two resonance
peaks initially detected in the power spectrum
are linked to the blade activity; more specifically
they are two random carriers which are periodi-
cally amplitude modulated with the blade pass-
ing frequency. Incidentally, Fig.7.b displays the

smoothed pseudo-Wigner-Ville distribution com-
puted on one rotation of the pump with similar
time-frequency resolution in order to stress the
fact that the proposed estimator of the Wigner-
Ville spectrum drastically helps to suppress in-
terference terms and consequently to improve the
quality of the time-frequency lecture.

5. CONCLUSION

The purpose of this paper was to provide a cyclic
spectral estimator based on the averaged cyclic
periodogram - surprisingly rarely suggested in
previous works. The conditions for this kernel
to yield minimum bias and consistent estimators
have been addressed in details. It was shown
that by setting 50% overlap with a half-sine data
window, or 67% overlap with a Hanning or a
Hamming data-window, the averaged cyclic peri-
odogram offers excellent cyclic leakage rejection;
at the same time this precaution guarantees a
nearly minimum estimation variance. Moreover,
by providing the relevant conditions in designing
kernel QL, the material presented herein leaves
open a wide scope of possibilities for designing
new and original cyclic spectral estimators.
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