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Abstract: This paper introduces the concept of Recedingzséto Control (RHC) to

Genetic Algorithm (GA) for real-time implementations dgnamic environments. The
methodology of the new GA is presented with the empharsetow to effectively

integrate the RHC strategy by following some RHC prastim control engineering,
particularly, how to choose the length of receding horiand how to design terminal
penalty. Simulation results show that, when the RHEe#aGA is applied in dynamic
environments, both computational efficiency and perforeea are improved in
comparison with existing GACopyright © 2005 IFAC
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1. INTRODUCTION al, 1997, Sarimveis and Bafas, 2003). Differently,
this paper focuses on how to make RHC serve GA, in
Genetic algorithm (GA) is a large-scale parallel order to develop a general GA-based methodology
stochastic searching and optimizing method inspiredfor various engineering problems, not just for control
by the biological mechanisms of evolution and engineering, in dynamic environments. Every time
heredity. It has now been widely used for numerical the RHC based GA conducts online optimization, it
optimization, combinatorial optimization, classifier is only interested in the period of current receding
systems and many other engineering problemshorizon rather than the entire dynamic process. How
(Goldberg, 1989, Mitchell, 1996). to choose the length of receding horizon and how to
design terminal penalty are two key factors in the
GA falls in the category of generate-and-test success of the new algorithm for real-time
algorithms (Fogel, 1998). Consequently, the solutionimplementations in dynamic environments. As a
quality and convergence speed of GA strongly result of introducing the concept of RHC, the real-
depend on the size of solution space of the concernetime properties of GA are improved, and solution
problem. Generally, as the size of solution spacequality of GA becomes more robust under the
increases, the solution quality of GA degrades, andinfluence of disturbances and/or uncertainties in
the convergence speed of GA slows down. Thesedynamic environments.
two negative changes in terms of the size of solution
space often make real-time implementations of GAs 2. RHC STRATEGY
unrealistic for complex problems, since online
computation process has to be subject to a certaifReéceding horizon control has proved to be a highly
time limit. Another issue which has to be addressedéffective online optimization strategy in the area of
is the influence of disturbances/uncertainties on thecontrol engineering, and it exhibits many advantages
solution quality in dynamic environments. against other control strategies (Clarke, 1994). It is
easy for RHC to handle complex dynamic systems
This paper integrates the concept of RHC (Recedingwith various constraints. It also naturally exhibits
Horizon Control), or MPC (Model Predictive Promising robust performance against uncertainties
Control), into GA, delivering a new algorithm since the online updated information can be
suitable for real-time implementations to a wide Sufficiently used to improve the decision. In this
range of optimization problems in dynamic framework, decision is made by looking aheadNor
environments. RHC is anN-step-ahead online steps in terms of a given cost/criterion, and the
optimization strategy, and has been widely adopteddecision is only implemented by one step. Then the
in control engineering and proved very successful toimplementation result is checked, and a new decision
control plants and processes in dynamic is made by taking updated information into account
environments (Clarke, 1994). Recently, severaland looking ahead for anothirsteps. RHC has now
researchers studied how to use GA as onlinebeen widely accepted in the area of control
optimizer for MPC in control engineering (Onnen et engineering. Recently, attentions have been paid to



applications of RHC to areas like management andoptimiser should be designed from an RHC point of
operations research (Schutter and Van den Boomyiew in the first place. Therefore, unlike other
2001, Chand et al, 2002). literature, in this paper, there is no offline strategy
based GA to be transformed into online algorithm.
Fig. 1 compares the RHC strategy with some otherAs will be explained in depth later, some techniques,
optimization strategies in an intuitive way. It is particularly terminal penalty, which is widely used
evident that offline optimization strategy, as shown by RHC in control engineering, are adopted to design
in Fig. 1l.(@), is not suitable for dynamic the RHC based GA proposed in this paper.
environments, although it is ideal for simplifying
problems and analyzing algorithms theoretically.
Most GAs in literature are designed and then tested
mainly by using offline strategy, e.g., see Sharma etConsider a dynamic process with starting tifgend
al (2004). As response to changes in dynamicending timeTg, denoted a®P(Ts, Te). The purpose
environments, an online optimization routine is is to make a series of decision, plan, or control, etc,
usually run periodically to re-calculate the decision during the time period fronTs to Te, such that the
for the period from the current moment to the end of behaviour oDP(Ts, Te) would be optimal in terms of
dynamic process. We call this strategy conventional@ certain objective function. Suppose that the
dynamic optimization (CDO), as shown in Fig. 1.(b). decision-making process is based on a discrete-time
It is straightforward to transform an offine framein a dynamic environment, each step (sampling
optimization strategy based algorithm into CDO interval) ists, and the procesBP(Ts, T) is E steps
strategy, since no modification to the algorithm is long. Letk indicate the time index=0 corresponds
required but just initial conditions change. The real- to the starting timds, andk=E to the ending time
time properties could be a problem since offline Te- Lets(K), k=0,... E-1, denote the decision executed
algorithm considers no time limit to the optimization in the kth step/interval, ana(k), k=0,..., E, denote
process. The another problem in CDO strategy is thathe internal state dP(Ts, Te) at time instank. The
the performance could be very sensitive to behaviour oDP(Ts, Te) in a dynamic environment is
disturbances and/or uncertainties in dynamic judged by an objective function
environments. However, to apply GAs in dynamic  J,=J,(<0), €1),--, £ E D[ @), x2);--, X B (1)
environments, existing literature Slmply follows the Hereafter’ we Caﬁ(.) as control S|gnaj<() as System
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CDO strategy (Hu et al, 2001).

(a). Offline optimization: Optimize the whole dynam
process based on the predicted information in ack/aanc

then the solution is implemented no matter whapkag
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(b). Conventional dynamic optimization (CDO: Optimize
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Fig. 1. Basic ideas of some optimisation strategie

As illustrated in Fig. 1.(c), thanks to the idea of
receding horizon, RHC strategy provides a possible

state and), as performance index, in order to keep
consistent with the terminologies of RHC. As shown
in (1), Jo is usually a function of control history and
system state trajectory. Control history is basjcal
related to consumed energy/cost, and system state
trajectory is often expected to follow a specified
reference or have a certain feature. The purpose to
optimize the procesDP(Ts, Tg) is to achieve
desirable system targets while consuming as less as
possible energy/cost. In a dynamic environms(h),
needs to be online calculated in real-time at time
instant k, and then implemented during tHeh
step/interval.

Following the CDO strategy, existing GAs for real-
time implementations in dynamic environments are
designed based on the following online optimization
problem to calculatg(k):
min %K) - subject to@, (k) 2
S(K0a(k
whereJ;(K) is a new performance indeg(k) is the

solution space,@,(k) is a set of constraints, and

solution to the problems the CDO strategy faces. ASi(k) is a solution for the period from the currenteim
properly chosen receding horizon can effectively to the end of dynamic process

filter out most unreliable information and reduce the

S(R=[¢K & 6K1| k-, 6E1] . Exk+1 (3)

scale of problem. The latter is especially important towheres(k+ilk), i=0,... E-k-1, is the control signal for
any time-consuming algorithms such as GA to the (+i)th time interval but determined at tiih

satisfy the time limit on online optimization proses

time instant, different frong(k), which is the control

However, how to integrate RHC strategy into GA to signal implemented at thkth time instant.J;(k) is
develop an effective and practicable method for real-usually defined based alg but in terms of predicted
time implementations in dynamic environments is control history and predicted system states

more than to simply change initial and final
conditions for an offline strategy based GA. To make
them work in harmony, the GA based online

L) =LK B, €lel] B 6 EL B (4
[X(k+1] k), x(k+ 2] K);--, X(E[ K)])



wherex(k+ilk), i=1,... E-k, is the k+i)th time instant
system state predicted at tktb time instant.

Since RHC is arN-step-ahead online optimization

strategy, the online optimization problem (2) needs

to be reformulated as follows: at time insténtor
thekth step), resolve

min J.(k)» subject t0o, (k) (5)
S(KOe(K
where
g(k):{[s(kl B &kel] B, ¢k N1 K, k £ ©)
S(R. ke E D

is a solution for the period of receding horizon at
time instantk, N is the length of receding horizon,
@ (k) is the solution space f&(K), o, (k) is a set of

constraints, and
JALK B ¢k B, 6% NI ),
_ (AL R, (k2] K-+, (N B])
H((k+ N K)
3K ke E- N
is the performance index under RHC strategy. In
J2(K), 3, is a function similar tak(k) in (4), and

P(x(k+N|K)) is terminal penalty, which has been
widely used in control engineering for guaranteeing
the stability of RHC. These variables and functions
in Problem (5) will be explained and analysed in

k E

1M %

details later. Since Problem (5) is the same as

Problem (2) wherk>E-N, hereafter, only the case
of k<E-N is considered in RHC based GA.

Clearly, the concept of RHC is explicitly reflected in
S(K) and Jx(k). With S(k) and J,(k) defined for a
certain problem, the methodology of how to design
RHC based GA is given by the flow chart in Fig. 2.
From Fig. 2, it is clear that, besides common
practices in GAs such as crossover and mutation, th
concept of RHC is integrated into GA during
choosingN, andNy and designing the chromosome
structure and fithess function. As will be shown later

single control signal, ther®,(k) should also have

similar but not exactly the same constraintsSgk)
due to the introduction of receding horizon.

Deterrnine MNaceording to the features of problem. Mainly based on M choose J,
{the population of a generation of chro rosomes), N, (the maxinomn generations
of evolution), and the criterions for stopping evolution.

| Design the structure of chroraogomes rainly based on Sa0k). |

1

| Design fitness fanetion mainly based on (k). |

Define crossorver operation, mutation operation and evolution process according
to the systern dynarmics, the nabare of the problem and the feature of RHC.

1

Introduce sore criterions, hewistic mles or other necessary techuigques possile
to iraprovve the performance of G4 andior RHC

1

| Let i=l] |

Collect necessary systern andior ervironment information available at
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.l
¥
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)
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gerieration according to the fitness of each chromosore.
The result is the new generation, ie., the (n+jth generation.

!
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H Tes

¥
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Fig. 2. Flow chart of RHC_GA

Remark 2: GA is usually very time-consuming. One
motivation of introducing RHC to GA is to reduce

éhe computational burden so that the new algorithm

could be practicable for real-time implementations.
Since GA is stochastic searching algorithm by nature,
the computational burden theoretically depends on

the introduction of RHC strategy is not as simple asthe size of solution spacgp. Suppose each element

it looks in Fig. 2, and once RHC is properly
integrated, the RHC based GA will become much
more advanced than existing GAs.

Remark 1: Different from existing GAs designed

based on Problem (2), the RHC based GA grounds

on Problem (5). Hereafter, for the sake of
identification, existing GAs are denoted as
CDO_GA, and the new algorithm proposed in this
paper as RHC_GA. From the definitionsSpfk) and
S(K), one can see that, in most tingk) is shorter
than (k). Suppose each control sigrgilyd R' and

k<E-N, then S(K O RE¥" and S,(KWO R™" at
time instant, i.e., g(k) 0 R*™¥" and g,(0) 0 R™".

There may be some kind of implicit relationship
betweeng(k) andg(k), but g (k) is generally not a

subset ofg(k) . As for @,(k) ande,(k), they should

in a control signals(.), i=1,...h, is represented by
genes in a chromosome, and the information
recorded in each gene can vary within a certain
discrete-value set, which has different members.
Theoretically, one then has

Sizdg( B) = W™ sizgs( . (©
Practically, the computational burdens of CDO_GA
and RHC_GA can be estimated in another way.
Basically, to prevent the performance of GA from
significantly degrading as the result of larger solution
space (longer chromosomes), the population in a
generation of chromosomehl,, and the maximum
generations of evolutionlNy, should increase to a
reasonable level correspondingly. Suppose they are
both simply proportional to the length of
chromosomes. At time instakd¢E-N, one has

N, (k) = (round( E- B/ N)* N,( k- (9)

both include the same system dynamics, constraint@/here Nea(k) and Nex(k) are the numbers of all

for single control signal and single system state. If
©,(k) has some constraints f8y(k) rather than for a

chromosomes used by CDO_GA and RHC_GA,
respectively. For those operations carried out based



on chromosomes, such as calculating fitness and theRemark 5: Disturbances and/or uncertainties in
sequencing, the corresponding computational burderdynamical environments are another motivation for
for CDO_GA may be W _((round((E- K/ N)?) introducing the concept of RHC to GA. In a

times heavier than that of RHC_GA, whege is a dynamical environment, basically, the accuracy of
¢ information decreases with time. In other words, the

function determined by the algorithms adopted for jhtormation for the farther future is more uncertain
those _chromosome—based operations. For thosgnq therefore more unreliable. CDO_GA simply
operations based on genes, such as crossover angnoses its performance to all disturbances and/or
mutation, how many times they apply to a single yncertainties, while RHC_GA can filter out most
chromosome often depends on the length ofynreliable information. It is very important to cheos
chromosome. S|mp_ly suppose the total times thes_(na receding horizon of proper length. Firstly,
gene-based operations apply to a chromosome iRHC GA uses the receding horizon as a filtering
proportional to the length of chromosome. Thereforo,wmdow_ Any information beyond this window will
the gene-based computational burden in CDO_GA isnot pe used for current optimization since it is
(round((E- K/ N)*W (round E ¥ times  ysually more unreliable. If the receding horizon is
heavier than that of RHC_GA, wheras is too IongZ muoh_unlreliable.information will be
’ involved in optimization. While if too short, some
necessary information will be filtered out and
) . consequently the performance of RHC_GA becomes
Remark 3 If the algorithms adopted for short-sighted. Secondly, the choice of length of

c?ron&osorr]n e-bas?r(]j and gege—b?jse(? operat;o?_s alrr%ceding horizon is subject to real-time properties, as
already chosen, the upper bound of computationalyc ccod in Remark 3.

burden in CDO_GA mainly depends Bnwhich is a
system parameter and cannot be changed artificially. 4. EXAMPLES
If a sampling interval is fixed, for thode resulting '

in an upper bound larger than a sampling interval, Tyo case studies are reported in this section in order
real-time implementation of GA is impossible. While 5 gemonstrate how to design an effective RHC_GA
in RHC_GA, the upper bound of computational time for real-time implements in dynamic environments.

can be adjusted by choosing differéhimaking sure  The emphasis is on those RHC related techniques

that the sampling interval is not exceeded, no matteranq details, particularly the terminal penalty and the
whatE is. Therefore, the introduction of RHC to GA length of receding horizon.

can significantly reduce the computational burden,

and as a result, RHC_GA is suitable for real-time 4 1 |mplementation to free-flight path optimization
implementations.

determined by crossover and mutation algorithms.

“Free Flight (FF)” is one of the most ambitious and
Remark 4. The terminal penaltP(x(k+N|)) is used  promising schemes in the development and
to estimate the cost when the system runs from thennovation of future aviation concepts and air traffic
terminal statex(k+N|k) to the end of dynamic systems. How to online optimize the FF path
process. How to design a proper terminal penaltyefficiently in terms of a specified cost index in a
P(x(k+N|K)) is a crucial issue for RHC_GA. This dynamic environment is always a challenging
mainly depends on the nature of the dynamic procesgroblem. Hu et al (2001), following the CDO
and the problem to be solved. For some systemsstrategy, reported an improved GA-based approach
T(x(k+NJK))=0 in RHC_GA leads to no degradation to attack this problem. Here most techniques reported
of performance. For example, the sequencingby Hu et al (2001) are adopted, but in order to
problem in traffic systems or service systems, whereintroduce the concept of RHC, the structure of
minimizing delays is often the main concern, chromosomes has to be modified, and the fitness
probably does not need terminal penalty. By thefunction has to be re-defined by integrating terminal
nature of sequencing problem, generally, if the delaypenalty.
at the early stage is small, then the total delaypn
whole dynamic process is also small. Therefore, forThe structures of chromosomes for CDO_GA and
such systems, as long as the delay over the recedingHC_GA are given in Fig. 3. The last way-point in a
horizon is minimized, the terminal penalty is not chromosome for CDO_GA is always the destination
necessary. However, terminal penaRyx(k+Nlk)) airport, while the last way-point in a chromosome for
may be crucial to many other systems, particularly toRHC_GA could be anywhere in the available
those systems with special constraints on the systemairspace. According to Hu et al (2001), the flight
states at the end of dynamic process. For example, ifime between any successive way-points (except the
route planning problems, besides a certainlast two successive way-points) is a constant, i.e., a
performance index to be minimized, the destination time interval. At first sight, the flight time assated
must be reached. A successful implementation ofwith a chromosome for RHC_GA seems to be a
RHC_GA in route planning problems definitely constant, i.e., the length of receding horizon.
depends on a properly designed terminal penalty. IfHowever, after the mutation operation introduced by
P(x(k+N[K))=0 for route planning problem, RHC_GA Hu et al (2001) to take shortcut, as illustrated in Fig.
might never lead to the destination. 4, the new flight time is uncertain and usually shorter

than receding horizon.



Suppose the flight time to the destination airport (OCTs) and actual flight times (AFTs) from the
needs to be minimized. For CDO_GA source airport to the destination airport.

t=mT, +1 (10) Es(mthiscase,%‘il]\ %
T :T_xva .

wheret is the flight time associated with a potential

FF path,T;=10 minutes is the time intervah is the , =2
number (integer) of time intervalg; is the flight o—\/ﬁﬂ
time between the last two way-points. Since the last

way-point in a chromosome for RHC_GA could be %
anywhere in the available airspace, if (10) is applied
straightforward, then RHC_GA could never find an
FF path leading to the destination airport, let alone
minimizing the flight time. LetPs(K), Ppredk) and
Po.a. denote the last way-point, the second last way-
point in a potential flight path, and the destination
airport, respectively. To make RHC_GA work
properly, a terminal penalty is necessary for
modifying the fithess function

O Sowrceaitpot § Fpol) @ i) & Fry A Abreraft
= - Potential flight path = Trajectory flew through EOWregmns IWregmns

Fig. 5. Terminal penalty in Eq. (12)

Table 1 shows the influence N the length of the
receding horizon, on the performance of RHC_GA
with terminal penalty defined by (12). N is too
t=IT; +t; + B, (k), (11)  small, the performance is very poor, as the case of
P,(K=(816,1/6,+)dig R, (K, B,)/ %, (12) N=land 3.INis too large, OCTs increase, but the
. . T performance is not necessarily improved further.
where Py(K) is the terminal penalty, “dis” is a

. . ; Instead, the performance could degrade due to
function calculating the distance between two way- ; : o : .
unreliable information in a dynamic environment, as

points, &, and &, are angles illustrated in Fig. 5, shown by the case df=9. Compared with a time
and g > o is a coefficient for tuningg, >0 means interval (10-minute-long), the OCTs in Table 1 can

the heading of the last sub-trajectory in a potential kle_ 6ig_nor§d. T(;‘efefo”?' i.n thehfolllowinAgF_srimuIation,
flight path is over-turning. Oppositel§, <0 means =0 Is adopted since It gives the least '

under-turning. In either case, it will be penalized. Table 1 Influence dil on the RHC (second)
(a). The structure of chrormosores for CDO_GA: N: 1 N:3 N:6 N:g
[zl @w |G@r) | - [ Gesd] OoCT 126 227 883  17.74
o _ _ AFT 16922 16207 15932 16274
The nurber of way-points inthe potential FF The coordinates of the
pathto the destivation airport destination airport

Now, we compare RHC_GA with the CDO_GA in

(). The strtuss of chiowosarees for F1C_GA Hu et al (2001). Although RHC_GA is mainly

L tf@w [@w | - [ @ | proposed for dynamic process, it is still necessary to

investigate its performance in a static environment.

The nurher of yrgypojts in the potentis] FFpath  The coordinates of the last wey- Table 2 gives the comparison results in both static
related to the receding horizon point in the FF path

case and dynamic case. From Table 2, one can see,
the CDO_GA achieves the best performances, i.e.,
the least AFT, in static case. This is understangdable
because, theoretically, in a static environment, CDO

strategy should be the best in terms of performance.
Table 2 also shows that the performance of RHC_GA

Fig. 3. Structure of chromosomes

E Unavailable airspace

Adreraft %—

in static case is very close to that of CDO_GA, Wwhic

means the proposed RHC_GA works very well. In
dynamic case, the performance of RHC_GA is better
than that of CDO_GA. The reason for this has
already been fully discussed in Section 3. As for

-

e e OCTs, in either static case or dynamic case,

P Way-point of a sub-trajectoryin @ Way-point of a sub-trajectory in a RHC_GA provides reliable and promising real-time
an ariginal potential zigzag path final potential path taking shortout properties, while the CDO_GA seems struggling to
Fig. 4. Zigzag path and shortcut meet the time limit of 600 seconds (a time interval).

. . In inter-continental flights, DD is usually larger than
In order to evaluate RHC_GA, _the simulation system 54 nms, and consequently requires more OCT for
reported in Hu et al (2001) is adopted t0 set Upcpo GA. This implies that CDO_GA is far away

different FF gnvironments, and the CD_O—GA in HU £6m the stage of practical implementations due to its
et al (2001) is also used for comparative PUrPOSESy0n OCT. In the case of RHC_GA, as longhass

Due to Iimited space, only the case of DDZZOOO NMSfived, sayN=6, the OCT is always a fraction of the
(Dwept Distance from the source airport to e time limit, no matter how large DD is. This means
destination airport), the most complicated case in Huy, -+ the RHC GA proposed in this paper is a real

et al .(2001)' IS conS|d_ered. The comparative oo tion to the FF path optimization problem.
simulation focuses on online computational times



Table 2 Comparison results (second) 5. CONCLUSIONS

Static case Dynamic case This paper presents a general methodology of genetic
CDO_GA RHC_GA CDO_GA RHC_GA algorithm (GA) for real-time implementations in
Ave. OCT 7754 730 68.92 388 dynamic environments by integrating the concept of

Ave AFT 14868 14905 16192 15932 Receding Horizon Control (RHC). Some RHC
Max. OCT 36492 1555 347 92 1769 practices in control engineering are introduced when

Max AET 14913 15052 16638 16118 desigqing thi§ new GA, par.ticularly how to choose
receding horizon and terminal penalty. Two case

studies are reported, which demonstrate how to
effectively design an RHC based GA, and further
show the computational efficiency and robust
performance of the RHC based GA when it is applied
in dynamic environments.

4.2 Implementation to arrival scheduling and
sequencing at airports

Arrival scheduling and sequencing (ASS) is one of
main concerns to improve the safety, capacity and
efficiency of airports. Simply speaking, ASS is the
function of generating efficient landing sequences
and landing times for arrivals at the airport such that
the safety separation between arrival aircraft is Sxievr:reis?t?es Eisearch Students  Awards Scheme,
guaranteed, the available capacity at the airport is '
efficiently used and airborne delays are significantly
reduced. The safety separation, i.e., minimum LTI
(Landing Time Interval), between a pair of o
successive aircraft is a function of the type and of the€hand, S., V.N. Hsu and S. Sethi, "Forecast,
relative positions of the two aircraft. By shifting ~ Solution, and rolling horizons in operations
positions of aircraft in the original landing sequence, Management problems: a classified bibliography”,
it is possible to reduce delays and to improve the Manufacturing & Service  Operations
capacity of the airport. The position-shifting based _Managementvol.4, no.1, pp.25-43, 2002.
ASS problem is an NP complete problem. Basically, Clarke, D.W.,Advanges in Model-based Predictive
GA is suitable for solving this problem. By following _ Control Oxford University Press, 1994.
the methodology proposed in this paper, Hu andP® Schutter, B. and T. van den Boom, *Model
Chen (2005) reported a RHC based GA for the ASS predictive cont"rol for max—plus—llnear discrete
problem, which employed a special terminal penalty ©€VeNt systems”,Automatica vol.37, no.7, pp.
and exhibited computational efficiency and robust 1049-1056, 2001'_ ) ,
performance when compared with CDO_GA. Fogel, D.B., Evolutlonar_y Computing: The Fossile
Record, IEEE Press, Piscataway, NJ, 1998.
In this sub-section, we remove the special terminalG0ldberg, E., Genetic Algorithms in  Search
penalty from the RHC_GA in Hu and Chen (2005) in Opt|_m|zat|on & Machine Learning. Reading, MA:
order to further study its role in the ASS problem. Addison-Wesley, 1989. = . ,
Some simulation results are listed in Table 3, whereHt: X.B., S.F. Wu and J. Jiang, “Online free-flight
one can see that the terminal penalty does not really Path optimization based on improved genetic
matter in the ASS problem. This is understandable. &!gorithm’, Engineering Applications of Artificial
By the nature of ASS problem, if the airborne delay  ntelligence vol.17, no.8, pp. 897-907, 2004
related to the leading aircraft is small, then, U, X.B. and W.H. Chen, “Genetic Algorithm Based
generally, the delay related to the following aircraft O Receding Horizon ~ Control for  Arrival
is also small. In other words, if the airborne defayi  S€duencing and  Scheduling”, Engineering
each time interval is small, then the total delay of APPlications of Artificial Intelligencein press,
entire operating day is usually small. Because of this 2005. ) ) )
nature, one can remove the terminal penalty from theMitchell, M., An Introduction to Genetic Algorithms.
RHC_GA reported in Hu and Chen (2005). From _ cambridge, MA: MIT Press, 1996.
Table 3, one can also see that,Naincreases, the ©Onnen, C., R. Babuska, U. Kaymak, J.M. Sousa,
performance of RHC_GA improves at first, and then H-B. Verbruggen and R. Isermann, “Genetic
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