

GENETIC ALGORITHM BASED ON RECEDING HORIZON CONTROL FOR
REAL-TIME IMPLEMENTATIONS IN DYNAMIC ENVIRONMENTS

Xiao-Bing Hu, Wen-Hua Chen

Department of Aeronautical and Automotive Engineering,

Loughborough University, UK
Email: X.Hu@lboro.ac.uk, W.Chen@lboro.ac.uk

Abstract: This paper introduces the concept of Receding Horizon Control (RHC) to
Genetic Algorithm (GA) for real-time implementations in dynamic environments. The
methodology of the new GA is presented with the emphases on how to effectively
integrate the RHC strategy by following some RHC practices in control engineering,
particularly, how to choose the length of receding horizon and how to design terminal
penalty. Simulation results show that, when the RHC based GA is applied in dynamic
environments, both computational efficiency and performance are improved in
comparison with existing GAs. Copyright © 2005 IFAC

Keywords: Receding horizon control, genetic algorithm, chromosome, fitness function,
terminal penalty.

1. INTRODUCTION

Genetic algorithm (GA) is a large-scale parallel
stochastic searching and optimizing method inspired
by the biological mechanisms of evolution and
heredity. It has now been widely used for numerical
optimization, combinatorial optimization, classifier
systems and many other engineering problems
(Goldberg, 1989, Mitchell, 1996).

GA falls in the category of generate-and-test
algorithms (Fogel, 1998). Consequently, the solution
quality and convergence speed of GA strongly
depend on the size of solution space of the concerned
problem. Generally, as the size of solution space
increases, the solution quality of GA degrades, and
the convergence speed of GA slows down. These
two negative changes in terms of the size of solution
space often make real-time implementations of GAs
unrealistic for complex problems, since online
computation process has to be subject to a certain
time limit. Another issue which has to be addressed
is the influence of disturbances/uncertainties on the
solution quality in dynamic environments.

This paper integrates the concept of RHC (Receding
Horizon Control), or MPC (Model Predictive
Control), into GA, delivering a new algorithm
suitable for real-time implementations to a wide
range of optimization problems in dynamic
environments. RHC is an N-step-ahead online
optimization strategy, and has been widely adopted
in control engineering and proved very successful to
control plants and processes in dynamic
environments (Clarke, 1994). Recently, several
researchers studied how to use GA as online
optimizer for MPC in control engineering (Onnen et

al, 1997, Sarimveis and Bafas, 2003). Differently,
this paper focuses on how to make RHC serve GA, in
order to develop a general GA-based methodology
for various engineering problems, not just for control
engineering, in dynamic environments. Every time
the RHC based GA conducts online optimization, it
is only interested in the period of current receding
horizon rather than the entire dynamic process. How
to choose the length of receding horizon and how to
design terminal penalty are two key factors in the
success of the new algorithm for real-time
implementations in dynamic environments. As a
result of introducing the concept of RHC, the real-
time properties of GA are improved, and solution
quality of GA becomes more robust under the
influence of disturbances and/or uncertainties in
dynamic environments.

2. RHC STRATEGY

Receding horizon control has proved to be a highly
effective online optimization strategy in the area of
control engineering, and it exhibits many advantages
against other control strategies (Clarke, 1994). It is
easy for RHC to handle complex dynamic systems
with various constraints. It also naturally exhibits
promising robust performance against uncertainties
since the online updated information can be
sufficiently used to improve the decision. In this
framework, decision is made by looking ahead for N
steps in terms of a given cost/criterion, and the
decision is only implemented by one step. Then the
implementation result is checked, and a new decision
is made by taking updated information into account
and looking ahead for another N steps. RHC has now
been widely accepted in the area of control
engineering. Recently, attentions have been paid to

applications of RHC to areas like management and
operations research (Schutter and Van den Boom,
2001, Chand et al, 2002).

Fig. 1 compares the RHC strategy with some other
optimization strategies in an intuitive way. It is
evident that offline optimization strategy, as shown
in Fig. 1.(a), is not suitable for dynamic
environments, although it is ideal for simplifying
problems and analyzing algorithms theoretically.
Most GAs in literature are designed and then tested
mainly by using offline strategy, e.g., see Sharma et
al (2004). As response to changes in dynamic
environments, an online optimization routine is
usually run periodically to re-calculate the decision
for the period from the current moment to the end of
dynamic process. We call this strategy conventional
dynamic optimization (CDO), as shown in Fig. 1.(b).
It is straightforward to transform an offline
optimization strategy based algorithm into CDO
strategy, since no modification to the algorithm is
required but just initial conditions change. The real-
time properties could be a problem since offline
algorithm considers no time limit to the optimization
process. The another problem in CDO strategy is that
the performance could be very sensitive to
disturbances and/or uncertainties in dynamic
environments. However, to apply GAs in dynamic
environments, existing literature simply follows the
CDO strategy (Hu et al, 2001).

As illustrated in Fig. 1.(c), thanks to the idea of
receding horizon, RHC strategy provides a possible
solution to the problems the CDO strategy faces. A
properly chosen receding horizon can effectively
filter out most unreliable information and reduce the
scale of problem. The latter is especially important to
any time-consuming algorithms such as GA to
satisfy the time limit on online optimization process.
However, how to integrate RHC strategy into GA to
develop an effective and practicable method for real-
time implementations in dynamic environments is
more than to simply change initial and final
conditions for an offline strategy based GA. To make
them work in harmony, the GA based online

optimiser should be designed from an RHC point of
view in the first place. Therefore, unlike other
literature, in this paper, there is no offline strategy
based GA to be transformed into online algorithm.
As will be explained in depth later, some techniques,
particularly terminal penalty, which is widely used
by RHC in control engineering, are adopted to design
the RHC based GA proposed in this paper.

3. RHC BASED GA

Consider a dynamic process with starting time TS and
ending time TE, denoted as DP(TS, TE). The purpose
is to make a series of decision, plan, or control, etc,
during the time period from TS to TE, such that the
behaviour of DP(TS, TE) would be optimal in terms of
a certain objective function. Suppose that the
decision-making process is based on a discrete-time
frame in a dynamic environment, each step (sampling
interval) is tSI, and the process DP(TS, TE) is E steps
long. Let k indicate the time index. k=0 corresponds
to the starting time TS, and k=E to the ending time
TE. Let s(k), k=0,…,E-1, denote the decision executed
in the kth step/interval, and x(k), k=0,…, E, denote
the internal state of DP(TS, TE) at time instant k. The
behaviour of DP(TS, TE) in a dynamic environment is
judged by an objective function

0 0([(0), (1), , (1)],[(1), (2), , ()])J J s s s E x x x E= −L L . (1)

Hereafter, we call s(·) as control signal, x(·) as system
state and J0 as performance index, in order to keep
consistent with the terminologies of RHC. As shown
in (1), J0 is usually a function of control history and
system state trajectory. Control history is basically
related to consumed energy/cost, and system state
trajectory is often expected to follow a specified
reference or have a certain feature. The purpose to
optimize the process DP(TS, TE) is to achieve
desirable system targets while consuming as less as
possible energy/cost. In a dynamic environment, s(k)
needs to be online calculated in real-time at time
instant k, and then implemented during the kth
step/interval.

Following the CDO strategy, existing GAs for real-
time implementations in dynamic environments are
designed based on the following online optimization
problem to calculate s(k):

1 1

1
() ()

()min
S k k

J k
φ∈

, subject to
1()kΘ (2)

where J1(k) is a new performance index,
1()kφ is the

solution space,
1()kΘ is a set of constraints, and

S1(k) is a solution for the period from the current time
to the end of dynamic process

1() [(|), (1|), , (1|)]S k s k k s k k s E k= + −L , 1E k≥ + (3)

where s(k+i|k), i=0,…,E-k-1, is the control signal for
the (k+i)th time interval but determined at the kth
time instant, different from s(k), which is the control
signal implemented at the kth time instant. J1(k) is
usually defined based on J0 but in terms of predicted
control history and predicted system states

1 1() ([(|), (1|), , (1|)],

[(1|), (2 |), , (|)])

J k J s k k s k k s E k

x k k x k k x E k

= + −
+ +

LL (4)

Start point End point

(a). Offline optimization: Optimize the whole dynamic
process based on the predicted information in advance, and
then the solution is implemented no matter what happens.

Start ponit End point

(b). Conventional dynamic optimization (CDO): Optimize
over the period from the current time k to the end of the
dynamic process, and then execute the optimal sub-solution
over the period from k to k+1. At time k+1, repeat the same
procedure based on new information. And so no.

Current time k k+1

Start point End point

(c). Receding horizon control (RHC): Optimize over the
predictive horizon (from the current time k to time k+N), and
then execute the optimal sub-solution over the period from k to
k+1. At time k+1, repeat the same procedure based on new
information. And so no.

Current time k k+1 k+N
…

 Fig. 1. Basic ideas of some optimisation strategies

where x(k+i|k), i=1,…,E-k, is the (k+i)th time instant
system state predicted at the kth time instant.

Since RHC is an N-step-ahead online optimization
strategy, the online optimization problem (2) needs
to be reformulated as follows: at time instant k (or
the kth step), resolve

2 2

2
() ()

()min
S k k

J k
φ∈

, subject to
2()kΘ (5)

where

2
1

[(|), (1|), , (1|)],
()

(),

s k k s k k s k N k k E N
S k

S k k E N

+ + − < −
= ≥ − L , (6)

is a solution for the period of receding horizon at
time instant k, N is the length of receding horizon,

2()kφ is the solution space for S2(k),
2()kΘ is a set of

constraints, and

1

2

1

([(|), (1|), , (1|)],

[(1|), (2|), , (|)])
()

((|))

()

J s k k s k k s k N k

x k k x k k x k N k k E N
J k

P x k N k

J k k E N

 + + − + + + < −=
+ + ≥ −% LL (7)

is the performance index under RHC strategy. In
J2(k),

1J% is a function similar to J1(k) in (4), and

P(x(k+N|k)) is terminal penalty, which has been
widely used in control engineering for guaranteeing
the stability of RHC. These variables and functions
in Problem (5) will be explained and analysed in
details later. Since Problem (5) is the same as
Problem (2) when k E N≥ − , hereafter, only the case
of k<E-N is considered in RHC based GA.

Clearly, the concept of RHC is explicitly reflected in
S2(k) and J2(k). With S2(k) and J2(k) defined for a
certain problem, the methodology of how to design
RHC based GA is given by the flow chart in Fig. 2.
From Fig. 2, it is clear that, besides common
practices in GAs such as crossover and mutation, the
concept of RHC is integrated into GA during
choosing Np and Ng and designing the chromosome
structure and fitness function. As will be shown later,
the introduction of RHC strategy is not as simple as
it looks in Fig. 2, and once RHC is properly
integrated, the RHC based GA will become much
more advanced than existing GAs.

Remark 1: Different from existing GAs designed
based on Problem (2), the RHC based GA grounds
on Problem (5). Hereafter, for the sake of
identification, existing GAs are denoted as
CDO_GA, and the new algorithm proposed in this
paper as RHC_GA. From the definitions of S1(k) and
S2(k), one can see that, in most time, S2(k) is shorter
than S1(k). Suppose each control signal () hs R⋅ ∈ and

k<E-N, then ()
1() E k hS k R − ×∈ and 2() N hS k R ×∈ at

time instant k, i.e., ()
1() E k hk Rφ − ×⊆ and

2(0) N hRφ ×⊆ .
There may be some kind of implicit relationship
between

1()kφ and
2()kφ , but

2()kφ is generally not a

subset of
1()kφ . As for

1()kΘ and
2()kΘ , they should

both include the same system dynamics, constraints
for single control signal and single system state. If

1()kΘ has some constraints for S1(k) rather than for a

single control signal, then
2()kΘ should also have

similar but not exactly the same constraints for S2(k)
due to the introduction of receding horizon.

Remark 2: GA is usually very time-consuming. One
motivation of introducing RHC to GA is to reduce
the computational burden so that the new algorithm
could be practicable for real-time implementations.
Since GA is stochastic searching algorithm by nature,
the computational burden theoretically depends on
the size of solution space φ . Suppose each element
in a control signal, si(.), i=1,…,h, is represented by d
genes in a chromosome, and the information
recorded in each gene can vary within a certain
discrete-value set, which has w different members.
Theoretically, one then has

()
1 2(()) (())E k N h dSize k w Size kφ φ− − × ×= . (8)

Practically, the computational burdens of CDO_GA
and RHC_GA can be estimated in another way.
Basically, to prevent the performance of GA from
significantly degrading as the result of larger solution
space (longer chromosomes), the population in a
generation of chromosomes, Np, and the maximum
generations of evolution, Ng, should increase to a
reasonable level correspondingly. Suppose they are
both simply proportional to the length of
chromosomes. At time instant k<E-N, one has

2
,1 ,2() ((() /)) ()c cN k round E k N N k= − . (9)

where Nc,1(k) and Nc,2(k) are the numbers of all
chromosomes used by CDO_GA and RHC_GA,
respectively. For those operations carried out based

Fig. 2. Flow chart of RHC_GA

on chromosomes, such as calculating fitness and then
sequencing, the corresponding computational burden
for CDO_GA may be 2(((() /)))c round E k NΨ −

times heavier than that of RHC_GA, where
cΨ is a

function determined by the algorithms adopted for
those chromosome-based operations. For those
operations based on genes, such as crossover and
mutation, how many times they apply to a single
chromosome often depends on the length of
chromosome. Simply suppose the total times these
gene-based operations apply to a chromosome is
proportional to the length of chromosome. Therefore,
the gene-based computational burden in CDO_GA is

2((() /)) ((() /))ground E k N round E k N− Ψ − times

heavier than that of RHC_GA, where
gΨ is

determined by crossover and mutation algorithms.

Remark 3: If the algorithms adopted for
chromosome-based and gene-based operations are
already chosen, the upper bound of computational
burden in CDO_GA mainly depends on E, which is a
system parameter and cannot be changed artificially.
If a sampling interval is fixed, for those E resulting
in an upper bound larger than a sampling interval,
real-time implementation of GA is impossible. While
in RHC_GA, the upper bound of computational time
can be adjusted by choosing different N, making sure
that the sampling interval is not exceeded, no matter
what E is. Therefore, the introduction of RHC to GA
can significantly reduce the computational burden,
and as a result, RHC_GA is suitable for real-time
implementations.

Remark 4: The terminal penalty P(x(k+N|k)) is used
to estimate the cost when the system runs from the
terminal state x(k+N|k) to the end of dynamic
process. How to design a proper terminal penalty
P(x(k+N|k)) is a crucial issue for RHC_GA. This
mainly depends on the nature of the dynamic process
and the problem to be solved. For some systems,
T(x(k+N|k))=0 in RHC_GA leads to no degradation
of performance. For example, the sequencing
problem in traffic systems or service systems, where
minimizing delays is often the main concern,
probably does not need terminal penalty. By the
nature of sequencing problem, generally, if the delay
at the early stage is small, then the total delay in the
whole dynamic process is also small. Therefore, for
such systems, as long as the delay over the receding
horizon is minimized, the terminal penalty is not
necessary. However, terminal penalty P(x(k+N|k))
may be crucial to many other systems, particularly to
those systems with special constraints on the system
states at the end of dynamic process. For example, in
route planning problems, besides a certain
performance index to be minimized, the destination
must be reached. A successful implementation of
RHC_GA in route planning problems definitely
depends on a properly designed terminal penalty. If
P(x(k+N|k))=0 for route planning problem, RHC_GA
might never lead to the destination.

Remark 5: Disturbances and/or uncertainties in
dynamical environments are another motivation for
introducing the concept of RHC to GA. In a
dynamical environment, basically, the accuracy of
information decreases with time. In other words, the
information for the farther future is more uncertain
and therefore more unreliable. CDO_GA simply
exposes its performance to all disturbances and/or
uncertainties, while RHC_GA can filter out most
unreliable information. It is very important to choose
a receding horizon of proper length. Firstly,
RHC_GA uses the receding horizon as a filtering
window. Any information beyond this window will
not be used for current optimization since it is
usually more unreliable. If the receding horizon is
too long, much unreliable information will be
involved in optimization. While if too short, some
necessary information will be filtered out and
consequently the performance of RHC_GA becomes
short-sighted. Secondly, the choice of length of
receding horizon is subject to real-time properties, as
discussed in Remark 3.

4. EXAMPLES

Two case studies are reported in this section in order
to demonstrate how to design an effective RHC_GA
for real-time implements in dynamic environments.
The emphasis is on those RHC related techniques
and details, particularly the terminal penalty and the
length of receding horizon.

4.1 Implementation to free-flight path optimization

“Free Flight (FF)” is one of the most ambitious and
promising schemes in the development and
innovation of future aviation concepts and air traffic
systems. How to online optimize the FF path
efficiently in terms of a specified cost index in a
dynamic environment is always a challenging
problem. Hu et al (2001), following the CDO
strategy, reported an improved GA-based approach
to attack this problem. Here most techniques reported
by Hu et al (2001) are adopted, but in order to
introduce the concept of RHC, the structure of
chromosomes has to be modified, and the fitness
function has to be re-defined by integrating terminal
penalty.

The structures of chromosomes for CDO_GA and
RHC_GA are given in Fig. 3. The last way-point in a
chromosome for CDO_GA is always the destination
airport, while the last way-point in a chromosome for
RHC_GA could be anywhere in the available
airspace. According to Hu et al (2001), the flight
time between any successive way-points (except the
last two successive way-points) is a constant, i.e., a
time interval. At first sight, the flight time associated
with a chromosome for RHC_GA seems to be a
constant, i.e., the length of receding horizon.
However, after the mutation operation introduced by
Hu et al (2001) to take shortcut, as illustrated in Fig.
4, the new flight time is uncertain and usually shorter
than receding horizon.

Suppose the flight time t to the destination airport
needs to be minimized. For CDO_GA

ti ltt mT t= + (10)

where t is the flight time associated with a potential
FF path, Tti=10 minutes is the time interval, m is the
number (integer) of time intervals, tlt is the flight
time between the last two way-points. Since the last
way-point in a chromosome for RHC_GA could be
anywhere in the available airspace, if (10) is applied
straightforward, then RHC_GA could never find an
FF path leading to the destination airport, let alone
minimizing the flight time. Let Plast(k), Pprev(k) and
PD.A. denote the last way-point, the second last way-
point in a potential flight path, and the destination
airport, respectively. To make RHC_GA work
properly, a terminal penalty is necessary for
modifying the fitness function

)(kPtlTt twtiti ++= , (11)

3 4 1tw last D A GP k dis P k P vβ θ θ= + . .() (| | /) ((),) / , (12)

where Ptw(k) is the terminal penalty, “dis” is a
function calculating the distance between two way-

points, 3θ and 4θ are angles illustrated in Fig. 5,

and 0β > is a coefficient for tuning.
3 0θ > means

the heading of the last sub-trajectory in a potential
flight path is over-turning. Oppositely,

3 0θ < means

under-turning. In either case, it will be penalized.

In order to evaluate RHC_GA, the simulation system
reported in Hu et al (2001) is adopted to set up
different FF environments, and the CDO_GA in Hu
et al (2001) is also used for comparative purposes.
Due to limited space, only the case of DD=2000 nms
(Direct Distance from the source airport to the
destination airport), the most complicated case in Hu
et al (2001), is considered. The comparative
simulation focuses on online computational times

(OCTs) and actual flight times (AFTs) from the
source airport to the destination airport.

Table 1 shows the influence of N, the length of the
receding horizon, on the performance of RHC_GA
with terminal penalty defined by (12). If N is too
small, the performance is very poor, as the case of
N=1 and 3. If N is too large, OCTs increase, but the
performance is not necessarily improved further.
Instead, the performance could degrade due to
unreliable information in a dynamic environment, as
shown by the case of N=9. Compared with a time
interval (10-minute-long), the OCTs in Table 1 can
be ignored. Therefore, in the following simulation,
N=6 is adopted since it gives the least AFT.

Table 1 Influence of N on the RHC (second)

 N=1 N=3 N=6 N=9

OCT 1.26 2.27 8.88 17.74
AFT 16922 16207 15932 16274

Now, we compare RHC_GA with the CDO_GA in
Hu et al (2001). Although RHC_GA is mainly
proposed for dynamic process, it is still necessary to
investigate its performance in a static environment.
Table 2 gives the comparison results in both static
case and dynamic case. From Table 2, one can see,
the CDO_GA achieves the best performances, i.e.,
the least AFT, in static case. This is understandable,
because, theoretically, in a static environment, CDO
strategy should be the best in terms of performance.
Table 2 also shows that the performance of RHC_GA
in static case is very close to that of CDO_GA, which
means the proposed RHC_GA works very well. In
dynamic case, the performance of RHC_GA is better
than that of CDO_GA. The reason for this has
already been fully discussed in Section 3. As for
OCTs, in either static case or dynamic case,
RHC_GA provides reliable and promising real-time
properties, while the CDO_GA seems struggling to
meet the time limit of 600 seconds (a time interval).
In inter-continental flights, DD is usually larger than
2000 nms, and consequently requires more OCT for
CDO_GA. This implies that CDO_GA is far away
from the stage of practical implementations due to its
long OCT. In the case of RHC_GA, as long as N is
fixed, say N=6, the OCT is always a fraction of the
time limit, no matter how large DD is. This means
that the RHC_GA proposed in this paper is a real
solution to the FF path optimization problem.

Fig. 4. Zigzag path and shortcut

Fig. 5. Terminal penalty in Eq. (12)

 Fig. 3. Structure of chromosomes

CDO_GA:

Table 2 Comparison results (second)

 Static case Dynamic case
 CDO_GA RHC_GA CDO_GA RHC_GA

Ave. OCT 77.54 7.30 68.92 8.88
Ave. AFT 14868 14905 16192 15932
Max. OCT 364.92 15.55 347.92 17.69
Max. AFT 14913 15052 16638 16118

4.2 Implementation to arrival scheduling and

sequencing at airports

Arrival scheduling and sequencing (ASS) is one of
main concerns to improve the safety, capacity and
efficiency of airports. Simply speaking, ASS is the
function of generating efficient landing sequences
and landing times for arrivals at the airport such that
the safety separation between arrival aircraft is
guaranteed, the available capacity at the airport is
efficiently used and airborne delays are significantly
reduced. The safety separation, i.e., minimum LTI
(Landing Time Interval), between a pair of
successive aircraft is a function of the type and of the
relative positions of the two aircraft. By shifting
positions of aircraft in the original landing sequence,
it is possible to reduce delays and to improve the
capacity of the airport. The position-shifting based
ASS problem is an NP complete problem. Basically,
GA is suitable for solving this problem. By following
the methodology proposed in this paper, Hu and
Chen (2005) reported a RHC based GA for the ASS
problem, which employed a special terminal penalty
and exhibited computational efficiency and robust
performance when compared with CDO_GA.

In this sub-section, we remove the special terminal
penalty from the RHC_GA in Hu and Chen (2005) in
order to further study its role in the ASS problem.
Some simulation results are listed in Table 3, where
one can see that the terminal penalty does not really
matter in the ASS problem. This is understandable.
By the nature of ASS problem, if the airborne delay
related to the leading aircraft is small, then,
generally, the delay related to the following aircraft
is also small. In other words, if the airborne delay in
each time interval is small, then the total delay of
entire operating day is usually small. Because of this
nature, one can remove the terminal penalty from the
RHC_GA reported in Hu and Chen (2005). From
Table 3, one can also see that, as N increases, the
performance of RHC_GA improves at first, and then
degrades when N is too large.

Table 3 Influence of N and terminal penalty on
RHC_GA

Terminal penalty? N=1 N=2 N=3 N=4 N=5 N=6

 Delay (s) 142 139 136 138 148 151
 OCT (s) 1.4 2.1 2.4 3.2 4.0 4.7
 Delay (s) 142 138 136 137 145 152
 OCT (s) 1.5 2.1 2.5 3.3 4.2 4.7

5. CONCLUSIONS

This paper presents a general methodology of genetic
algorithm (GA) for real-time implementations in
dynamic environments by integrating the concept of
Receding Horizon Control (RHC). Some RHC
practices in control engineering are introduced when
designing this new GA, particularly how to choose
receding horizon and terminal penalty. Two case
studies are reported, which demonstrate how to
effectively design an RHC based GA, and further
show the computational efficiency and robust
performance of the RHC based GA when it is applied
in dynamic environments.

6. ACKNOWLEDGEMENTS

This work is supported by an ORS Award from the
Overseas Research Students Awards Scheme,
Universities UK.

REFERENCES

Chand, S., V.N. Hsu and S. Sethi, “Forecast,

solution, and rolling horizons in operations
management problems: a classified bibliography”,
Manufacturing & Service Operations
Management, vol.4, no.1, pp.25-43, 2002.

Clarke, D.W., Advances in Model-based Predictive
Control, Oxford University Press, 1994.

De Schutter, B. and T. van den Boom, “Model
predictive control for max-plus-linear discrete
event systems”, Automatica, vol.37, no.7, pp.
1049-1056, 2001.

Fogel, D.B., Evolutionary Computing: The Fossile
Record, IEEE Press, Piscataway, NJ, 1998.

Goldberg, E., Genetic Algorithms in Search
Optimization & Machine Learning. Reading, MA:
Addison-Wesley, 1989.

Hu, X.B., S.F. Wu and J. Jiang, “Online free-flight
path optimization based on improved genetic
algorithm”, Engineering Applications of Artificial
Intelligence, vol.17, no.8, pp. 897-907, 2004

Hu, X.B. and W.H. Chen, “Genetic Algorithm Based
on Receding Horizon Control for Arrival
Sequencing and Scheduling”, Engineering
Applications of Artificial Intelligence, in press,
2005.

Mitchell, M., An Introduction to Genetic Algorithms.
Cambridge, MA: MIT Press, 1996.

Onnen, C., R. Babuska, U. Kaymak, J.M. Sousa,
H.B. Verbruggen and R. Isermann, “Genetic
algorithms for optimization in predictive control”,
Control Engineering Practice, vol.5, no.10, pp.
1363-1372, 1997.

Sarimveis, H and G. Bafas, “Fuzzy model predictive
control of non-linear processes using genetic
algorithms”, Fuzzy Sets and Systems, vol.139, no.1,
pp. 59-80, 2003.

Sharma, S.K., S.F. McLoone, and G.W. Irwin,
“Genetic algorithms for simultaneous identification
of local operating regimes and local controller
network design”, Proceedings of Control 2004, 6-
9, Sep, 2004, Bath UK.

No

Yes

