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Abstract: We study nonlinear regression models of, for example, NARX-type,
where the predicted output is determined as a nonlinear function of known past
data. A particular structure of the nonlinear mapping is imposed, which confines
the nonlinearities to a subspace of the regression space. Utilizing this structure
simplifies the estimation problem and allows more efficient parameterizations as
well as visualization of the nonlinearity. We show how the LS fit of polynomials
and piecewise affine functions are used as criteria to find the projection that best
describes the residual. A study of two particular nonlinear systems illustrates that
the regressor can be projected down to 2 dimensions, and still yield a model
simulation fit of around 99%. An electronic circuit can be accurately modeled with
far less parameters than conventional, black-box models, of, say, neural network
type. Copyright c©2005 IFAC
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1. INTRODUCTION

Consider the nonlinear regression model

yt = f(ϕt) + vt, (1)

where ϕt is a regression vector known at time t.
For most of the discussion in this paper, the way
ϕ is constructed from measurement is immaterial,
but in order to fix ideas we may think of an un-
derlying NARX (Nonlinear ARX) structure with

ϕt =




yt−1

...
yt−na

ut−nk

...
ut−nb−nk+1




∈ R
n (2)
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where u and y are inputs and outputs of a system,
possibly vectors. (For notational convenience, in
this paper we will assume that f is scalar-valued,
so multi-output models have to be treated by one
output at a time.). The dimension of ϕ will be
denoted by n.

We shall assume the following special structure for
the mapping f :

f(ϕt) = bT ϕt + g(ST ϕt), (3)

where S is a n×k (k < n) matrix. This means that
g is a mapping from R

k to R, so the nonlinearity
is confined to a k-dimensional space. Structures of
this kind have been called single-index and multi-
index structures in the statistical literature, see,
e.g. (Carrol et al., 1997). g can be thought of as the
residual of the linear part b, a nonlinear residual
that is confined to the column space of the matrix
S. When k << n this implies that the complexity
of the parameterization and estimation of g will



be greatly reduced. A nonlinear structure in, say,
10 dimensions have many parameters, and also as
many as 106 observations (sample points) will be
very sparse in R

10. The multi-index structure al-
lows the nonlinearity to be modeled in low dimen-
sions, where the point density is larger and where
functions may be defined by few parameters.

Of course, the structure (3) is a restriction. Some-
times one may realize on physical grounds that
such a structure is at hand, in other cases one can
simply try it and see how well it works out. One
may think of feed-forward, sigmoidal (“ridge”)
neural networks with several terms gr(S

T
r ϕ) with

k = 1 as a way to build up a subspace (the
joint range of Sr, r = 1, . . . , d) to which the
nonlinearity is confined.

An important question is how to estimate S. A
very concrete way in case k = 1 would be to plot
the residuals

yt − bT ϕt (4)

against the regressor projection ST ϕt. This plot
would correspond to g(ST ϕt) + vt and should
thus look like a well defined curve, having a
small “area”. We should thus look for a matrix
S that makes this projection of the data points
yt,ϕt appear to have a small area. This is a
task that could be approached by visualization, cf
(Johansson et al., 2005). It was also investigated
in (Lindgren and Ljung, 2004) using Delaunay
triangulation to measure the area formed by the
points. The success of this was limited.

In this paper we shall investigate criteria where
S and g are estimated simultaneously. See e.g.
(Hastie et al., 2001) for a comprehensive text on
nonlinear modeling, which contains many relevant
insights. In (Carrol et al., 1997) the estimation of
the parameters in (3) with the constraint ST S =
1 is discussed in the framework of generalized
linear models with quasi-likelihood criteria.

Example: Drained Water Tank

Theoretically, a water tank with an outlet hole
in the bottom obeys the nonlinear differential
equation

d

dt
y(t) = −

√
y(t) + u(t). (5)

Here, y(t) is the water level (system output) and
u(t) some inlet flow (system input). For conve-
nience, the physical dimensions of the tank are
here designed in a way that makes all coefficients
in the differential equation equal unity. Sampling
data from the tank gives a set {yt, ut}

N
1 . This data

set is also studied in (Lindgren and Ljung, 2004)
and (Lindgren, 2005). As a regression vector we
use (2) with na = 3, nb = 3, nk = 1 (which
makes n = 6) and we use k = 1 (the dimension
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Fig. 1. Regressor projections of tank data. To the
left S1 from a multi-index model, to the right
S2 from partial least squares (PLS), see (6).

of the nonlinearity subspace, so that S is a 6-
dimensional vector).

To illustrate the approaches to estimate S men-
tioned above, we plot the residuals (4) against
{ST ϕt} in Fig. 1. In the plot to the left, S1 and
b are the estimated parameters of a multi-index
model (3) of the tank. The algorithm is the one
described in Section 4.2 below. In the plot to the
right, on the other hand, the first latent variable
S2 of partial least squares is plotted versus yt.
(That is, we have no preliminary linear model:
b = 0.) Partial least squares finds a projection
that maximizes the sample covariance with yt and
is a well-established linear technique to calculate
regressor projections. The method could be inter-
preted as finding the projection that gives the
smallest area of the projected points, if size is
measured as the area of the covariance ellipsoid
of the points. The projections in Fig. 1 are

S1 =
[
0.98 −0.2 0.025 0.052 −0.013 0.001

]T

S2 =
[
0.22 0.22 0.21 0.53 0.54 0.55

]T

(6)

It is interesting to observe that it actually exists
a 1-dimensional linear projection that totally iso-
lates the nonlinearity. Evidently, it is not trivial
to find it, however. The benefit of knowing S in
the subsequent modeling is clear. Not only can g
be parameterized in low dimensions. Visualization
like the plot in Fig. 1 (left) may give the user a
clue which nonlinear function family to be used.

2. MODEL PARAMETERIZATION

There are two issues involved in parameterizing
the nonlinear part g(ST ϕt): the linear projection
S from R

n to R
k and the nonlinear function g

from R
k to R. In this paper we only treat the case

k = 1. Below are described the parameterizations
mainly considered to this date: linear projection
parameterized by Givens rotations and nonlinear-
ity by polynomial or piecewise affine function.



2.1 Linear Projection S

For identifiability, S is required to be orthonor-
mal, ST S = I. For the case we study where
k = 1, this means that S is required to be a vector
with length 1. This vector is parameterized by a
product of n−1 Givens rotations, see (Golub and
Loan, 1996, pp. 226) or (Lindgren, 2005, pp. 35).
Thus, S = S(p), where p is a new parameter
vector with n − 1 entries. For every p holds that
‖S(p)‖2 = 1.

2.2 Polynomial g

A polynomial parameterization of the nonlinear
part of (3) takes the form

g(p)(x; c) =
[
1 x2 x3 . . . xl

]
c. (7)

Note that (7) is an ordinary polynomial except
the linear term x. The linear term is already
accounted for by the parameter b in (3).

A well-known drawback modeling dynamics by
high-order polynomials is that they usually be-
have bad outside the support of the estimation
data. However, they are very easy both to fit to
data, and to differentiate. In this application we
may also consider the parameterization of g a tool
used to estimate the projection S. Once S is at
hand, a more robust function family can be used.

2.3 Piecewise Affine g

A rather general way to model a nonlinear curve is
to approximate it with a number of line segments.
This means that in a (small) region of the curve,
an affine function (a constant plus linear term)
is fitted. The more complicated curve we model,
the more affine functions are of course needed to
get a good approximation. Formally the piecewise
function takes the form

g(a)(x; c) =

l∑

i=1

(αi + βix)wi(x), (8)

where

c =
[
α1 α2 · · ·αl β1 β2 · · ·βl z1 z2 · · · zl

]T

represents the parameter vector. The weight func-
tions wi(·) allocate every x in R to a local sum of
affine functions. The affine functions are localized
by knots (center points) zi, one for each affine
function. The weight functions are, given zi, in-
duced by an interpolator P:

wi(x) =





P

(
x − zi

zi+1 − zi

)
if x > zi,

P

(
zi − x

zi − zi−1

)
else.

(9)

Here, z0 = −∞ and zl+1 = ∞. The interpolator is
trigonometric, and gives a smooth transition from
one affine function to the next,

P =

{
cos2 π

2 t if t < 1,
0 else.

(10)

This is very similar to splines, see (de Boor,
1978), but the trigonometric basis functions are
somewhat different. The knots are chosen with
respect to the distribution of x, see below.

Compared to the polynomial, the piecewise affine
function is much more complicated to estimate
and handle. However, it gives a good balance
between adaptivity and stability/variance near
the boundaries of the estimation set support.

2.3.1. Placing the Knots As described above,
the weight functions are induced by a set of knots
zi, and an important task is to locate these knots.
Assume we are given a set of real points {xt}

N
1

that should be mapped by g. A simple solution
to the problem is to place the knots on a uniform
grid over the interval where there is support of
points xt. The model parameters are somewhat
better utilized, however, if relatively more knots
are allocated to dense regions of x (regions where
many xt are located).

It is known from splines theory that it is difficult
to locate knots optimally, see (de Boor, 1978). A
fast ad hoc procedure has been used, recursively
dividing dense regions into subregions in a way
that avoids too skew distributions within the
subregions. Then a knot is allocated to each
region.

3. MODEL VALIDATION

The one step ahead predictor for a given model
{S, b, g} is

ŷt = bT ϕt + g(ST ϕt) (11)

for ϕt defined in (2). Comparing this model out-
put to the sampled output defines the model one
step ahead prediction errors

et = yt − ŷt. (12)

The root mean square (RMS) error for a data set
{yt, ut}

N
t is

E =

√√√√ 1

N

N∑

t=1

e2
t . (13)

The RMS prediction error E is one way to validate
a model – small error means that the model fits
data well. The dataset used for model valida-
tion (“validation data”) should be different from
that used for parameter estimation (“estimation
data”).



The one step ahead predictor uses system output
samples up to time t − 1 in the regression vector
ϕt. The model may be validated in another sense
by withholding this information, and only supply
the predictor with the initial system state at time
t = 0 and the input. The so-obtained prediction,
denoted ŷt|0, corresponds to the output sequence
of a simulation, feeding the model with the sam-
pled input data ut (only). ŷt|0 is defined like (11),
but with yt−r in (2) replaced by yt−r|0. et|0 and
E0 are defined analogously to et and E. Note that
if na = 0 in(2) (i.e. we have an NFIR model), then
there is no difference between E and E0.

The prediction error E and the simulation error
E0 indeed validate a model in different senses.
Validation by E0 is generally more demanding
and revealing, since the model dynamics are fully
tested here. The computation of E0 is however
rather complex, since it is founded on a model
simulation. In contrast, E can often be calculated
mainly by linear matrix operations.

4. PARAMETER ESTIMATION

Given data {yt, ut}
N
1 and a model structure

{na, nb, nk, g(·; ·)}, the least squares errors defined
above are indeed functions of the model parame-
ters, E = E(p, b, c) and E0 = E0(p, b, c). The
least squares estimates of the model parameters
are

{p̂, b̂, ĉ} = arg min
p,b,c

E(p, b, c), (14)

and analogously for E0. A model that minimizes
E is often termed prediction error model and one
that minimizes E0 output error model.

In this section we discuss how to solve (14) for
the suggested functions g(p) and g(a). The tech-
niques are based on numerical local optimization
programs. It should be said immediately that such
programs can only be guaranteed to converge to
a local minimum of E and E0.

4.1 Prediction Error Model, Polynomial (7)

Minimizing the prediction error E(p, b, c) is equiv-
alent to minimizing

V (S, b, c) =
N∑

t=1

[
yt − bT ϕt − g(ST ϕt; c)

]2
(15)

with the constraint ST S = 1. Here we assume
that g(·) is differentiable, for instance the polyno-
mial g(p) in (7).

Given some initial value S(0), V is minimized lo-
cally by repeating until convergence (j = 1, 2, . . . ):

(1) Let b(j) and c(j) solve minb,c V (S(j−1), b, c)

(2) Let S̃(j) solve minS V (S, b(j), c(j)).

(3) Let S(j) = S̃(j)/ ‖ S̃(j) ‖2.

4.1.1. Initial Value The initial value b(0) is cal-
culated as the solution to the linear least squares
problem

min
b

E(0, b, 0),

corresponding to a linear ARX model (g(0; 0) =
0). S(0) is calculated as the first singular vector of
the residual of this ARX model.

4.1.2. Calculate b and c given S Assume that
the projection S is given (fix) and we should
calculate the minimizing parameters b and c. For
notational purposes, the iteration superscripts are
here dropped. Let

X =




ϕT
1

ϕT
2
...

ϕT
N


 , Y =




y1

y2

...
yN


 . (16)

Then b and c are given as the solution to the linear
least squares problem

min
b,c

∥∥∥∥
[
X 1 (XS).2 · · · (XS).l

] [b
c

]
− Y

∥∥∥∥
2

. (17)

By (XS).r is denoted the rth power of every
vector entry.

4.1.3. Calculate S given b and c Assume now
instead that b and c are given (fix) and that
the minimizing projection S should be calculated.
Consider the first two terms in the Taylor ex-
pansion at some location in the regressor space
S = Si:

g(ST ϕt; c) ≈

≈ g(ST
i ϕt; c) + g′(ST

i ϕt; c)(S − Si)
T ϕt

= u(Si, c,ϕt) + ST r(Si, c,ϕt),

(18)

where u and r have obvious definitions. Let

Ui =




u(Si, c,ϕ1)
u(Si, c,ϕ2)

...
u(Si, c,ϕN )


 ,Ri =




r(Si, c,ϕ1)
T

r(Si, c,ϕ2)
T

...

r(Si, c,ϕN )T


 .

Then the Gauss-Newton update of Si is given as

Si+1 = arg min
S

‖RiS − Y − Xb − Ui‖2 . (19)

Starting at S0 = S(j), this inner loop (i = 0, 1, . . . )
is repeated until convergence.

4.2 Prediction Error Method with Piecewise Affine
Function (8)

Consider estimation with the prediction error
method when the nonlinearity is parameterized



with the piecewise affine function in (8). Define
the weight matrix W in R

N×l in which the entry
on row t and column i (wti) is the weight that
observation t has for the affine function i. The
piecewise affine function in the projection S is
then

g(ST ϕt;α,β,W ) =
l∑

i=1

(αi + βiS
T ϕt)wti (20)

and the objective function is

V (S, b,α,β,W ) =

=
N∑

t=1

[
yt − bT ϕt − g(ST ϕt;α,β,W ))

]2
.

(21)

Here, the parameter vector c is divided into

α =
[
α1 α2 · · ·αl

]T
, β =

[
β1 β2 · · ·βl

]T
.

A complication here is that any reasonable policy
for choosing the knots zi, that in turn induce the
weight functions, must take the distribution of
the projected points XS into account. This was
briefly described in Section 2.3.1.

Given some initial values S(0), b(0), and some
initial weight matrix, W (0), the minimization
program repeats until convergence (j = 1, 2, . . . ):

(1) Let α(j) and β(j) solve

min
α,β

V (S(j−1), b(j−1),α,β,W (j−1))

(2) Let S̃(j) and b̃(j) solve

min
S,b

V (S, b,α(j),β(j),W (j))

and S(j),b(j) be the normalized solution.
(3) Calculate the weights W (j) = W (XS(j)).

4.2.1. Initial Values The initial value b(0) is cal-
culated as the solution to the linear least squares
problem minb V (0, b, 0, 0, 0), corresponding to a
linear ARX model. S(0) is calculated as the first
singular vector of the residual of this ARX model.
W (0) = W (Xb) (described below).

4.2.2. Calculate α and β Assume that S, W ,
b are given (fix) and that we seek α and β that
minimize (21). Let

U =




W T
1 ST ϕ1

W T
2 ST ϕ2

...

W T
N ST ϕN


 , (22)

where Wt is the t:th row of W . Then α and β are
given as the solution to the linear least squares
problem

min
α,β

∥∥∥∥
[
W U

] [α
β

]
− Y − Xb

∥∥∥∥
2

. (23)

4.2.3. Calculate S and b Assume now instead
that α and β are given and that we seek S and
b that minimize (21). Then S and b are given as
the solution to the linear least squares problem

min
S,b

∥∥∥∥
[
βT W T X X

] [S
b

]
− Y − Wα

∥∥∥∥
2

. (24)

Note that it is here possible to calculate the
projection S directly by solving a simple linear
least squares problem. With the polynomial we
had to use Gauss-Newton iterates.

If necessary, S is normalized to unit length. Then
b is recalculated as the solution to

min
b

‖Xb − Y − Wα − Uβ‖2 . (25)

4.3 Output Error Method

The output error method estimates the model by
minimizing the model output error E0(p, b, c), see
Section 3. This is a more complex problem com-
pared to minimizing the prediction error, since the
output error is calculated by a model simulation.
We will not discuss how to implement this method
efficiently here. In our preliminary experiments we
have used simple standard programs for uncon-
strained minimization without derivatives, see for
instance (Brent, 1973).

The nonlinear function g can of course be param-
eterized like g(p) in (7) or g(a) in (8) or by any
other appropriate nonlinear parameterization.

5. NUMERICAL EXPERIMENTS

In the introductory example on page 2 the dy-
namics of a simple water tank were studied. In
fact, the projection depicted in Fig. 1 were found
by using the piecewise affine parameterization and
the parameter estimation suggested in Section 4.2.

Now an electronic circuit will be modeled by a
multi-index model with polynomial parameteriza-
tion and the parameters estimated as proposed
in Section 4.1. The data set used is known from
literature as the Silver Box Data. The data are
described in (Pintelon and Schoukens, 2001) and
have been studied in a special session at the NOL-
COS symposium 2004, (NOLCOS, 2004).

In theory, the electronic circuit obeys the nonlin-
ear differential equation

m
d2y(t)

dt
+ d

dy(t)

dt
+ ay(t) + by(t)3 = u(t). (26)

The cubic nonlinearity enters additively, so in the
differential equation it is trivial to separate the
nonlinear dependency by linear operation (projec-
tion). The question is if this can be done also for
the sampled data.



Table 1. Results for the Silver box
model. See the text for an explanation.

Model na nb nk l Prms 103
E0, PE 103

E0,OE

Lin 2 3 0 - 5 14 15

M-I 2 3 0 3 12 5.0 0.44

M-I 5 5 0 3 22 2.5 0.44

ANN 2 3 0 10 82 4.2 2.6

ANN 2 3 0 75 617 0.52 0.46
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Fig. 2. Regressor projection versus linear model
residual (subset with N = 2000 points). The
model polynomial of degree 3 is also drawn.
The model orders are na = nb = 5, so the
regression vector is in R

10.

The sampling interval is 0.0016384s. N = 86916
samples are available for estimation and 40000 for
model validation.

Table 1 gives the validation errors for some dif-
ferent models structures fitted to the Silver box
data, including linear, artificial neural network
and multi-index models. The table shows the sim-
ulation fit to the validation data set (which is the
“toughest” test – same as used in the NOLCOS
session) both for models that were fitted using the
prediction error (PE) and the output error (OE)
approaches – see eq (14) and the text following.
The table also shows the orders used in (2) and
l, the polynomial order/number of hidden nodes.
The total number of parameters (Prms) is also
shown.

The multi-index model (3) with polynomial g fits
very well. Using the prediction error criterion E,
the multi-index model with 12 parameters has
comparable error with an ANN model with 82
parameters. Using E0 as criterion, there were no
significant difference in error, even when compar-
ing with the 617 parameter ANN model.

Fig. 2 depicts a regressor projection obtained from
a multi-index model fitted with polynomial of
degree l = 3. Here, na = nb = 5, so the regressor
space is 10-dimensional, cf. (NOLCOS, 2004).
Since the points follow the curve well, the model
is appropriate.

6. CONCLUSIONS

We have found that for some systems, the non-
linear dynamics can be well modeled in a low-
dimensional linear projection of the regressor.
These systems are with advantage modeled with
a multi-index structure with two terms: one linear
and one nonlinear.

For real life data sampled from an electronic cir-
cuit (the silver box data), it was seen that the
nonlinearity could be well modeled in 2 dimen-
sions with a model total of 12 parameters. This
(output error) model performed as well as an
artificial neural network with one hidden layer and
75 nodes (617 parameters), as measured by the
simulation error for validation data.
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