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Abstract: The computation of robust H∞ performance of linear systems subject
to polytopic parametric uncertainty is known to be a difficult problem in robust
control. In this paper, quadratic parameter-dependent Lyapunov functions, with
polynomial dependence on the uncertain parameters, are exploited to provide
upper bounds to the robust H∞ performance. It is shown that such bounds can
be computed via convex optimizations constrained by LMIs. Numerical examples
show that the proposed technique is a powerful alternative to existing methods
based on linearly parameter-dependent Lyapunov functions. Copyright c©2005
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1. INTRODUCTION

Robust performance analysis of systems affected
by real structured parametric uncertainty is a
widely studied difficult problem in robust control.
Lyapunov methods have been recognized since
long time as a powerful tool for tackling such
problem, and have gained a renewed interest in
the last decade due to the development of effi-
cient algorithms to solve LMI-based optimization
problems.

A classic approach is based on common Quadratic
Lyapunov Functions (QLFs). An upper bound to
the robust H∞ performance of a linear system
with polytopic state space uncertainty, based on
the existence of a common QLF, can be computed
by solving an EigenValue Problem (EVP), which
is a convex optimization with LMI constraints

(Boyd et al., 1994). On the other hand, it is
well known that robustness performance evalu-
ation based on quadratic stability can be quite
conservative.
In order to reduce conservativeness, parameter-

dependent Lyapunov functions have been con-
sidered. LMI-based tests for the computation of
upper bounds to the robust H∞ performance
have been presented by several authors. The ap-
proaches proposed in the literature are charac-
terized by the way the selected class of Lya-
punov functions depends on the uncertain para-
meters. Lyapunov functions affine in the para-
meters have been used in (Gahinet et al., 1996),
and more recently in (de Oliveira et al., 2004).
Multi-affine dependence has been adopted in
(Dettori and Scherer, 2000), in connection with
parameter-dependent multipliers. Lyapunov func-



tions in which the dependence on the parame-
ters is expressed as a linear fractional transfor-
mation have been considered in (Peaucelle and
Arzelier, 2001).

Recently, the class of Homogeneous Polynomi-
ally Parameter-Dependent Quadratic Lyapunov
Functions (HPD-QLFs) has been introduced to
study robust stability of polytopic systems (Chesi
et al., 2003a). The main feature of HPD-QLFs
is that they are quadratic Lyapunov functions
whose dependence on the uncertain parameters is
expressed as a polynomial homogeneous form.
In this paper, HPD-QLFs are used to compute
an upper bound to the robust H∞ performance
of a linear system affected by polytopic uncer-
tainty. By exploiting a suitable square matricial
representation of homogeneous forms, it is shown
that the sought upper bound can be obtained via
the solution of an EVP, for both continuous-time
and discrete-time systems. Numerical examples
are provided to demonstrate the potential of ro-
bustness analysis based on HPD-QLFs.

The paper is organized as follows. Section 2 for-
mulates the robust H∞ performance problem and
provides preliminary material on matricial homo-
geneous forms. The proposed technique for the
computation of upper bounds to the H∞ perfor-
mance is described in Section 3. Numerical ex-
amples are reported in Section 4, while Section 5
provides some concluding remarks.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Notation:

• 0n: origin of R
n;

• R
n
0 : R

n \ {0n};
• 0m×n: origin of R

m×n;
• In: identity matrix n × n;
• A′: transpose of matrix A;
• A > 0 (A ≥ 0): symmetric positive definite

(semidefinite) matrix A;
• A⊗B: Kronecker’s product of matrices A and

B;
• sq([p1, p2, . . . , pq]

′): [p2
1, p

2
2, . . . , p

2
q]

′;
• sqr([p1, p2, . . . , pq]

′): [
√

p1,
√

p2, . . . ,
√

pq]
′, for

pi ≥ 0, i = 1, . . . , q.

Consider the continuous-time state space model







ẋ(t) = A(p)x(t) + B(p)w(t)
y(t) = C(p)x(t) + D(p)w(t)

p ∈ P
(1)

where x ∈ R
n is the state, w ∈ R

r is the input,
y ∈ R

g is the output and p = [p1, p2, . . . , pq]
′ ∈ R

q

is the uncertain parameter vector, constrained in
the unit simplex

P =

{

p ∈ R
q :

q
∑

i=1

pi = 1, pi ≥ 0

}

. (2)

The matrices A(p) ∈ R
n×n, B(p) ∈ R

n×r, C(p) ∈
R

g×n and D(p) ∈ R
g×r are assumed linear func-

tions of p according to

A(p) =

q
∑

i=1

piAi, B(p) =

q
∑

i=1

piBi

C(p) =

q
∑

i=1

piCi, D(p) =

q
∑

i=1

piDi

(3)

where Ai, Bi, Ci,Di, i = 1, . . . , q, are given real
matrices of suitable dimensions.

For any p ∈ P, the transfer matrix from w to y is
given by

H(s, p) = C(p) (sIn − A(p))
−1

B(p) + D(p). (4)

For a fixed p, the H∞ norm of H(s, p) can be
computed through the bounded real lemma (Boyd
et al., 1994), in the following way

‖H(s, p)‖∞ = inf
γ∈R,P=P ′∈Rn×n

γ

s.t.






P > 0

E(P, p) +
1

γ2
F (p) < 0

(5)

where

E(P, p) =

[

PA(p) + A(p)′P PB(p)
B(p)′P −Ir

]

(6)

F (p) =

[

C(p)′

D(p)′

]

[C(p),D(p)] (7)

The problem dealt with in this paper is to com-
pute the worst case H∞ norm over P, i.e.

γ∗ = sup
p∈P

‖H(s, p)‖∞. (8)

The key step to address the above problem is
the construction of a Homogeneous Polynomially
Parameter-Dependent Quadratic Lyapunov Func-
tion (simply abbreviated as HPD-QLF)

vm(x, p) = x′Pm(p)x (9)

where Pm(p) = Pm(p)′ ∈ R
n×n is a homogeneous

matricial form of degree m, i.e., a matrix whose
entries are (real q-variate) homogeneous polyno-
mial forms of degree m. Specifically, we define the
H∞-cost guaranteed by a HPD-QLF of degree m

as



γ∗
m = inf

γ∈R,Pm(p)=Pm(p)′∈Rn×n
γ

s.t.






Pm(p) > 0 ∀p ∈ P

E(Pm(p), p) +
1

γ2
F (p) < 0 ∀p ∈ P

(10)

where E(Pm(p), p) is as in (6) with P = Pm(p).
Clearly, γ∗

m ≥ γ∗ for all m ≥ 0.

2.1 Parameterization of homogeneous matricial

forms

Let C2m(p) ∈ R
n×n be a homogeneous matricial

form of degree 2m in p ∈ R
q. Then, C2m(p)

can be parameterized according to the Square
Matricial Representation (SMR) of homogeneous
forms introduced in (Chesi et al., 2003b) as

C2m(p) =
(

p{m} ⊗ In

)′

C̄
(

p{m} ⊗ In

)

(11)

.
= ∆

(

n, p{m}, C̄
)

(12)

where p{m} ∈ R
σ(q,m) is a vector containing all

monomials of degree m in p, and C̄ is a square
matrix of dimension nσ(q,m) being

σ(q,m) =
(q + m − 1)!

(q − 1)!m!
. (13)

Such a matrix, denoted hereafter as an SMR
matrix of C2m(p) and also known as Gram matrix
(Choi et al., 1995), is not unique. Indeed, all the
matrices C̄ describing C2m(p) are given by

C̄ + Ū , Ū ∈ Un,m (14)

where

Un,m =
{

Ū = Ū ′ ∈ R
nσ(q,m)×nσ(q,m) :

∆
(

n, p{m}, Ū
)

= 0n×n ∀p ∈ R
q
}

.
(15)

In (Chesi et al., 2003a) it has been shown that the
set Un,m is a linear space of dimension

u(n,m) =
1

2
n
{

σ(q,m)[nσ(q,m) + 1]

−(n + 1)σ(q, 2m)
}

.
(16)

Let Ū(α), α ∈ R
u(n,m), be a linear parameteri-

zation of Un,m. The Complete SMR (CSMR) of
C2m(p) is hence given by

C2m(p) = ∆
(

n, p{m}, C̄ + Ū(α)
)

. (17)

The computation of the CSMR of homogeneous
matricial forms can be performed by applying
algebraic procedures similar to those reported
in (Chesi et al., 2003b) for scalar homogeneous
forms.

3. ROBUST H∞ NORM COMPUTATION

In this section it is shown how upper bounds
to γ∗

m can be computed through convex LMI
optimizations. The first condition to be satisfied is
the positive definiteness of the HPD-QLF matrix
Pm(p) within the set P, i.e. the first constraint
in (10). In this respect, a parameterization of
positive definite matrices Pm(p) is provided next.

Lemma 1. The condition

Pm(p) > 0 ∀p ∈ P (18)

holds if and only if

Pm(sq(p)) > 0 ∀p ∈ R
q
0. (19)

Proof See (Chesi et al., 2003a). �

Observe that Pm(sq(p)) can be written as

Pm(sq(p)) = ∆
(

n, p{m}, S̄
)

(20)

for some suitable matrix S̄ ∈ Sm where

Sm =
{

S̄ = S̄′ ∈ R
nσ(q,m)×nσ(q,m) :

∆
(

n, p{m}, S̄
)

does not contain

entries pi1
1 pi2

2 . . . p
iq

q with any odd ij

}

.

(21)

Then, for such a matrix S̄, Pm(p) can be obtained
according to

Pm(p) = ∆
(

n, sqr(p){m}, S̄
)

. (22)

It is not difficult to show that the set Sm is a linear
space of dimension

s(m) =
1

2
n
{

σ(q,m)[nσ(q,m) + 1]

−(n + 1)[σ(q, 2m) − σ(q,m)]
}

.
(23)

Let S̄(β), β ∈ R
s(m), be a linear parameterization

of Sm. Clearly, this induces a corresponding linear
parameterization of the family of candidate HPD-
QLF matrices in (22), namely

Pm(p, β) = ∆
(

n, sqr(p){m}, S̄(β)
)

(24)

which depends linearly on the parameterization
β of Sm. Following the above reasoning, one has
the next result, which is the key step for the
formulation of the sufficient condition to solving
the robust stability problem.

Lemma 2. Let S̄(β) belong to Sm in (21). Then,

S̄(β) > 0 ⇒ Pm(p, β) > 0 ∀p ∈ P. (25)



Now, the aim is to provide LMI-based conditions
which guarantee that also the second constraint in
(10) is satisfied. To this purpose, let us introduce
the homogeneous matricial form of degree m + 1

Qm+1(p, β, ζ) = E(Pm(p, β), p) + Nm+1(p)

+ζF (p)

(

q
∑

i=1

pi

)m−1
(26)

where

Nm(p) = diag

{

0n×n,

[

1 −
(

q
∑

i=1

pi

)m]

Ir

}

. (27)

Notice that, due to the constraint (2), one has

Qm+1(p, β,
1

γ2
) = E(Pm(p, β), p) +

1

γ2
F (p)

∀p ∈ P. Let us write Qm+1(sq(p), β, ζ) as

Qm+1(sq(p), β, ζ) = ∆
(

l, p{m+1}, R̄(β, ζ)
)

(28)

where l = n+r, and R̄(β, ζ) ∈ R
lσ(q,m+1)×lσ(q,m+1)

is any SMR matrix of Qm+1(sq(p), β, ζ) (observe
that R̄(β, ζ) depends affinely on β and ζ).

Theorem 1. Let Ū(α) be any linear parameteriza-
tion of Ul,m+1 and define

γ̂∗
m =

1√
ζ∗

(29)

where ζ∗ is the solution of the EVP

ζ∗ = sup
ζ∈R,β∈Rs(m),α∈Ru(l,m+1)

ζ

s.t.
{

S̄(β) > 0
R̄(β, ζ) + Ū(α) < 0

(30)

Then, γ̂∗
m ≥ γ∗

m.

Proof. First, let Pm(p, β) be defined as in (24).
Then, from (30) and Lemma 2 one has that
Pm(p, β) > 0 ∀p ∈ P, and hence the first condition
in (10) holds. Second, let us observe that R̄(β, ζ)+
Ū(α) is the CSMR matrix of Qm+1(sq(p), β, ζ) in
(28). Hence, (30) implies that Qm+1(sq(p), β, ζ) <

0 ∀p ∈ R
q
0. From Lemma 1 it turns out that

Qm+1(p, β, ζ) < 0 ∀p ∈ P. By observing that
Qm+1(p, β, ζ) = E(Pm(p, β), p) + ζF (p), ∀p ∈ P,
one has that also the second condition in (10)
holds for 1

γ2 = ζ. Therefore, γ̂∗
m ≥ γ∗

m. �

Table 1 shows the number of free parameters in
the EVP (30), amounting to s(m)+u(l,m+1)+1,
for different values of n,m, q.

A question that naturally arises is whether there
exists a relationship between the families of HPD-
QLFs of degree m and m + 1. The following

Table 1. Number of free parameters
in the EVP (30)

q = 2, r = 1 q = 3, r = 1

n \ m 1 2

2 23 52

3 44 100

4 72 164

n \ m 1 2

2 94 349

3 178 658

4 289 1066

result clarifies that, if the sufficient condition of
Theorem 1 is satisfied for m, then it is satisfied
also for m + 1.

Theorem 2. Let m be a nonnegative integer.
Then, γ̂∗

m ≥ γ̂∗
m+1.

Proof. Let S̃(β̃) and Ũ(α̃) be linear parameter-
izations of Sm+1 and Ul,m+2 respectively, and

let R̃(β̃, ζ) ∈ R
lσ(q,m+2)×lσ(q,m+2) be any SMR

matrix of Qm+2(sq(p), β̃, ζ) where Qm+2(p, β̃, ζ)
follows from (26), with

Pm+1(p, β̃) = ∆
(

n, sqr(p){m+1}, S̃(β̃)
)

. (31)

Suppose that there exist ζ, α ∈ R
u(l,m+1) and

β ∈ R
s(m) such that the LMIs in (30) are satisfied.

Then, γ̂∗
m ≥ γ̂∗

m+1 if there exist α̃ ∈ R
u(l,m+2) and

β̃ ∈ R
s(m+1) such that

{

S̃(β̃) > 0

R̃(β̃, ζ) + Ũ(α̃) < 0
(32)

From the proof of Theorem 1 we have that, ∀p ∈
P, Pm(p, β) > 0 and Qm+1(p, β) < 0. In order to
select β̃, let us define Pm+1(p) = Pm(p, β)

∑q
i=1 pi

and let us show that Pm+1(sq(p)) admits a posi-
tive definite SMR matrix. Let Km+1 be the matrix
satisfying

p ⊗ p{m} = Km+1p
{m+1} ∀p ∈ R

q. (33)

Then,

Pm+1(sq(p)) =

(

q
∑

i=1

p2
i

)

∆
(

n, p{m}, S̄(β)
)

= p′p
(

p{m} ⊗ In

)′

S̄(β)
(

p{m} ⊗ In

)

= (. . .)
′ (

Iq ⊗ S̄(β)
)

(

p ⊗ p{m} ⊗ In

)

= (. . .)
′ (

Iq ⊗ S̄(β)
)

(

Km+1p
{m+1} ⊗ In

)

= (. . .)
′
(. . .)

′ (
Iq ⊗ S̄(β)

)

(Km+1 ⊗ In)
(

p{m+1} ⊗ In

)

= ∆
(

n, p{m+1}, S∗
)

(34)

where the notation (. . .)′AB stands for B′AB, and

S∗ = (Km+1 ⊗ In)′
(

Iq ⊗ S̄(β)
)

(Km+1 ⊗ In).(35)

Since S̄ > 0 and Km+1 is a matrix with full
column rank, it follows that S∗ > 0.



Now, let us select β̃ such that S̃(β̃) = S∗ (such
a β̃ exists since S∗ ∈ Sm+1). We hence have
that the first condition in (32) is satisfied and
Pm+1(p, β̃) = Pm(p, β)

∑q
i=1 pi.

Let us observe that Qm+2(p, β̃, ζ) = Qm+1(p, β, ζ)
∑q

i=1 pi. Following the same development as in
(34), one gets

Qm+2(sq(p), β̃, ζ) = ∆
(

l, p{m+2}, R̃(β̃, ζ)
)

(36)

where

R̃(β̃, ζ) = (Km+2 ⊗ Il)
′

(

Iq ⊗
(

R̄(β, ζ) + Ū(α)
)

)

(Km+2 ⊗ Il) .
(37)

Since R̄(β, ζ)+ Ū(α) < 0 it follows that R̃(β̃, ζ) <

0. Therefore, Qm+2(sq(p), β̃, ζ) admits the neg-
ative definite SMR matrix R̃(β̃, ζ) + Ũ(α̃) with
α̃ = 0u(l,m+2), and also the second condition in
(32) holds. �

The proposed technique can be applied also to
discrete-time systems







x(t + 1) = A(p)x(t) + B(p)w(t)
y(t) = C(p)x(t) + D(p)w(t)

p ∈ P

In particular, Theorem 1 provides the sought
upper bound γ̂∗

m of γ∗, if one makes the following
changes:

- Ū(α) is any linear parameterization of Ul,m+2

with α ∈ R
u(l,m+2);

- R̄(β, ζ) ∈ R
lσ(q,m+2)×lσ(q,m+2) is any SMR

matrix of Qm+2(sq(p), β, ζ) where

Qm+2(p, β, ζ) = E(Pm(p, β), p) + Nm+2(p)

+ζ

(

q
∑

i=1

pi

)m

F (p)

and E(P, p) is now defined as

E(P, p) =

[

A(p)′PA(p) − P A(p)′PB(p)
B(p)′PA(p) B(p)′PB(p) − Ir

]

.

A result analogous to Theorem 2 can also be
derived.

4. EXAMPLES

4.1 Example 1

Consider the parametric system described by (1)–
(3) with q = 2 and

A1 = Â0 + κÂ1, A2 = Â0 − κÂ1

where κ ∈ R and

Â0 =





−2 1 −1
2.5 −3 0.5
−1 1 −3.5



 , Â1 =





−0.7 −0.5 −2
−0.8 0 0
1.5 2 2.4



 .

The matrices Bi, Ci and Di are, for all i = 1, 2,

Bi =





1
0
0



 , Ci =





0
0
1





′

, Di = 0.

Upper bounds to the robust H∞ performance
γ∗, for some values of κ (the semi-length of the
segment of matrices A(p)), have been computed
via different methods. Table 2 shows the upper
bounds provided by the approach proposed in
(Gahinet et al., 1996) (indicated by GAC), the
approach proposed in (de Oliveira et al., 2004)
(denoted by OOLMP), and our technique with
m = 1 (linear dependence) and m = 2 (quadratic
dependence). Notice that the maximum value of
κ for which A(p) is Hurwitz is κ = 3.552 (Chesi
et al., 2003a).

Table 2. Results for Example 1

κ GAC OOLMP γ̂
∗

1
γ̂
∗

2

1.0 1.515 1.515 1.515 1.515

1.2 1.631 1.567 1.567 1.567

1.4 2.247 1.567 1.567 1.567

1.6 4.261 1.567 1.567 1.567

1.8 342.3 1.567 1.567 1.567

2.0 ∞ 1.616 1.616 1.567

2.2 ∞ 2.261 2.261 2.261

2.4 ∞ 3.500 3.500 3.500

2.6 ∞ 5.255 5.255 5.232

2.8 ∞ 7.991 7.991 6.201

3.0 ∞ 15.50 15.50 6.201

3.2 ∞ 399.6 399.6 6.201

3.4 ∞ ∞ ∞ 6.201

3.5 ∞ ∞ ∞ 6.201

4.2 Example 2

Consider system (1)–(3) with q = 3 and

A1 =









−0.42 −1.68 −2.24 2.92
−0.74 −1.74 −4.58 1.44
−2.92 3.84 −6.98 2
−4.92 −2.68 −8.66 −0.78









A2 =









−0.78 5.52 1.36 5.8
−5.42 −4.62 −0.26 −1.08
2.48 6 −7.7 −7.72
−1.32 3.8 2.14 2.1









A3 =









−4.2 −3.12 −2.96 1.84
4.48 −1.02 −2.78 −7.38
1.22 −0.12 −2.66 −0.34
2.1 4.52 −1.28 −1.5









Bi =









1
0
0
0









, Ci =









0
0
0
1









′

, Di = 0, i = 1, 2, 3.

It turns out that the upper bound to γ∗ provided
by the OOLMP method is 8.952. On the other
hand, our technique provides γ̂∗

1 = 4.222 for m =
1, and γ̂∗

2 = 1.215 for m = 2.



5. CONCLUSIONS

Polynomially parameter-dependent quadratic Lya-
punov functions have been exploited to obtain
upper bounds to the robust H∞ performance of
linear systems subject to polytopic parametric
uncertainty, through convex optimizations con-
strained by LMIs. Numerical examples show that
the proposed technique compares favorably to
existing methods based on linearly parameter-
dependent Lyapunov functions.

Future research will consider the possibility of
extending the proposed technique to the synthe-
sis of controllers minimizing the robust H∞ per-
formance. Another research line under investiga-
tion concerns the use of HPD-QLFs in connec-
tion with robustness analysis techniques based on
parameter-dependent multipliers.
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