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Abstract: The paper discusses problems of spatial motion of lightweight dexter-

ous manipulators with respect to complex environment represented in the form of

holonomic restrictions. The relevant control problem implies maintaining a com-

pact configuration of the kinematic chain and stabilization of the robot principal

line with respect to desired smooth time-varying curves. The solutions are based

on the approaches of the theory of nonlinear multi-input/multi-output (MIMO)

control and are reduced to output coordination and output stabilization of a non-

linear MIMO plant. Copyright c©IFAC 2005.
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I. INTRODUCTION

Redundant number of degrees of freedom (DOF)
of robotic manipulators is a necessary condition
for their dexterity and versatility. Dexterous
multi-link robots are able to perform nontrivial
locomotion tasks such as penetrating into hard
to come domains of the operational zone, perfect
obstacle avoidance, suitable approaching external
objects, motion along complex curvilinear trajec-
tories and so on (Seraji, 1989; Murray et al., 1993;
Miroshnik and Nikiforov, 1994; Caccavale and Si-
ciliano, 2001; Furuta, 2002). Execution of these
tasks and the necessity for fruitful utilization of
the extra DOF in the course of the robot motion
induce certain difficulties of control referred to the
redundancy problem. The latter is caused by un-
certainty of the robot configuration, as well as the

required control actions, when the number of con-
trolled DOF is greater than the dimension of the
Cartesian space. The most difficult control prob-
lems are connected with spatial motion of hyper-
redundant robotic systems (articulated and snake-
like robots, variable geometry truss manipulators,
or VGT-robots, etc.; Chirikjian, 1995, Miroshnik
et al., 2003) and time variations of the given tra-
jectory. 1

A natural way to overcome the uncertainty of
the redundant robot’s control is to impose ad-
ditional constrains on the robot motion (Seraji,
1989; Miroshnik and Nikiforov, 1994-1997; Frad-
kov, et al., 1999; Miroshnik, et al., 2001; Mirosh-
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nik, et al., 2003; Chevallereau, et al., 2003). These
constrains written as holonomic relations

ϕi(x1, . . . , xj , . . .) = 0

of certain robot variables xj can define, for in-
stance, conditions of the identity or proportion-
ality of some joint coordinates and their rates,
a desired orientation of the links in the Carte-
sian space, etc. The most evident relations of the
Cartesian coordinates are given by the analytical
description of end-point trajectory itself or by the
trajectories of other specific points of the robot
kinematic chain.

The fulfillment of the additional constrains pro-
vides the coordinated motion of the links of the
redundant mechanism and maintaining its desired
configuration in the course of the end-point dis-
placement along a given trajectory. Such a kind
of the robot behavior can be arranged by means
of tracking control when the coordinating relations
are involved into the procedure of calculating the
inverse kinematics (Whitney, 1969; De Luca and
Oriolo, 1996). However the tracking control strat-
egy has certain disadvantages concerning complex-
ity of the on-line calculation of the inverse kine-
matics and the precise interpolation of the desired
trajectories, as well as decreased dynamic quality
of tracking the task-oriented coordinates (Frad-
kov, et al., 1999). For hyper-redundant manip-
ulators, the relevant solutions were proposed by
using ”infinite-DOF concept” (Chirikjian, 1995),
which is not so efficient when the number of robot
links is not very large.

A direct solution to the robot control problems
with time-invariant holonomic restrictions based
on coordinating control principle was given in
(Miroshnik and Nikiforov, 1995-1996; Fradkov,
et al., 1999, Miroshnik, et al., 2003). This im-
plies introducing the necessary number of the task-
oriented coordinates

εi = ϕi(x1, . . . , xj , . . .),

characterizing deviations from the desired restrict-
ing relations. In this way, the multi-dimensional
control task is reduced to a set of simple stabiliza-
tion problems solved by using nonlinear control
techniques (Miroshnik and Nikiforov, 1996-1997;
Fradkov, et al., 1999).

This paper discusses problems of maintaining the
required configuration of the multi-link robot,
when moving in complex environment. The prob-
lem is reduced to stabilization of the robot central

line about a given time-varying goal trajectory and
an appropriate longitudinal displacement of the
central points, providing variation of the length
of the robot body. The solution is based on ap-
proaches of the theory of nonlinear and MIMO
control (Fradkov, et al., 1999; Miroshnik 2004).
The main problems (connected with system re-
dundancy, coordination of the motions of different
link of the robot and the necessity to provide the
compact time-varying configuration of the robot
chain) are reduced to problems of the output co-
ordination and stabilization of a nonlinear multi-
input/multi-output plant with respect to spatial
(planar) time-varying attractors.

2. ROBOT MODELS AND PROBLEM
STATEMENT

We restrict our consideration to a planar multi-
link robot consisting of standard 1-DOF links with
rotational joints (Fig. 1). Kinematics of the j-th
link is described by the equation

yj = yj−1 +
+ 0.5ξTT (αj−1)z + 0.5ξTT (αj)z, (1)

where yj = col(yj
1, y

j
2) ∈ Y ⊂ R2 is the vector of

Cartesian coordinates of a principal (central) point
P j and αj the angular attitude of the jth link, ξ
is the length of the link, T (αj) is an orthogonal

matrix (TT = T−1), z = 1
0 .

A light-weight planar robot with standard ro-
tational joints is an m-degree-of-freedom spatial
kinematic mechanism described by the equations

q̇ = Bu, (2)
yj = cj(q), j = 1, . . . ,m, (3)

where q = {qj} ∈ Q ⊂ Rm is the vectors of joint
(generalized) coordinates, u = {uj} ∈ Rm is the

Fig. 1. Manipulator configuration



vector of control variables, B is an invertable ma-
trix,

c1(q) = 0, cj(q) = cj−1(q) +
+ 0.5ξTT (αj−1)z + 0.5ξTT (αj)z, (4)

j = 2, . . . , m, and

αj = nT
j q, nT

j = 1...10...0 , (5)

j = 1, . . . , m. Differentiating equation (3) with re-
spect to time and substituting (2), one can obtain
the robot model in the Cartesian space

ẏj = Cj(q)B u, (6)

where the matrices Cj(q) = ∂cj/∂q are found as

C1(q) = 0, Cj(q) = Cj−1(q) +
+0.5ξTT (αj−1)rnT

j−1 + 0.5ξTT (αj)rnT
j ,(7)

j = 2, . . . , m, r =
0
1 .

Consider the motion of the robot in the Cartesian
space Y with respect to a prescribed smooth time-
varying curve S given by the equation

ϕ(y, t) = 0, (8)

while the path length is defined as

s = ψ(y, t). (9)

Henceforward we make use of the ortho-
normalized description of the curve (see Frad-
kov, et al., 1999; Miroshnik, 2004), for which
the smooth functions ϕ and ψ are assumed to be
such that, on the curve S, the Jacobian matrix

J(y) =
∂ψ/∂y
∂ϕ/∂y

of the mapping (ψ, ϕ) is or-

thogonal, or

J(y)|y∈S = T (α∗). (10)

Here the matrix T (α∗) is associated with a mov-
able (Frenet) frame of the curve, α∗ = α∗(y) is the
angle of its orientation, and

T (α∗) =
τT
1 (α∗)

τT
2 (α∗) =

cos α∗ sin α∗

− sin α∗ cos α∗ . (11)

We study the trajectory problem as that of keep-
ing up the motion of all central points P j along
the curve S∗ and providing a desired longitudinal
velocity ṡ of the end-point Pm. For, we introduce
m− 1 relations

ϕ(yj , t) = 0, j = 2, . . . , m, (12)

and define the longitudinal motion of the end-
point Pm as

sm = ψ(ym, t). (13)

Then the control problem is stated as finding the
control u such that, in time, equations (12) hold
and

ṡm = v∗(t). (14)

3. CONTROL DESIGN

Define violations of the conditions (12) associated
with orthogonal deviations from the curve S by
using the variables

ej = ϕ(yj , t), j = 2, . . . , m. (15)

Equations (13) and (15) introduce a coordinate
change (transformation to the robot task-oriented
variables, Fradkov, et al., 1999). The control prob-
lem is reduced to (asymptotic) eliminating the de-
viations ej and maintaining relation (14).

To derive the task-oriented model, we differentiate
equations (13), (15) and, after the substitution of
(6), find

ṡm

ėm = T (α∗(ym))Cm(q)Bu +
σ
εm , (16)

ėj = τ2(α∗(yj))Cj(q)Bu + εj , (17)

j = 1, . . . , m− 1, where

σ(y, t) =
∂ψm

∂t
, εj(y, t) =

∂ϕj

∂t
, (18)

j = 1, . . . , m.

Let us now transform the control variables accord-
ing to the expressions

T (α∗(ym)) Cm(q)B u =
us

um
e

, (19)

τT
2 (α∗(yj)) Cj(q)B u = uj

e, (20)

where us is the longitudinal control and uj
e are

the transversal (or error) controls. Then equations
(16)-(17) take the form

ṡm = us + σ, (21)
ėj = uj

e + εj , j = 1, . . . , m. (22)

Choosing

us = v∗ − σ, (23)
uj

e = − Kej − εj , j = 1, . . . , m, (24)



where K > 0, we provide the required velocity v∗

of the longitudinal motion (see (14)) and asymp-
totic zeroing of the errors ej .

To obtain the resulting control of the robot, we
have to find an inverse control transformation, i.e.
to solve the m equations

τT
1 (α∗(ym)) Cm(q)B u = us,

τT
2 (α∗(ym)) Cm(q)B u = um

e , (25)
τT
2 (α∗(yj)) Cj(q)B u = uj

e, j = 1, . . . , m− 1,

with respect to m control variables uj . The trans-
formation is reduced to the inversion of the matrix

C(q, y2, . . . , ym) =

τT
1 (α∗(ym)) CmB

τT
2 (α∗(ym)) CmB

τT
2 (α∗(ym−1)) Cm−1B

. . .
τT
2 (α∗(y2)) C2B

(26)

and takes the form

u = C−1(q, y2, . . . , ym) us

ue
, (27)

where ue = {uj
e}, j = 2, . . . ,m.

Thus, the resulting control law is represented by
the local controllers (23)-(24) and the transforma-
tion (27).

4. SIMULATION RESULTS

In order to illustrate the efficiency of the proposed
control strategy, simulations of multi-link manip-
ulators were conducted by using the special soft-
ware package RSim-2D. The problem consists in
proportional motion of the robot end point along
time-varying straight lines and circles. Addition-
ally, it was required to provide well-coordinated

Fig. 2. Motion along moving straight line

motion of the other links that insured the com-
pactness and required configuration of the kine-
matic chain.

The simulation results are illustrated by Fig. 2–3.
Different stages the 64-link robot motion along a
moving straight line are shown in Fig. 2, and its
displacement on a circle are represented in Fig. 3.

Fig. 3. Motion along moving arc

The phases (a)–(c) of a more complex techno-
logical task of the insertion of the 50-link robot
body into the hole in a bounded operation zone
are shown in the Fig. 4.

The simulation confirms the perfectly coordinated
behavior of the dexterous robots and compact con-
figuration of their chains in the course of the com-
plex trajectory motion.
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