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Abstract:  Voting on the outputs of redundant modules with real number results (i.e., 
where correctly functioning redundant systems may arrive at slightly different yet correct 
outputs for identical inputs) is not straightforward. Such cases need inexact voting in 
which some discrepancies between the outputs of redundant modules are allowed. 
Documented inexact voters use a fixed threshold value that may cause problems in 
safety-critical systems. This paper introduces a voting algorithm with dynamic threshold 
value. The voter is implemented, and compared with its counterpart with a fixed 
threshold value. The experimental results show that the novel voter gives more correct 
yet less incorrect results than the conventional majority voter with a fixed threshold value 
in the examined error scenarios. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Increasing reliability and safety is one of the primary 
concerns in many real-time systems. Examples 
include safety-critical systems (e.g., flight control, 
nuclear power plant control, and medical equipment 
such as blood gas analyser used in intensive care 
units), highly reliable applications (e.g., railway-
interlocking system, and telecom switch), and 
distributed systems (where Byzantine agreement and 
clock synchronisation is required). Certain critical 
parts of such applications must be able to operate 
under faulty conditions. Such applications use 
redundancy to reduce the risk associated with relying 
upon any single component operating flawlessly. 
Triple Modular Redundancy, TMR, and 3-Version 
Programming, 3VP, are commonly-used techniques 
for masking faults/errors at hardware and software 
levels, respectively (Lala and Harper, 1994). The 
outputs from three identical modules (in general, an 
odd number of modules) operating in parallel with 
the same inputs are supplied to a voting module that 

arbitrates between them to produce a single output. 
The system, therefore, continues its predefined 
function even in the presence of some faults/errors. A 
voting module specifies how the voting result is 
obtained from the output of multiple modules and 
can be the basis for implementing a hardware voting 
network (see, for example, (Kim et al., 2002)) or a 
software voting routine. Various voting techniques 
have been used in fault tolerant systems; the most 
common of these are majority, plurality, median and 
weighted average voters. These voting schemes are 
indistinguishable when there is only one faulty 
module; however, they behave differently in the 
presence of multiple-module failures. In the context 
of voting, we are encountered to exact and inexact 
voting. In exact (bit-wise) voting, agreement means 
that redundant results are exactly the same; thus a 5-
input exact majority voter produces an output when 
3-out-of-5 of its inputs are equal. In inexact voting, 
some discrepancy between the inputs is allowed; 
agreement now means that the redundant results are 
not exactly the same, but the difference between 



 

them is less than a particular threshold. The value of 
this threshold is application specific. Unfortunately, 
there is no analytical approach for setting the value of 
voting threshold, most designers use heuristics and 
the characteristics of the application to set the value. 
Moreover, the implementation of an inexact voter in 
the hardware domain is not straightforward in itself 
(Quintana et al., 2000).  
 
 
1.1. Related Work 
 
Exact voting on the results of redundant modules 
with real number outputs is not appropriate. For data 
derived directly from noisy sources, for analogue 
sensor outputs which are read by digital computers, 
or for the output of diversely implemented software 
programs (Avizienis and Kelly, 1984) which handle 
floating point arithmetic an exact match is generally 
impossible due to quantisation and/or rounding 
errors. Dealing with these cases needs inexact 
(threshold) voting. A number of inexact voting 
algorithms have been studied in the literature. 
Examples are formalised majority and plurality 
voters (Lorczak et al., 1989), Predictor voters (Latif 
et al., 2002), Smoothing voter (Latif et al., 1998), 
and Maximum Likelihood Voter (Kim et al., 1998). 
Formalised majority and plurality voters are 
extensions of their exact counterparts to handle 
disagreed yet correct voter inputs. The predictor and 
smoothing voters extend the capability of the inexact 
majority voter for handling complete disagreement 
voting cases. They predict a value, based on the 
history record of the voter previous outputs, as the 
voter output in cases of complete disagreement 
between the redundant module results. Maximum 
likelihood voter has been suggested for multi-version 
software with finite output space, under assumption 
of failure independence. To estimate the correct 
result, it uses the reliability of each software module 
and determines the most likely correct module result. 
In inexact voting, the selection/generation of the 
voter output out of/from the agreed values is also 
important. Strategies like random selection (Lorczak 
et al., 1989), averaging, weighted averaging 
(Parhami, 1994), and mid-value selection have been 
used in practice. Recently, a fuzzy approach has been 
suggested by Kim et al (1998) that alleviates this 
problem by forming a fuzzy equivalence relation.  
 
All aforementioned voters use a fixed threshold value 
for reaching an inexact consensus. Knowing the 
bounds on the normal deviation between the results 
of redundant modules for a system’s entire 
operational time allows the design of inexact voters 
with a fixed threshold value. However, use of such 
voters at the control level of safety-critical systems is 
problematic for several reasons: i) the selection of the 
threshold is critical; ii) some acceptable module 
results may be ignored when using a fixed threshold; 
and iii) voters with fixed threshold values are unable 
to vary their response in the face of different levels of 

disagreement in phased-mission and performance 
degradable systems. Soft threshold voter has been 
introduced in (Latif et al., 2003) for smoothing these 
problems. Instead of using a fixed threshold value for 
dividing the module results into ‘agreed’ and 
‘disagreed’ groups and then obtaining a value for the 
voter output from the agreed values, it assigns a real 
value in the range 0.0 to 1.0 for any pair of module 
results from which the weighting value of any 
module result toward the voter output is obtained. 
This real value, in fact, expresses the ‘degree of 
agreement’ of any two module results, and can be 
controlled to allow the user to change the behaviour 
of the soft voter between that of the two baseline 
majority and distance-based weighted average voters. 
 
This paper introduces the concept of ‘dynamic 
threshold’ for inexact voters. In a voter with dynamic 
threshold, the value of the threshold is determined 
based on a system’s operational mode. More 
precisely, the status of the system, the trajectory of 
input data (the output of modules = input data to the 
voter), task criticality, and input data values are used 
to set a value for voting threshold in each operational 
mode. The organisation of this paper is as follows. 
Section 2 explains the needs for using dynamic 
threshold in inexact voting. Section 3 describes the 
experimental test harness and methodology. In 
section 4, the comparative safety and availability 
performance of the inexact majority voter with a 
fixed and dynamic threshold values are investigated. 
Finally, some conclusions are given in section 5. 
 
 

2. INEXACT VOTING WITH DYNAMIC  
THRESHOLD  

 
As mentioned in section 1, an inexact voter with a 
fixed threshold value may cause problems in many 
real time control systems. In multi-state safety-
critical systems some of the operational modes are 
more critical than the others; in a flight control 
system, for example, take-off and landing modes are 
more fault/error-prone than the ascending, 
descending, and cruising modes.  Thus the fault 
tolerant mechanism (and its related adjustments) used 
for high-critical operational modes must differ from 
that of the less-critical modes. In the case of using a 
TMR fault masking strategy, the former modes need 
a voting algorithm with a carefully selected threshold 
value (small enough to ensure that incorrect 
redundant module results cannot contribute toward 
voting) whereas the latter modes are likely to work 
correctly with a larger threshold value (to ensure that 
acceptable variant results are not discarded from 
voting). The use of state-based voting threshold 
values is also dictated by the range of data created by 
multiple redundant modules. Suppose that in the 
operational state A, the voter is faced with data from 
the interval [1    5], and in state B it is confronted 
with data from the interval [100   150]. Here, 
arbitrating between redundant data from the two 



 

distinct intervals with an identical threshold value 
(e.g., 1.0) is questionable. Obviously, judging   
between redundant small numbers needs a smaller 
threshold value than arbitrating between the 
redundant large real numbers. That is, for state A the 
voter inputs {1  2  3} (with the deviation of 1.0 from 
each other) are more likely considered in 
disagreement whereas for state B, voter inputs {120, 
121, 122} with the same deviation are considered in 
agreement. This is the basis for choosing a threshold 
value for the novel voter. The voter threshold is 
proportional to the expected numerical values of its 
inputs. The proportional coefficient is an application-
specific parameter.  
 
The internal structure of a voter with an adaptive 
threshold value is shown in Figure 1. Knowing the 
operational mode of the system and the range of 
values expected for that mode enables the designer to 
assign a voting threshold value for that mode.  
 

Threshol setting
algorithm

Inexact
arbitrating
algorithm

Vd

voter output

voter input

Mode
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No result
(default output)

Fig. 1. An inexact voter with a dynamic threshold 
 
 
The structure is clarified by using a hypothetical 
flight control example shown in Table 1. In this 
example, it is assumed that in high-critical modes 
(take-off and landing) the voter is encountered with 
small input values (from the range [1 5]), 
consequently a small threshold value has been set for 

this mode ( 5.0.
10
1

max
=ex , where 

maxex is the upper 

band of the range). For less-critical modes (e.g., 
cruising mode) the voter is encountered with large 
numbers (from the interval [10  20]), and therefore, a 
large threshold vale is chosen ( 85.2.

7
1

max
=ex ). 

 
Table 2 shows the comparative outputs of an inexact 
majority voter with dynamic threshold values (set 
based on Table 1) with those of a voter with a fixed 
threshold value (=0.6) for a stream of inputs. The 
first column shows the sample number in brackets as 
well as the notional correct output of the voter in that 
sample, the next three columns indicate saboteurs’ 
perturbed outputs (voter inputs), the fifth column is 
the output of the fixed threshold majority voter, and 
the last column is the output of the dynamic threshold 
majority voter. 

Table 1. An example for setting a voter threshold 
 

Operational 
mode 

Mode 
 indicator 

Range of voter  
Outputs  

Voter  
threshold 

Take-off A 0< xe ≤  5 maxe x.
10
1  

Ascend B 5< xe ≤  10  
maxe x.

8
1  

Descend B 5< xe ≤  10 maxe x.
8
1  

Cruise C 10< xe ≤  20 maxe x.
7
1  

Landing A 0< xe ≤  5 maxe x.
10
1  

 
For samples [1] to [4] in which the voter functions in 
the mode A, and the inputs are taken from the range 
[1 5], the dynamic threshold is 0.5 (=1/10*5). In the 
first and second samples, both voters have reached 
agreement between the variants, and the result of the 
second variant has been selected as output. For the 
third sample, the fixed threshold voter gives an 
output (correct output) but the dynamic threshold 
voter produces no output. In this case, the selection 
of a small value for dynamic threshold results in 
discarding the good variant results (i.e., 2.8 and 3.4) 
from being voted; this is, in fact, the disadvantage of 
choosing a small value for voting threshold. Both of 
the voters give no-output for the fourth sample.  
 

Table 2. Outputs of majority voters with fixed 
threshold (Fx-thr) & dynamic threshold (Dy-thr) 

values for 12 cases 
 

exp. output var-1 var-2 var-3 Fx-thr Dy-thr 

[1]         1 1 1.2 1.6 1.2 1.2 

[2]         2 1.8 2.1 2.9 2.1 2.1 

[3]         3 2.8 3.4 4 3.4 --- 

[4]          4 4.7 4 3.2 --- --- 

[5]          6 6 6.5 7 6.5 6.5 

[6]          7 7 7.8 6.2 --- 7 

[7]          8 8.9 8 10 --- 8.9 

[8]          9 9 10.5 7.5 --- --- 

 [9]        10 10 10.4 10.7 10.4 10.4 

  [10]       12 12 12.9 13.8 --- 12.9 

[11]        13 13 10 16 --- --- 

[12]        20 18 19 20 --- 19 

 
In samples [5] to [9] the value of dynamic threshold 
is set to 1.25 (=1/8*10), and the voter works in mode 
B. In sample [5] both of the voters give an (correct) 
output. In samples [6] and [7] the fixed threshold 
voter gives no outputs whereas the dynamic threshold 
voter produces an (correct) output. These two cases 
indicate the benefits of using an appropriate dynamic 
threshold value (as well as the problem of choosing a 
small fixed threshold value) for an inexact voter; the 
fixed threshold voter has discarded good values from 
voting. Both of the voters give no output for the next 



 

sample. In samples [10]-[12] the voters function in 
mode C, and, hence, the value of the dynamic 
threshold is set to 2.85 (=20/7). The fixed threshold 
voter produces no result for these samples, whereas 
the dynamic threshold voter gives correct outputs for 
samples [10] and [12].  
 
 

3. TEST HARNESS FRAMEWORK  
 
The experimental test harness is shown in Figure 2. 
The input generator produces one notional correct 
result in each voting cycle. This sequence of numbers 
identical correct results expected from redundant 
modules. Copies of the notional correct result are 
presented to each saboteur in every voting cycle. The 
saboteurs can be programmed to introduce selected 
module error amplitudes, according to selected 
random distributions. The symptom of errors appears 
to the voter as numerical input values. A comparator 
is used to check for agreement between the notional 
correct result and the output of the voter under test at 
any voting cycle. However, for simplicity, issues 
associated with ensuring synchronisation of the 
inputs to the voter and to the saboteurs are ignored.  
 
 

Input
Generator

Saboteur-3

Saboteur-2
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Fig. 2. Experimental harnesses 
 
A voter threshold (dynamic or fixed), VT, is used to 
determine the maximum acceptable divergence of 
voter inputs in each voting cycle from the notional 
correct result, and an accuracy threshold, AT, is used 
in comparator to determine if the distance between 
the notional correct result and the voter output is 
within acceptable limits. In this framework, the 
accuracy threshold is chosen equal to the voter 
threshold in each voting cycle. A voter result which 
has a distance from the notional correct answer less 
than the accuracy threshold is taken as a correct 
output, otherwise it is considered as an incorrect 
output. This is a valid assumption in a many real-
time systems in which the discontinuity between 
consecutive correct variant results is small (Bennett, 
1994). Hence, the presence a large discontinuity is 
indicative an error and can be detected by the 
acceptance tests. Where the voter cannot reach an 
agreement between the outputs of saboteurs, it 
produces a of default value that moves the system 
toward a fail-safe or fail-stop state. Such voter output 
is called a disagreed (benign) result. It is also 

assumed that all voters perform correctly. This 
assumption is made due to the fact that the voting 
algorithm is usually a simpler program than the 
modules it monitors. Figure 3 indicates the 
classification of a voter outputs in this test harness. It 
is obvious that, from the viewpoint of system safety, 
agreed–correct results are of interest whereas the 
agreed-incorrect results are dangerous and 
catastrophic outputs. 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Voter output classification 

 
 

3.1. Experimental Method 
 
A stream of input data with the sinusoidal profile: 
u=50. sin (t)+100 sampled at 0.1 sec feed both the 
saboteurs and comparator. For inexact majority voter 
with a fixed threshold value, the threshold is set to 
0.5, and for the majority voter with dynamic 
threshold values the setting xVT .

100
1

= (x is the value 

of input data at each voting cycle) is made. The 
former setting is the simplified form of the threshold 
setting mechanism discussed in section 2. However, 
the accuracy threshold is always set to a value equal 
to the voter threshold. Random errors with uniform 
distribution from the interval [-emax +emax] are 
injected into the all saboteurs to simulate modules 
errors. emax is selected 2. This injection simulates the 
effects of permanent errors in the system. The 
outputs of saboteurs are presented to the voter under 
test. In every voting cycle the output of the voter, y, 
is compared with a copy of input data xo. Based on 
the numerical distance between y and xo values, the 
output of the voter is interpreted as correct, incorrect, 
or disagreed value. For each voter the results of 104 
(= n) system runs are classified. In this way, nc 
correct results, nic incorrect outputs and nb disagreed 
results are collected. It is obvious that for all voters nc 
+ nic+n b =n and for weighted average nb  =0. These 
data are, then, used for evaluation and comparison of 
voters. Two performance measures are defined for 
this purpose: safety and reliability. 
 
1. Safety (S): Since from a safety viewpoint the 

smallest number of agreed but incorrect outputs 
is desirable for a given voter, the safety measure 

 Voter Output 

Disagreed  

Incorrect value 

    Agreed 

   Correct value 



 

can be defined as:  S = (1-n ic  / n). Thus S ∈  [0   
1] and ideally S=1. 

2. Reliability (R): A voter which produces more 
correct results among its total outputs can be 
interpreted as more reliable voter.  Reliability is 
defined as the ratio of correct voter outputs to 
the number of voting actions: R= n c  / n. Thus R 
∈[0    1] and ideally R=1. 

 
Each performance criterion can be plotted versus a 
parameter of the test harness such as error amplitude, 
accuracy threshold or versus a voter parameter such 
as voter threshold. In this framework, the safety and 
reliability performance of voters versus the size of 
injected errors are examined. 
               
 

4. EXPERIMENTAL RESULTS  
 
The safety and reliability performance of two 
versions of the inexact majority voter (one with a 
fixed threshold value, and the other with dynamic 
threshold values) are examined in this section versus 
the size of injected errors.  
 
 
4.1. Experiment 1: Comparing the Reliability and 

Safety of 3-input Voters  
 
Figures 4 shows the plot of safety and reliability of 3-
input voters versus error amplitude, emax. In the 
examined error scenarios, the voter with dynamic 
threshold gives higher safety (less incorrect outputs) 
and higher reliability (more correct outputs) than the 
voter with a fixed threshold value. For example, with 
emax=1, the dynamic threshold voter has a 23% better 
safety and about 27% higher reliability performance 
than the fixed-threshold voter.  
 

 
 
Fig. 4.  Reliability and Safety of 3-input voters 

versus error amplitude 
 
Figure 5 indicates, more clearly, the superiority of 
the dynamic threshold voter (in terms of the number 

of correct, incorrect, and agreed outputs) in the error 
point emax=0.8. 
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Fig. 5.  Outputs of 3-input voters when emax=0.8 for  
104 runs 

 
4. 2. Experiment 2: Comparing the Reliability and 

Safety for 5-input Voters  
 
This experiment shows the comparative safety and 
reliability performance of 5-input dynamic and fixed 
threshold voters versus the amplitude of injected 
errors. Figure 6 indicates the results. Firstly, 
comparing this figure with figure 4 shows the 
superiority of the 5-input voters to their counterpart 
3-input versions in terms of safety. The 5-input 
dynamic threshold voter, for example, gives higher 
safety (less incorrect outputs) than the 3-input 
dynamic threshold voter for all error scenarios.  
However, such safety improvement is achieved at the 
cost of decreasing their reliability performance as 
seen from the reliability plots in figures 4 and 6.  
 

 
 
Fig. 6. Reliability and Safety of 5-input voters versus 

error amplitude 



 

 
That is, the reliability of the 5-input voter (with 
dynamic or fixed threshold) is less than that of its 3-
input counterpart voter. Secondly, Figure 6 also 
shows that the 5-input voter with dynamic threshold 
values gives higher safety and reliability than the 5-
input voter with a fixed threshold value. 
 
Figure 7 compares the number of correct, incorrect, 
and agreed outputs of the examined 5-input voters at 
error point emax=0.8. The dynamic threshold voter is 
superior to the fixed threshold voter, and this 
superiority is much better than that of the 3-input 
voters (when comparing figures 5 and 7).  
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5. CONCLUSIONS  
 
In using NMR or N-version programming systems, it 
is possible that correct modules may arrive at slightly 
different yet correct outputs for an identical input.  
Inexact voting is used to deal with this problem. An 
important requirement of an inexact voter is to 
choose the threshold value by which the consensus of 
inputs is examined. Since there is no mathematical 
way of determining the threshold value, most 
designers use heuristics and the characteristics of the 
application to set the value. The paper introduced a 
scheme for inexact voting with dynamic threshold 
suitable for real-time systems with different safety-
critical modes. The performance of the inexact 
majority voter with a fixed threshold value has been 
compared with that of the newly introduced inexact 
majority voter with dynamic threshold values. The 
focus was on the number of correct and incorrect 
outputs of voters after n voting action in a fault 
injection environment. Two performance criteria, 
safety and reliability, were defined, and the 
behaviour of voters was examined in the presence of 
permanent errors. The experimental results showed 
that the reliability and safety of 3 and 5-input 

majority voters with dynamic threshold values are 
higher than those with fixed threshold values. The 
experimental results also showed that the safety of 
the 5-input majority voter is always higher than that 
of the 3-input majority voter, however, the reliability 
of 5-input majority voter is lower than that of the 3-
input voter. 
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