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Abstract: This paper proposes a method for blind system identification based
on the independence of input signals. Under the assumption that the system is
MIMO, square, and represented by a polynomial matrix fraction with constant
numerator matrix, the method makes it possible to identify the system without
observation of input signals. This rather challenging problem is solved by applying
independent component analysis to an augmented state-space representation in
order to estimate coefficients of the denominator polynomial matrix and the
numerator matrix. Copyright c©2005 IFAC.
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1. INTRODUCTION

Independent Component Analysis (ICA) has at-
tracted much attention as a powerful tool for sepa-
rating signals in terms of statistical independence,
and has been applied in various fields (Amari
et al., 1996; Bell and Sejnowski, 1995; Cardoso
and Souloumiac, 1993; Karhunen et al., 1997;
Hyvärinen and Oja, 1997; Yang and Amari, 1997).
It is desirable if we can use ICA in system control
engineering. In fact, Kano (Kano et al., 2002) has
applied ICA to process monitering.

In this paper, together with the companion paper
(Sugimoto et al., 2005), we study a polynomial
matrix approach to ICA. In Paper (I), we pro-
vide a method for identifying a certain class of
multi-input multi-output (MIMO) systems with
unknown (but mutually independent) input sig-
nals. In Paper (II) we then apply the method to
a couple of practical issues.

1 This work is supported in part by Scientific Research
Grant-in-Aid 15560379 from the Japan Society for the
Promotion of Science.

In ordinary system identification, we use both the
input and the output signals. However, in some
cases all input signals are not available due to
disturbance or input saturation, etc. Even so, it
is natural to expect that those input signals arise
independently. We achieve this “blind” identifi-
cation, namely we identify the system without
observing input signals.

A similar problem has been studied also in the
area of speech processing (Amari et al., 1996; Bell
and Sejnowski, 1995; Cardoso and Souloumiac,
1993; Yang and Amari, 1997), in which input
signals are mixed through a transfer matrix, and
then we retrieve the input signals only from
their mixture. This problem is called BSD (Blind
Source Deconvolution), while it is called BSS
(Blind Source Separation) if the mixing matrix
is a constant. The latter is much easier.

In control, we have to treat dynamical systems,
and hence have to solve the BSD problem. In
(Dapena and Serviere, 2001; Mitianoudis and
Davies, 2001), they have proposed to analyze it



in the frequency domain thereby reducing the
problem to BSS. This is particularly effective in
speech processing, since the frequency band is
wide enough. In control, however, the band is
rather restricted and we may sometimes wish to
obtain a model even from transient signals.

In this paper, we assume that the system is de-
scribed by a polynomial matrix fraction with con-
stant numerator matrix, and reduce the discrete-
time convolutive mixture to a static mixture with
fixed elements, by using an augmented state-space
representation (Kikkawa and Sugimoto, 2002),
and then estimate unfixed elements by an ICA
method.

In what follows we briefly review what is ICA (§2)
and formulate a vector autoregressive model (§3).
Then we show our blind identification algorithm
(§4) and carry out numerical simulation to show
the effectiveness of our method (§5).

2. PRELIMINARIES

Let us first summarize the concept of ICA and an
algorithm to solve it for the static mixture case.
Consider a linear mixture

η(t) = As(t) (1)

where s(t) = (s1(t), . . . , sn(t))T is a source signal
vector, η(t) = (η1(t), . . . , ηn(t))T is an observed
signal vector, and A = (aij) is a mixing matrix
with unknown coefficients. Here, T denotes trans-
position. We assume that A is nonsingular. Our
objective is to retrieve the source signal s(t) only
from the mixed signal η(t) under the assumption
that the components of s(t) take values statisti-
cally independent.

Definition 1. The random vector ξ = (ξ1,
. . . , ξn)T is said to be independent if its joint
probability density function (p. d. f) is equal to
the product of marginal p. d. f. of all entries
ξi, i = 1, . . . , n. Namely,

pξ(ξ) =
n∏

i=1

pξi(ξi), (2)

where pξi denotes the p. d. f. of ξi. 2

If we find W = A−1, then the source signal can
be retrieved as

ŝ(t; W ) = Wη(t). (3)

In reality, however, A is unknown, so that we have
to search W such that ŝ(t) is independent. 2

2 The independence holds even if the components of s(t)
are in an incorrect order or have incorrect magnitude.
Namely, we can only obtain W = ΓPA−1 up to some
diagonal matrix Γ and permutation matrix P .

MIXING SEPARATING

A W...
...

...

s(t) η(t) ŝ(t)
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Fig. 1. Block diagram of standard ICA.

This is achieved by evaluating the independence.
Yang et al. (Yang and Amari, 1997) have proposed
to use Kullback-Leibler Divergence (KLD)

I(ŝ; W ) =
∫

pŝ(ŝ; W ) log
pŝ(ŝ; W )∏n

i=1 pŝi
(ŝi; W )

dŝi.

(4)
It is clear that I ≥ 0 and the equality holds iff ŝ
is independent. Hence we need only to update W
so that I(ŝ; W ) decreases.

By means of the entropy defined below, we have

I(ŝ;W ) =
n∑

i=1

H(ŝi; W )−H(ŝ; W ) ≥ 0. (5)

Definition 2. (Differential) entropy H(x) is de-
fined by

H(x) = −
∫

p(x) log p(x)dx =: E p(− log p(x)) .

(6)
2

In view of ŝ = Wη, the equation (5) becomes

I(ŝ; W ) =
n∑

i=1

H(ŝi; W )−H(η)− log |W |, (7)

Let us compute partial derivatives of the terms of
(7) with respect to W . First we have

∂

∂W
H(ŝk;W ) = E pη

(
φ(ŝk)ekηT

)
, (8)

where ek = (0, . . . , 0, 1, 0, . . . , 0)T is the natural
basis whose k-th component is unity, and φ(ŝk) is
defined by

φ(ŝk) = −d log p(ŝk)
dŝk

, (9)

Hence in the first term of (7), we have

∂

∂W

n∑

k=1

H(ŝk; W ) = E pη

(
φ(ŝ)ηT

)
, (10)

where we interpret φ(ŝ) as

φ(ŝ) = (φ(ŝ1), φ(ŝ2), . . . , φ(ŝn))T
. (11)

In the third term of (7), we have

∂

∂W
log |W | = (WT )−1 =: W−T . (12)

Thus the gradient becomes



∂I(ŝ; W )
∂W

= E pη

(
φ(ŝ)ηT

)−W−T

=
(
E pŝ

(
φ(ŝ)ŝT

)− I
)
W−T . (13)

Since φ(ŝ) is unknown, we usually substitute it
for φ(x) = tanh x or x3. Amari et al.(Amari et
al., 1996) has proposed the following update law
using the natural gradient.

∆W =−∂I(ŝ; W )
∂W

WT W

=
(
I − E pŝ

(
φ(ŝ)ŝT

))
W. (14)

3. MODEL DESCRIPTION AND
AUGMENTED STATE-SPACE

REPRESENTATION

Consider the discrete-time system

y(t) = G(z)u(t), (15)

where

u(t) = (u1(t), . . . , um(t))T ∈ Rm, (16)

y(t) = (y1(t), . . . , ym(t))T ∈ Rm, (17)

are respectively input and output signal vectors
with m > 1, and G(z) is assumed to be a stable
and minimum phase transfer matrix of full normal
rank. Here t means discrete-time and z is the unit
time shift operator meaning zu(t) = u(t + 1). We
assume that G(z) and u(t) are both unknown, but
that u(t) is independent in each time.

D−1(z)N(z)

Discrete-Time
Transfer Function

u(t) y(t)

Input Output

unknown unknown observed

Fig. 2. Dynamical system to be identified.

This is a blind identification problem, where we
estimate the parameter of G(z) and the signal u(t)
only from y(t) (Fig. 2). At first sight, it appears
to be solvable by means of existing ICA methods.
However, the algorithm in §2 is valid only when
G(z) is a constant as in (1). To overcome this
difficulty, we confine ourselves to the case where
the system to be identified is represented by a left
coprime factorization

G(z) = D−1(z)N(z), (18)

D(z) =




d1(z)
...

dm(z)


 , (19)

di(z) = eiz
µi + d1

i z
µi−1 + · · ·+ dµi

i ,

N(z) =




zµ1 0
. . .

0 zµm


N0, (20)

where the row degrees µ1, · · · , µm of polyno-
mial matrices are assumed to be known, dk

i ’s
are arbitrary row vectors of dimension m and
{e1, · · · , em} is the natural basis. Note that D(z)
is in the so-called row-reduced form with [D]r = I.

Note that N0 = (n0
ij) is nonsingular by assump-

tion. We further assume that

n0
ii = 1 and |n0

ij | < 1 (i 6= j), (21)

in order to avoid indefiniteness in magnitude when
applying ICA. Now we have

D(z)y(t) = N(z)u(t), (22)

which is equivalent to

yi(t) =−d1
i y(t− 1)− · · · − dµi

i y(t− µi)

+eiN0u(t), (23)

for i = 1, · · · ,m. We further reduce it to the fol-
lowing “augmented state-space representation”.




y(t− µ)
...

y(t− 1)
y(t)




︸ ︷︷ ︸
η(t)

=
(

I O

−D̃ N0

)

︸ ︷︷ ︸
A




y(t− µ)
...

y(t− 1)
u(t)




︸ ︷︷ ︸
s(t)

, (24)

D̃ =




O dµ1
1 · · · d1

1
...

...
O dµm

m · · · d1
m


 , (25)

with O denoting zero matrices or zero vectors of
appropriate dimensions, I denoting the identify
matrix, and µ := max µi. Note that D̃ is an m ×
mµ matrix.

4. IDENTIFICATION ALGORITHM

In later development we confine ourselves to the
case of uniform row degrees; i.e., µ1 = · · · = µm

for simplicity.

We first rewrite (24) as
(

ỹ(t)
y(t)

)
= A

(
ỹ(t)
u(t)

)
, A :=

(
I O

−D̃ N0

)
, (26)

where we put



ỹ(t) =




y(t− µ)
y(t− µ + 1)

...
y(t− 1)


 . (27)

Note that we cannot apply the method in §2 to
η(t) in (24), since in this case we obtain incorrect
ŝ(t; W ) = Wη(t) due to the fixed-element struc-
ture in the mixing matrix. To remedy this, we first
consider the first term of (5). H(ŝi; W ) should not
be affected by W for i = 1, . . . , µm

Thus, from (8) we put

φ(ŝi) = 0, (i = 1, . . . , µm) (28)

for the known signals.

In the augmented state-space model, it is enough
to take

φΠ (ŝ) = Πφ(ŝ), (29)

where
Π = block diag(O, . . . , O, I). (30)

Now we proceed to H(ŝ;W ) in the second term of
(5). The change of ŝ by W is

ŝ + dŝ = (I + dWW−1)ŝ,

hence in ordinary ICA context the change of
H(ŝ; W ) is

dH = E(− log p(ŝ + dŝ))− E(− log p(ŝ))

= E
(− log p(ŝ)/|I + dWW−1|)− E(− log p(ŝ))

= log |I + dWW−1| ' tr (dWW−1). (31)

On the other hand, if we express

dW =
(

dW11 dW12

dW21 dW22

)
, (32)

in the augmented state-space model, the sepera-
tion matrix should be

WΠ = A−1 =
(

I O

N−1
0 D̃ N−1

0

)
, (33)

so that we have to consider

dWΠ =
(

O O
dW21 dW22

)
= ΠdW. (34)

Therefore we have

dHΠ = tr (dWΠW−1) = tr (dWW−1Π ), (35)

and hence the gradient is given by

∂

∂W
HΠ = (W−1Π )T = ΠW−T . (36)

We thus obtain the natural gradient

∆WΠ =− (
E pŝ

(
φΠ (ŝ)ηT

)−ΠW−T
)
WT W

= Π
(
I − E pŝ

(
φ(ŝ)ŝT

))
W, (37)

correspondingly to (24), and the gradient is given
by ∆WΠ /‖∆WΠ ‖. In actural implementation, we
simply adopt the sample mean value instead of
E pŝ

(·) in order to avoid large estimation cost.

Proposed Algorithm

(1) Obtain observation signal y(t) as discrete-
time sequence data from t = 0 to M − 1 and
give the degree µ of the autoregressive mode.

(2) For each time t, obtain the output signal vec-
tor η(t) in the augmented state-space model
(24).

(3) Construct the matrix

Y = (η(0), . . . , η(M − 1)) ∈ R(µ+1)n×M

and normalize it so that the time mean value
of each row equals 0, and put it as Y again.

(4) Give the identity I as an initial value of
separation matrix W . This is in accordance
with the fact that the mixing matrix A in
(26) has fixed block elements I.

(5) Renew the separation matrix W as:

Ŝ = WY,

∆W = Π
(
I − φ(Ŝ)ŜT /M

)
W,

W ← W + α∆W/‖∆W‖.
Here α is a learning factor (step size param-
eter) which is positive and decreases with
repetition.

(6) The learning process on W converges if
∥∥∥Π

(
I − φ(Ŝ)ŜT /M

)∥∥∥ → 0.

Otherwise go to Step ( 5 ).
(7) Retrieve the mixing matrix by A = W−1.
(8) Normalize the column vectors and the ampli-

tude so that mixing matrix A is equal to that
of (24).

(9) From A, obtain the corresponding {Di} and
N0.

The normalization in Step ( 8 ) means that for
A = (aij), we put aik = aik/akk for the k-th
column and Ŝk = akkŜk for the source signal.
Since the diagonal element in A is restricted to
1, we can retrieve the magnitude of the source
signal by this normalization.

Concerning φ(x), it is said in literature that tanhx
and x3 are respectively effective if the input signal
is super-Gaussian and sub-Gaussian. Since we do
not know their real distribution, we need to switch
those functions accordingly to the sign of 4-th
order cumulant estimation.

Discussion on Convergence

Let us derive a condition under which the above
algorithm gives the true separation matrix (33)
as a local minimum. In view of (37), it is enough



to see when ∆ := Π
(
I − E pŝ

(
φ(ŝ)ŝT

))
is a zero

matrix.

Denoting xk := x(t − k) for simplicity, the esti-
mated signal is written as ŝ0 = (yT

µ , . . . , yT
1 , uT

0 )T .
Then we have

∆ =




O O

. . .

O O

E
(
φ(u0)y

T
µ

)
. . . E

(
φ(u0)y

T
1

)
I − E

(
φ(u0)u

T
0

)


 .

(38)

Hence ∆ = O iff E
(
φ(u0)yT

k

)
= O (k = 1, . . . , µ)

and I − E
(
φ(u0)uT

0

)
= O.

From the former equality, u0 must be a white noise
in order that we have E

(
φ(u0)yT

k

)
= O for k 6= 0.

Concerning the latter equality, since u0 is indepen-
dent, we see that the each component ui

0, u
j
0 (i 6=

j) are uncorrelated and zero mean, and hence we
have

E
(
φ(ui

0)u
j
0

)
= E

(
φ(ui

0)
)
E

(
uj

0

)
= 0. (39)

On the other hand, for i = j we have

E
(
φ(ui

0)u
i
0

)
= −

∫ ∞

−∞

dp(ui
0)

dui
0

ui
0dui

0 = 1, (40)

and hence I − E
(
φ(u0)uT

0

)
= O.

Therefore, in order that (33) is a local minimum,
the input signal u(t) must be a white signal.

5. NUMERICAL SIMULATION

In what follows we assume the sampling frequency
100Hz and we represent estimated values up to
the second order below the decimal point.

Consider the case

D(z) = z2I + D1z + D2,

D1 =
(

0.0 1.9
−0.6 −0.2

)
, D2 =

(−1.4 −0.6
−0.3 −0.1

)
,

N0 =
(

1.0 −0.7
0.4 1.0

)
.

As an independent but unknown input, we have
applied a random noise and M-sequence shown
in Fig. 3 whose data consist of 256 points from
time 0 s to 2.55 s. As a result, the system response
shown in Fig. 4 has been observed.

By taking φ(x) = x3 and as learning factor α
an exponential decreasing function having values
from 10−1 to 10−3, we have obtained:

0 0.5 1 1.5 2 2.5

−2

0

2

u 1(t
)

0 0.5 1 1.5 2 2.5

−1

0

1

time   t   s

u 2(t
)

Fig. 3. Input signal.
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Fig. 4. Observed signal.
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Fig. 5. Retrieved input signal.

A =




1.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00
1.44 0.60 0.02 −1.88 1.00 −0.78
0.34 0.12 0.62 0.18 0.41 1.00




.

We have thus obtained the following estimation.

D1 =
(−0.02 1.88
−0.62 −0.18

)
, D2 =

(−1.44 −0.60
−0.34 −0.12

)
,

N0 =
(

1.00 −0.78
0.41 1.00

)
.

Together with parameter estimation we can re-
trieve the input signal. Fig. 5 indicates that the in-
put and retrieved signals are in good coincidence.

Fig. 6 shows the Bode diagram of each entry of
the obtained transfer matrix. The true values are
in solid line and the estimated values are in dotted
line, but they are almost identical.
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6. CONCLUSION

To conclude, a few remarks are given below.

We have assumed the structure (20) in the nu-
merator polynomial matrix. In other words, we
have treated a kind of vector AR (Autoregressive)
model. This is because resorting to the augmented
state-space representation is equivalent to using
a Moving Average (MA) model as a demixing
system, but we omit a detail here. Relaxing this
assumption is by no means trivial, but the authors
are currently tackling this problem.

Blind identification is also possible by conven-
tional methods such as the LS (Least Squares)
method. However, we can not obtain N0 by this
method. Also, numerical simulation indicates that
the proposed method is superior in accuracy to the
LS method.
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