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Abstract:
We consider optimally coordinated freeway traffic control for networks containing bottle-
necks with capacity drop. Due to the multitude of traffic jams, and the spatial and
temporal relationships between control actions and traffic behavior, this coordinated
control problem is not as straightforward as for local control. The order in which the
measures are applied may be relevant, or it may be possible that not all jams can
be resolved. In that case the best possible locations of jams should be determined.
We develop an approach that addresses these problems, where we use a generalized
representation of flow-limiting control measures and bottlenecks. The approach supplies
the necessary sequence of control actions and the necessary relocation of traffic jams to
minimize the total time that vehicles spend in the network. Copyright c©2005 IFAC
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1. INTRODUCTION

1.1 Traffic control in networks

In the past dynamic traffic control measures (such as
ramp metering, route guidance, and dynamic speed
limits) have been applied mainly locally to resolve
traffic jams. However, due to the high traffic demands
the spatial and temporal relationships in traffic net-
works have become stronger: a control measure ap-
plied at a certain place and time may also influence
(positively or negatively) the traffic later and/or at
more distant parts of the network. Therefore, it is nec-
essary to take the network-wide effects of the control
measures into account, which implies coordination be-
tween the measures.

Even though a network-wide coordinated approach
may result in general in more effective traffic control,
in many cases it may not be possible to solve all
traffic jams in the network or it may be necessary to
create temporarily a traffic jam somewhere else in the

network in order to solve a given jam (similarly to
ramp metering, which locally creates a queue to solve
a freeway jam). With the approach presented in this
paper an answer is given to which jams need to be
solved (or created temporarily) in order to achieve the
best performance of the network.

Furthermore, there may be limitations on the traffic
control signals, such as minimum and maximum me-
tering rates, bounds on dynamic speed limits, or the
limited rerouting effects of route guidance, so that
these measures may not limit the flow sufficiently to
solve a jam individually. The combination with other
measures may than result in a more effective control
that can solve the jam. However, using these measures
may also reduce flow in other parts of the network.
The selection of the appropriate measures in such a
case is a trade-off, and may depend on the traffic
demands, the drivers’ route choice, and other factors.

In this paper these issues will be addressed, and an
approach will be developed to find the control mea-



sures that result in the optimal network behavior over
a given time horizon. Optimality will be defined as
the control strategy that minimizes the total time spent
(TTS) by the vehicles in the network (cf. (Kotsialos et
al., 2002; Alessandri et al., 1998)).

1.2 Capacity drop

There are several possible causes why freeway net-
works do not always perform optimally. One of them
is the so-called capacity drop (or two-capacity phe-
nomenon), which is the phenomenon that the outflow
of a jam at a bottleneck (the so-called queue discharge
rate) is lower than the capacity of the bottleneck in
free-flow (the so-called pre-queue capacity). As long
as the jam remains existent, the performance of a
jammed freeway link will be sub-optimal.

Another reason for sub-optimally performing freeway
networks is blocking, which occurs when the tail of a
traffic jam propagates back to a bifurcation where it
also blocks the traffic that has a route that does not go
via the bottleneck location that caused the jam.

In this paper we focus on the capacity drop and de-
velop an approach to determine whether the network
performance can by improved by dynamic traffic con-
trol measures. For the sake of simplicity we will as-
sume that the queues occurring at bottlenecks and
flow-limiting control measures do not become so long
that they reach bifurcations or other bottlenecks. Al-
though this is a restricting assumption, extension of
the model to include blocking and bottleneck interac-
tion is possible. The capacity drop may occur at sev-
eral types of bottlenecks, such as on-ramps, upstream
propagating jams (shock waves), off-ramps, curves,
grades, tunnels and bridges. The value of the capac-
ity drop has been estimated for some of these bottle-
necks: for on-ramps (Kerner, 2002; Zhang and Levin-
son, 2004; Hall and Agyemang-Duah, 1991; Cassidy
and Bertini, 1999) it was found to be in the range
of 0–15%, and for upstream propagating jams around
30% (Kerner, 2002; Hegyi, 2004).

2. PROBLEM DESCRIPTION

We represent the evolution of the traffic network over
time in stages where the index k refers to the k-th
stage. The time duration of stage k is denoted by t(k),
with t(k) ≥ 0.

The benefit of having t(k) as an independent variable
is that – as we will see later – for a given k the system
behaves linearly as a function of the control inputs
u(k) and t(k). This results in a simpler description of
the dynamic behavior of the system.

However, in practice most traffic control devices, such
as ramp metering or route guidance, accept inputs
at discrete time steps, e.g., every 30 or 60 seconds.
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Fig. 1. The network elements.

The expectation is that the optimal switching sequence
(explained in Section 3.1) will result in time durations
t(k) that are significantly larger than the sampling
time of the control measures. Therefore the rounding
of the time durations t(k) will result in a small perfor-
mance loss only 1 .

2.1 Network elements

We model a traffic network by a directed graph that
contains problem-specific elements. Each network
consists of the following elements (see also Figure 1
for the symbols of the elements and the related vari-
ables):

Origins. We assume that the origins are the sources of
traffic. Origin o is an element of the set of all origins
{O1, O2, . . . }, and provides a constant inflow to the
network of qo (veh/h).

Destinations. Destinations are the sinks of traffic. The
average flow at destination d ∈ {D1, D2 . . . } in stage
k, is denoted by qd(k) (veh/h).

Nodes. At nodes traffic from several incoming links
may be joined and redistributed over one or two 2 out-
going links. The flows of the incoming links of node
n ∈ {N1, N2, . . . } are denoted by qn,in,i(k) (with
i ∈ In, where In denotes the set of indexes of the in-
coming links of node n), and the outgoing links are de-
noted by qn,out,j(k) (with j ∈ {1, 2}). The inflows and
outflows are related by qn,out,j(k) = βn,j(k) qn(k),
where qn(k) =

∑

i∈In

qn,in,i(k), and βn,j(k) is the
fraction of traffic that leaves node n through link j. Of
course, βn(k) ≥ 0 and

∑

j∈On

βn,j(k) = 1, where
On is the set of indices of leaving links from node n.

If there is no route guidance, a constant turning
rate βn,j(k) = βn,j is assumed. If there is route
guidance at the node, we will consider qn,ctrl(k) =
qn,out,1(k) (= βn,1(k) qn(k)) as the control variable.

There may be bounds on the route guidance sig-
nal qn,ctrl(k), which are expressed by βn,1,min qn and
βn,1,max qn, with 0 ≤ βn,1,min qn ≤ βn,1,max qn ≤ 1.
This leads to the following relations:

1 The rounding has to be chosen such that the resulting control
signals satisfy the constraints developed later in this section.
2 The extension to more outgoing links is straightforward. We
allow here one or two outgoing links for the sake of simplicity.
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(a) The relations between inflow and outflow of
the flow-limiting control measure. The relations
depend on the activity status of the measure.
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Fig. 2. The relations between inflow and outflow for
control measures and bottlenecks.

qn,out,1(k) = qn,ctrl(k) ,

qn,out,2(k) = qn(k) − qn,ctrl(k) ,

βn,1,min qn ≤ qn,ctrl(k) ≤ βn,1,max qn .

Flow-limiting control measures. Traffic control mea-
sures, such as ramp metering, main-stream metering,
and dynamic speed limits can be represented by a
generalized control measure c ∈ {C1, C2, . . . } that
describes the corresponding flow limitation.

A flow limitation can be active or inactive. The flow
limitation is called active when the outflow is limited
by the controller (see also Figure 2(a)). So, when it is
active there will be a queue present of length wc(k).
The following relations hold:

uc(k) = qc,out(k) t(k)

uc(k) ≤ qc,in(k) t(k) + wc(k)

uc(k) ≥ 0

wc(k + 1) = wc(k) − uc(k)

where uc(k) is the control input and represents the
number of vehicles that leave the control measure
in stage k, qc,in(k) is the inflow and qc,out(k) the

outflow at measure c. In addition, the bounds on the
control input are defined as: qc,min t(k) ≤ uc(k) ≤
qc,max t(k), with 0 ≤ qc,min ≤ qc,max.

If the flow limitation is not active, then there is no
queue and the outflow is not limited:

uc(k) = qc,in t(k)

qc,out(k) = qc,in(k)

wc(k) = 0

wc(k + 1) = wc(k)

The activity status of c is denoted by χc, which has a
value 1 if the control measure is active and 0 if it is
inactive.

Bottlenecks. A generalized bottleneck b ∈ {B1,

B2, . . . } may represent several kinds of bottlenecks,
such as on-ramps, bridges, tunnels, curves, grades,
shock waves 3 , merges, and bifurcations. The com-
mon factor in these bottlenecks is that they have a
limited capacity qb,cap, and that there may be a ca-
pacity drop if the bottleneck is jammed. The queue
discharge rate is denoted by qb,dch(≤ qb,cap), where
equality holds if there is no capacity drop, but only
a limited capacity.

Similarly to flow-limiting control measures a bottle-
neck can also be active or inactive, and the relation
between the inflow and outflow depends on the ac-
tivity status. The basic idea for the bottleneck mod-
eling is that if the inflow exceeds the capacity then
the bottleneck will become active (congested) and the
outflow will drop to the queue discharge rate (see
also Figure 2(b)). In order to resolve the jam at the
bottleneck the inflow must be limited to a value lower
than the outflow (the queue discharge rate) and the
queue length must be zero. When the jam is resolved,
the bottleneck becomes inactive and the outflow may
increase up to the capacity again.

So, if the bottleneck is active, then

qb,out(k) = qb,dch

wb(k) − (qb,dch − qb,in(k)) t(k) ≥ 0

wb(k + 1) = wb(k) − (qb,dch − qb,in(k)) t(k) ,

and if the bottleneck is inactive, then

qb,out(k) = qb,in(k)

qb,in(k) ≤ qb,cap

wb(k) = 0

wb(k + 1) = wb(k)

The activity status of b is denoted by χb, which has a
value 1 if the bottleneck is active and 0 if it is inactive.

Links. Links provide the connection between any two
other elements. A link connects the outflow of the
upstream element with the inflow of the downstream

3 The representation of moving shock waves is valid in our frame-
work as long as the shock wave does not propagate upstream to
other network elements.



element. The capacity 4 of a link is assumed to be
unlimited. If a freeway link with limited capacity is
modeled, a bottleneck element should be included.

Now we can build networks with the elements from
Section 2.1 (see Figure 3 for an example).

2.2 Network properties

Network mode. We define the network mode M
as the vector of the activity states of all bottle-
necks and control measures M = [χB1

, χB2
, . . . ,

χC1
, χC2

, . . . ]T. The current network mode can be ac-
quired from speed, flow and density measurements at
the bottlenecks and control measures. The bottleneck
modes cannot be controlled directly, only through the
available control measures, which may change the
inflow of a bottleneck such that a mode change is
triggered.

Mode changes. If the network is in a given mode,
then other modes may be reached autonomously or
by varying the control inputs. A queue of a control
measure or bottleneck may become zero, which may
cause a state change from active to inactive, or if
the control inputs are changed, then the activity state
of a control measure or a bottleneck may change.
An activity state change is triggered if the inflow of
a measure or bottleneck violates the condition that
would guarantee the current state (e.g., the condition
that for an active bottleneck the inflow must be higher
than the queue discharge rate) and if the corresponding
queue is zero.

So, in addition to the relations of Section 2.1 for the
(current and next) modes at stages k and k + 1, the
following relations must hold for the mode change. If
a bottleneck changes from active to inactive then

wb(k) − (qb,dch − qb,in(k)) t(k) = 0

qb,in(k + 1) < qb,dch,

and if the activity state changes from inactive to active
then

qb,in(k + 1) > qb,cap .

If a control measure changes from active to inactive
then

wc(k) − uc(k) + qc,in(k) t(k) = 0 ,

and there are no additional constraints for control
measures if the activity state changes from inactive to
active.

Note that it is necessary to require strict inequalities
for the bottleneck activity changes since the transition
will be triggered only in that case. Since in practice the

4 Here we mean flow-capacity. Storage capacity is not relevant due
to the assumption of no blocking and no bottleneck interaction.

state transition of bottlenecks (when congestion is cre-
ated or resolved) may be influenced by disturbances
and stochastic effects, we include an extra margin ε

in the inequalities related to the mode changes. E.g.,
the inequality of the change from inactive to active
becomes

qb,in(k + 1) ≥ qb,cap + ε .

For the same reason we also include a constraint
to require that each mode has a minimum dwell
time (Morse, 1995)

t(k) ≥ tmin .

2.3 Problem statement

According to the formulation in Section 2.1 and Sec-
tion 2.2 the time duration t(k) of stage k is a free
variable.

The outflow of a network is uniquely defined for any
control input sequence uc(k), qn,ctrl(k), t(k), k =
0, 1, . . . ,K, where K is the index of the last stage. The
purpose here is to find the control input sequence and
the corresponding mode sequence that minimize the
total time that vehicles spend in the network (TTS).

In order to compare the performance of different con-
trol signals we define a time horizon thor over which
the control strategies are compared.

Now we are ready to formulate the control problem:

Given a traffic network as defined in Section 2.1 and
Section 2.2, an initial network mode M(0) and initial
queue lengths [wc(0)

Twb(0)
T]T at time t0 find the

control inputs u∗
c(k), q∗n,ctrl(k), t∗(k), k = 0, . . . ,K,

and K, that minimize the total time that vehicles spend
in the network over [t0, t0 + thor].

3. APPROACH

In this section we present an approach to solve the
stated problem. First, we derive the expression for the
TTS, and show that for a given mode sequence mini-
mizing the TTS is a quadratic programming problem.
Next, we discuss the procedure for finding the mode
sequence that minimizes the TTS.

3.1 Optimizing for a given mode sequence

In this section we consider a given mode sequence
S = {M(k)}M

k=0
. From the relations between flows,

queues, and control inputs as given in Section 2.1 a
discrete-time mode-dependent state-space model can
be derived for the evolution of the queues:

w(k + 1) = w(k) + B(k)u(k) + e(k) t(k), (1)
k = 0, . . . ,K,

where w(k) = [wc(k)T, wb(k)T]T is the vector of all
queues at control measures and bottlenecks, u(k) =



[uc(k)T, un(k)T]T is the vector of the control inputs at
flow-limiting control measures and at nodes, and the
matrix B(k) and the vector e(k) express the mode-
dependent relationship between the inflow to a queue
and the control measures, and between the inflow to a
queue and the constants in the network (such as queue
discharge rates and origin flows). The matrix B(k)
and the vector e(k) can be determined by tracking
back (in the upstream direction) from the network
element (flow-limiting control measure or bottleneck)
to all origins, active bottlenecks, and flow-limiting
control measures that supply flow to the considered
network element. Matrix B(k) and the vector e(k) are
mode-dependent, since the relations in the network are
mode-dependent.

The total time that vehicles spend in the network
(TTS) is most easily expressed in terms of the num-
ber of vehicles N(k) in the network at stage k (we
assume a linear growth of queues between two mode
transitions):

JTTS(S,K) =
K

∑

k=0

{

N(k) + N(k + 1)

2
t(k)

}

(2)

and the number of vehicles in the network is given by
N(k) =

∑nw

i=1
wi(k), where nw is the length of the

vector w(k). Combining this with (1) and (2) results
in

JTTS(S,K) =
1

2

{

t(0)

nw
∑

i=1

wi(0)+ (3)

t(K)

nw
∑

i=1



wi(0) +
K

∑

j=0

Bi(j)u(j) + ei(j) t(j)



 +

K
∑

k=0

t(k)

nw
∑

i=1



wi(0) +

k−1
∑

j=0

Bi(j)u(j) + ei(j) t(j)











where Bi(k) is the i-th row of B(k) and ei(k) the i-th
element of e(k). Note that JTTS(S,K) is quadratic in
the control inputs u(k) and t(k).

The constraints for a given mode M(k) can be found
in a similar way as B(k) and e(k), i.e., by track-
ing from the network elements (bottlenecks and flow-
limiting control measures) to all upstream origins,
active bottlenecks and active control measures that
contribute to the flow of the considered network el-
ement. After adding the constraints resulting from the
mode transitions the resulting set of constraints can be
written as

F x ≤ g , (4)
Qx = r , (5)

where x is the vector of all control inputs x =
[u(0)T, t(0), . . . , u(K)T, t(K)]T, and F, g,Q, and r

are matrices and vectors of appropriate sizes.

The minimization of the objective function (3) sub-
ject to the constraints (4) and (5) form a quadratic
programming problem (QP) that can be solved by

standard techniques, such as the modified simplex al-
gorithm and the interior point methods (Pardalos and
Resende, 2002; Nesterov and Nemirovskii, 1994).

3.2 Finding the optimal mode sequence

The procedure for finding the optimal mode sequence
will be based on the A∗ algorithm (Russel and Norvig,
1995). This algorithm is based on a cost function that
has the property that for a sequence of K decisions
the cost is higher than or equal to the cost for any sub-
sequence of the first L, (L < K) decisions (which is
called monotonicity). Consequently any subsequence
leading to the optimal solution sequence will have a
cost lower than or equal to the optimal cost. So, any
subsequence that has a higher cost than a solution se-
quence (a candidate for the optimal solution sequence)
can be discarded, since all solution sequences that
contain this sequence will have an even higher cost.
The algorithm always expands the subsequence with
the lowest cost with all possible decisions. The algo-
rithm stops if all subsequences and solution sequences
have higher cost than a given solution sequence. This
sequence is guaranteed to be the optimal one.

Since we compare mode sequences for t ∈ [t0, t0 +
thor] we are eventually interested in minimizing
JTTS,hor(S,K) (including finding the optimal mode se-
quence S and the corresponding K) for which the ad-
ditional constraint thor =

∑K

k=0
t(k) holds. However,

to guarantee monotonicity in the cost we will need
to evaluate JTTS(S,K) for subsequences without this
constraint. To distinguish between the two objective
functions, we will denote JTTS(S,K) when this ad-
ditional constraint is not imposed, and JTTS,hor(S,K)
when it is imposed.

For solution sequences JTTS,hor(S,K) needs to be
minimized, since this gives the TTS for t ∈ [t0, t0 +
thor]. For subsequences JTTS(S,K) is minimized,
which may result in a duration that is more or less
than thor. However, the optimized JTTS(S,K) pro-
vides a lower bound for the cost JTTS,hor(S̃, K̃) of
any solution sequence S̃ that starts with S (K ≤
K̃). This follows from the fact that JTTS,hor(S̃,K) ≤
JTTS,hor(S̃, K̃), when JTTS,hor(S̃, K̃) is optimized and
JTTS,hor(S̃,K) is computed using the same control
inputs, since K < K̃, and from the fact that
JTTS(S,K) ≤ JTTS,hor(S̃,K) since JTTS(S,K) is op-
timized.

We now describe the algorithm that finds the opti-
mal control inputs. For brevity we use JTTS(S), and
JTTS,hor(S) to denote JTTS(S,K), and JTTS,hor(S,K)
respectively, with K being the counter corresponding
to the last mode in S. Let us denote the initial mode by
M0. We will also make use of the set X in which we
store mode sequences, and of the set Y in which we
will store tuples (S, u(k), t(k), JTTS(S)) consisting of
a state sequence and the corresponding control signals,
the duration of each mode, the resulting performance.



begin
1. Initialize S = {M0}, and Y = ∅.
2. Minimize JTTS(S), i.e., find u∗(k), and t∗(k)

for k = 0, . . . ,K that minimize JTTS(S).
3. Mark S as a subsequence and add the tuple

(S, u(k), t(k), JTTS) to Y.

4. Minimize JTTS,hor(S).
5. Mark S as a solution sequence and add the

tuple (S, u(k), t(k), JTTS,hor) to Y.

6. Select from Y a sequence Ŝ with the lowest
performance index.

7. (a) If Ŝ is marked as a subsequence
(b) then expand Ŝ with all possible modes;
denote the set of these new sequences by X .
7.1 For all sequences S̃ in X do

7.1.1 Minimize JTTS(S̃).
7.1.2 If the problem is feasible

then mark S̃ as a subsequence and
add (S̃, ũ∗(k), t̃∗(k), JTTS) to Y.

(c) else Ŝ and the corresponding û(k), and t̂(k),
k = 1, . . . ,K are the optimal mode sequence
and optimal control inputs respectively. Stop.

8. Minimize JTTS,hor(S̃). If the problem is
feasible then add (S̃, ũ∗(k), t̃∗(k), JTTS,hor) to Y,

and mark it as a solution sequence.
9. Go to step 6.

end

By step 6 all other solution sequences in Y will have
higher or equal performance index than the one found
in 7.(c). By monotonicity all solution sequences re-
sulting from the subsequences in Y will result in a
higher cost than the one found in step 7.(c). So, the one
found in 7.(c) is optimal, and the problem formulated
in Section 2.3 is solved.

4. CONCLUSIONS AND FUTURE RESEARCH

We have developed an approach that finds the optimal
control inputs (such as ramp metering, dynamic speed
limits, and route guidance signals) that minimizes total
time that vehicles spend on a freeway network with
bottlenecks and capacity drop behavior. The physical
interpretation of this result is that this method finds the
sequence of necessary control measures that solve all
traffic jams – or if that is not possible – to reach the
best possible relocation of traffic jams.

The topics for future research are the inclusion of
blocking effects, the extension to dynamic demands,
and the investigation of the computational complexity
of the algorithm.
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