
SUPERVISORY CONTROL PROBLEMS FOR

NONDETERMINISTIC DISCRETE-EVENT

SYSTEMS: A LOGICAL APPROACH

Sophie Pinchinat ∗,1 Jean-Baptiste Raclet ∗,1

∗ IRISA, Campus de Beaulieu, 35042 RENNES CEDEX

Abstract: We answer a wide range of control problems for nondeterministic
discrete-event systems, relying on recent works based on a second order logic
approach for deterministic systems. We investigate a pair of transformations:
the first transforms a nondeterministic system into a deterministic one with a
new unobservable event; the second transforms logical statements. In particular,
these transformations are used to reduce control problems for nondeterministic
systems to control problems under partial observation for deterministic systems.
Copyright c©2005 IFAC

Keywords: Discrete-Event systems, Controlled systems, Formal specification,
Computer-aided system design, Nondeterminism, Mu-calculus.

1. INTRODUCTION

Nondeterministic systems are usually understood
as systems which have alternative reactions to
the same external stimulus. Although it might be
argued that nondeterminism does not have a re-
alistic meaning, it occurs by abstracting concrete
systems from unwanted information: one can, for
example, abstract from the content of messages
along communication channels, while keeping the
channels’ name. Henceforth, formal methods such
as controller synthesis deserve being investigated
for these models, as an intermediate step in the
design of real systems.

In this paper, we show a polynomial reduction
from the model-checking of a second-order logic on
nondeterministic systems to the model-checking of
similar but more expressive logic on some derived
deterministic system. Both logics originate from
(Riedweg and Pinchinat, 2003) and (Riedweg and
Pinchinat, 2005) they are adequate to specify con-
trollers for Mu-calculus definable control objec-

1 Supported by INRIA

tives. Hence, a wide range of control problems re-
duce to checking some formula on a model - which
is known as a model-checking problem. Decision
issues for both model-checking the existence of
controllers and synthesizing them (when possible)
are already made clear by (Riedweg and Pinchi-
nat, 2005) for deterministic systems.

We show here how the method can be adapted to
nondeterministic systems according to the follow-
ing: given a controller specification formula α for
a nondeterministic system S, we transform both
the nondeterministic system S and the formula α
respectively into a deterministic system S ′ with
a new unobservable event τ and into a formula
α′ which specifies a controller under partial ob-
servation (it cannot observe τ) for S ′. Moreover,
the problems have the same complexity, since the
controller for the former problem is obtained by
removing the τ -transitions in a solution of the
latter.

This approach seems very close to the pioneering
work of (Heymann and Lin, 1998). However, the
models we propose are a lot more general. Firstly,

our semantics is finer: instead of considering
trajectory-model specifications, we use transition
systems modulo bisimulation. Secondly, with this
finer semantics, we can consider Mu-calculus de-
finable properties - which would not be adequate
for trajectory-model specifications. We recall that
the Mu-calculus is the most expressive formal-
ism to handle branching-time features of the sys-
tems’ behaviors: it subsumes regular languages,
ω-regular languages, but also temporal logics like
CTL, LTL, CTL∗, ... See (Emerson, 1990) for a
survey.

As the work of (Riedweg and Pinchinat, 2005) per-
mits the synthesis of a controller under partial ob-
servation for deterministic systems, we derive for
free a model-checking (and a synthesis) method
for the nondeterministic world. Notice that the
controllers we synthesize are required to be de-
terministic, which perfectly fits the intuition we
have: the nondeterminism arises as an abstraction
where some events should not be distinguished,
even for applying a control.

The paper is organized as follows: Section 2
presents the models; Section 3 describes the trans-
formation on systems; Section 4 introduces the
second-order logical formalisms, which are applied
in Section 5 for the control of nondeterministic
systems. We give a short conclusion in Section 6.

2. PRELIMINARY DEFINITIONS

All through this paper, we let Σ = {a, b, c...} be a
finite set of events and AP = {p, q, ...} be a finite
set of atomic propositions.

Definition 1. (Process). A process on Γ(⊆ AP) is
a tuple S = 〈Γ, S, s0, t, L〉 where

• S is a finite set of states; s0 ∈ S,
• t : S × Σ → 2S is the transition relation,
• L : S → 2Γ labels states by propositions.

Given s and a ∈ Σ we freely write s′ ∈ t(s, a) or

(s, a, s′) ∈ t or s
a
→ s′, in which cases s′ is called

a a-successor of s or a successor of s by a.

Moreover, a process S is finite if S is finite and S
is complete if for all pair (s, a) ∈ S×Σ, there exists

s′ ∈ S such that s
a
→ s′. Finally, S is deterministic

if |t(s, a)| ≤ 1 for all (s, a) ∈ S × Σ.

Processes are combined using the synchronous
product : let S1 = 〈Γ1, S1, s

0
1, t1, L1〉 and S2 =

〈Γ2, S2, s
0
2, t2, L2〉 be two processes with disjoint

Γ1 and Γ2. Their synchronous product is S1 ×
S2 = 〈Γ, S1 × S2, (s

0
1, s

0
2), t, L〉 over Γ = Γ1 ∪ Γ2

where

• (s1, s2)
a
→ (s′1, s

′
2) if s1

a
→1 s′1 and s2

a
→2 s′2;

• L(s1, s2) = L1(s1) ∪ L2(s2).

Since the processes are nondeterministic in gen-
eral, we now explain a procedure to encode such
nondeterministic objects into deterministic ones.
Notice that we cannot use a standard determin-
isation algorithm as in language theory since we
aim at preserving the branching-time properties
of the behaviors. To motivate this observation, let
us consider the machines shown in Figure 1: the
machines can serve either coffee or tea.

coins coins

tea coffee

coins
tea coffee

Fig. 1. Two different “coffee” machines.

However, when a customer introduces coins in a
machine, and according to her choice, the left-
hand side machine can either offer coffee or tea,
whereas the right-hand side machine would chose
by itself if coffee or tea would be delivered. Hence
the behaviors are different because of the point
of choice in the execution. The branching-time
feature of behaviors is provided by the classic
notion of bisimulation: a bisimulation is an equiv-
alence relation between processes which stands for
“having the same behavior” and would distinguish
the two coffee machines above.

Let S1 = 〈Γ, S1, s
0
1, t1, L1〉 and S2 = 〈Γ, S2, s

0
2, t2,

L2〉 be two processes. A binary relation R ⊆ S1 ×
S2 is a bisimulation between S1 and S2 if (1) R is
total; (2) R relates the initial states: (s0

1, s
0
2) ∈ R;

and (3) for all s1 ∈ S1 and for all s2 ∈ S2,
(s1, s2) ∈ R implies: L1(s1) = L2(s2), and

• ∀s1
a
→1 s′1, ∃s′2 ∈ S2 s.t. s2

a
→2 s′2 and

(s′1, s
′
2) ∈ R;

• conversely, ∀s2
a
→2 s′2, ∃s′1 ∈ S1 s.t. s1

a
→1 s′1

and (s′1, s
′
2) ∈ R.

We write R : S1↔S2 whenever R is a bisimulation
between S1 and S2, and S1↔S2 whenever there
exists a bisimulation between S1 et S2.

We assume the reader is familiar with the notion
of execution tree of a process: it is obtained by
unfolding the process as a tree which (possibly
infinite) branches are maximal executions. Given
a process S we denote by TS its execution tree.
We always have S↔TS .

3. ENCODING THE NONDETERMINISTIC
PROCESSES BY DETERMINISTIC

PROCESSES

As announced, we propose now an encoding of
nondeterministic processes; this encoding is in-
spired from (Thomas, 1997). We then establish

the mathematical properties of this encoding. Ba-
sically, a new event called τ is considered. Now if
we observe nondeterminism on a in a node of the
tree like in state s1 in Figure 2, we designate a
a-transition to be kept (transition s1

a
→ s′1 in the

example) while the others are removed and the
pending a-successors (namely s′2, s

′
3) are traversed

by the addition of τ -transitions between them (in
dashed arrows in the figure).

s1

s
′

1 s
′

2 s
′

3

s1

s
′

1 s
′

2 s
′

3

a
a

a a

τ τ

Fig. 2. Encoding of the execution trees

This principle is totally clear when applied on
execution trees and as expected produces a de-
terministic object. However, for this encoding to
be effective, we would rather perform it on the
process itself, but a naive approach as for trees,
does not work. Figure 3 gives an example where
the procedure applied on the process generates a
nondeterminism in τ in the encoded process.

a
a

b

a
a

a

τ
b

a

τ

Fig. 3. Generation of nondeterminism in τ .

Alternatively, we propose two successive transfor-
mations that need to be applied in general to get
a correct encoding. Intuitively, given a nondeter-
ministic process S, we chose a total order ≤ on its
set of states and apply two transformations Tip

and T≤, to obtain a correct deterministic process
as in bisimulation with the encoded execution
tree. The proof is omitted here but we refer to
(Raclet and Pinchinat, 2004).

3.1 The Transformation Tip

Transformation Tip (“ip” for immediate past) con-
sists in storing in the current state of an execution
the previous state and the last event. To obtain
it, we have to unfold one level of the process: let
S = 〈Γ, S, s0, t, L〉 be a nondeterministic process.

The process Tip(S) is Tip(S) = 〈Γ, S̃, s̃0, t̃, L̃〉 with
the set of events Σ and where:

• S̃ = {s0} ∪ {s′(s,a) | s
a
→ s′}, s̃0 = s0 ;

• if s
b
→ s′ then s(r,a)

b
→ s′(s,b) for all r ∈ S and

for all a ∈ Σ such that s(r,a) ∈ S̃ : if moreover

s = s̃0 then s̃0 b
→ s′

(s̃0,b)
;

• L̃(s̃0) = L(s0) and L̃(s′(s,a)) = L(s′) .

Assume the process of Figure 4, with no proposi-
tions and the result Tip(S). It can be checked that
the binary relation {(1, 1), (2, 2(1,b)), (2, 2(2,a)),
(3, 3(2,a)), (4, 4(2,a))} is a bisimulation between S
and Tip(S), which leads us to the statement of
Proposition 2.

1

2

3 4

b

a a

a

1

2(1,b)

2(2,a)

3(2,a) 4(2,a)

b

a
a

a

a

a

a

Fig. 4. Process S and process Tip(S)

Proposition 2. For any process S, S↔Tip(S).

One can check that R ⊆ S×S̃ defined by (s0, s̃0) ∈
R and (s′, s′(s,a)) ∈ R, for all s ∈ S, and for all

a ∈ Σ s.t. s(s,a) ∈ S̃, is such that R : S↔Tip(S).

For complexity issues, it is clear that the size of
Tip(S) is in O(|S| × |S| × |Σ|).

3.2 The Transformation T≤

The principle for T≤ relies on the original method
as in Figure 2. Let S = 〈Γ, S, s0, t, L〉 and let ≤ be
a total order on S. Define Succ(s, a) by {t(s, a),≤
}, as the set of a-successors of s ordered by ≤.
We write s1 <i s2 whenever s1 6= s2 are both in
Succ(s, a), and s1 ≤ s2, and there is nothing in
between, that is no s3 ∈ Succ(s, a) s.t. s1 ≤ s3 ≤
s2. We define T≤(S) = 〈Γ, S, s0, tτ , L〉 with the set
of events Στ = Σ∪{τ}; T≤(S) is essentially defined
by its transition relation tτ since the remaining is
left unchanged: if |Succ(s, a)| ≤ 1 then tτ (s, a) =
t(s, a); otherwise let Succ(s, a) = {s1, s2, ..., sn}
with s1 <i s2 <i ... <i sn. Then{

tτ (s, a) = s1 with s1 = min(Succ(s, a)), and
tτ (si, τ) = si+1, ∀i < |Succ(s, a)|

The figure below shows an example of applying
T≤ for the total order 5 ≤ 2 ≤ 3 ≤ 4 ≤ 1.

1

2

3

4 5

b

a
a

a

a
a

a

1

2

3

4 5

b

a

a

ττ

Fig. 5. Process S and process T≤(S)

The complexity for the transformation T≤ is
clearly linear since each τ transition added comes
from the removal of some original transition.

Now, Tip and T≤ are composed. Write cod≤ for
the transformation (T≤ ◦ Tip). The following fun-
damental result can be proved (omitted here):

Theorem 3. Let S be a nondeterministic process,
then the process cod≤(S) is deterministic with size
in O(|S|2).

4. THE LOGICAL FRAMEWORK

Assume given a set V ar = {Y, Z, . . .} of variables:

Given Γ ⊆ AP , the set of formulas of the Mu-
calculus over Γ, written Lµ(Γ), is inductively
defined by:

> | p |Y | 〈a〉β1 | ¬β1 |β1 ∨ β2 |µY.β1(Y)
with p ∈ Γ, Y ∈ V ar, a ∈ Σ, and β1, β2 ∈
Lµ(Γ). Moreover, in order to make consistent the
semantics of fix-point formulas, like µY.β1(Y), we
require syntactic constraints in the formulas. A
variable Y is free in the formula β if it is not under
the scope of a fix-point operator µ.

Finally, we introduce the following simplifying no-
tations: [a]β1 = ¬ 〈a〉 (¬β1), β1 ∧ β2 = ¬(¬β1 ∨
¬β2), νY.β1(Y) = ¬µY.β1(¬Y), AG(β1) =
¬µY.

∧
a∈Σ 〈a〉Y ∧ ¬β1. The notation AG comes

from the temporal logic CTL; AG(β) means “β
always holds” or equivalently “β is an invariant”.
Finally, 〈ab∗〉β1 = 〈a〉 (µY. 〈b〉Y ∨β1) means that
there exists a sequence of events in the regular
language ab∗.

Mu-calculus formulas are interpreted over a non-
deterministic process S = 〈Γ, S, s0, t, L〉. Each
formula interprets as a subset of states, which by
convention are those which satisfy the formula.
Due to variable formulas like Y , we assume given
a valuation val : V ar → 2S . The semantics of
a formula α is written [[α]]

[val]
S and is defined by

induction on the structure of α:
[[>]]

[val]
S = S [[p]]

[val]
S = {s ∈ S | p ∈ L(s)}

[[Y]]
[val]
S = val(Y) [[¬β1]]

[val]
S = S \ [[β1]]

[val]
S

[[β1 ∨ β2]]
[val]
S = [[β1]]

[val]
S ∪ [[β2]]

[val]
S

[[〈a〉β1]]
[val]
S = {s ∈ S | ∃s′ : s′ ∈ t(s, a)

and s′ ∈ [[β1]]
[val]
S }

[[µY.β1(Y)]]
[val]
S =

⋂
{V ⊆ S | [[β1]]

[val(V/Y]
S ⊆ V }

where val(V/Y) : V ar → 2S is the valuation
defined by val(V/Y)(Z) = val(Z) if Z 6= Y , V
otherwise. According to the definitions above, it
can be shown that if a formula β does not contain
free variables, its semantics is independent of val,
in which case we simply write [[β]]S . By default,
we consider formulas with no free variables.

As first proposed by (Riedweg and Pinchinat,
2003), the Mu-calculus extends to the Quantified
Mu-calculus by allowing quantifications of the
form ∃Λ for a set of atomic propositions Λ. For
simplicity in this paper, we actually will focus on
a fragment of the logic where Λ is a set of atomic
propositions indexed by Σ; however the results
definitely generalize to any Λ ⊆ AP .

The syntax of the (in this paper, restricted) Quan-
tified Mu-calculus over Γ (⊆ AP), written qLµ(Γ),
is:

∃X. α|¬α1|α1 ∨ α2|β

where X ⊆ AP is a set of propositions X =
{xa|a ∈ Σ} indexed by Σ and disjoint from Γ,
α is a formula of qLµ(Γ ∪ X), α1 and α2 are
formulas of qLµ(Γ), and β ∈ Lµ(Γ). Notice that
one can not use quantification inside fix-point
formulas; quantifications and fix-point operators
do not commute in general.

The semantics of qLµ(Γ ∪ X) is given by means
of labeling processes: An X-labeling process is a
complete deterministic process over X . The set
of X-labeling processes is written LabX , and a
typical element will be E .

For a process S = 〈Γ, S, s0, t, L〉 where Γ is disjoint
from X , the synchronous product S × E is a
labeling of S (by E) over X or an X-labeling (of S
by E over X). As E is complete, an X-labeling of
S amounts to adding propositions from X to the
states of S.

Now, [[∃X. α]]
[val]
S is the set of states s ∈ S for

which there exists E = 〈X, E, ε0, t′, L′〉 ∈ LabX

with (s, ε0) ∈ [[α]]
[val×E]
S×E , where (val × E) maps

each Y ∈ V ar onto val(Y) × E.

We write S |= α, and say that S satisfies the
formula α or S is a model of α, whenever s0 ∈
[[α]]S .

Essentially, S |= ∃X. α ensures the existence of
E ∈ LabX s.t. S × E |= α. In other words, there
is a way to place propositions of X in S so that
formula α holds. Notice that although processes
might be nondeterministic, labeling processes are
always deterministic. De facto, the propositions
added by the labeling are placed in a consistent
way: a proposition x ∈ X is put on some a-
successor if and only if it is put on any of the
a-successors.

We finally introduce “looping propositions” to the
logic qLµ(Γ), as originally considered by (Arnold
et al., 2003), and later (Riedweg and Pinchi-
nat, 2005). Such propositions have the form 	a

which semantics is the existence of a looping a-
transition. Actually, we will only need to interpret
	a over labeling processes, hence deterministic
processes. Formally [[a]]S is the set of states s.t.
s is its own a-successor. For example, a process

which invariantly loops on τ -transitions (say be-
cause τ is unobservable) would satisfy the (Mu-
Calculus + loops)-formula:

Loop(τ)
def
= AG(τ)

In the Loop Quantified Mu-Calculus, introduced
by (Riedweg and Pinchinat, 2005; Riedweg, 2003),
and which extends qLµ, it is possible to enforce
the membership of labeling processes in (Mu-
Calculus + loops)-definable classes, like Loop(τ):
assertions like ∃X. α are enriched to state ∃X ∈
β	 . α, where β	 is a (Mu-Calculus + loops)-
formula, possibly containing propositions 	a. The
full theory of this logic can be found in (Riedweg,
2003) and (Riedweg and Pinchinat, 2005). How-
ever, in the context of this paper, we only need
a limited syntactic fragment, which enables us to
write the formula of Theorem 4.

Let us denote by 	
qLµ(Γ) this logic.

5. THE CONTROL OF NONDETERMINISTIC
SYSTEMS

Assume that in the framework of deterministic

processes there is a method for solving control
problems under partial observation when the ob-
jectives are given in the mu-calculus; this is pre-
cisely the case in (Riedweg and Pinchinat, 2005)
(and also (Riedweg, 2003)) from which we recall
the principles in the next section.

Now, by using Theorem 5 further, we infer in
Section 5.2 a method for solving control problems
for nondeterministic processes.

5.1 The Control of Deterministic Processes

We briefly recall the narrow link between con-
trol problems under partial observation and the
model-checking of	qLµ(Γ)-formulas, as originally
explained in detail by (Riedweg and Pinchinat,
2005).

In order to ease the reading, we use Σ′, X ′, β′

... instead of respectively Σ, X , β ... to put the
emphasis on the deterministic framework.

Basically, given an unobservable event τ ∈ Σ′, and
a partition of Σ′ into Σ′

u]Σ′
c, the following holds

(Riedweg and Pinchinat, 2005; Riedweg, 2003):

Theorem 4. Assume given a deterministic process
S ′ with events in Σ′ = Σ′

u]Σ′
c, since for example

resulting from a transformation by cod≤ (see
Section 3), assume also given an unobservable
event τ ∈ Σ′

u and a Mu-calculus formula β′. Then,
there exists a controller C ′ of S ′ for β′ which does
not observe τ ∈ Σ′

u
2 iff

2 Here, τ is also supposed uncontrollable.

S ′ |= ∃X ′ ∈ (AG(
∧

a∈Σ′

u

xa)∧Loop(τ)). f(β′, X ′)

where f(β′, X ′) ∈ Lµ depends on β′ and proposi-
tions xa ∈ X ′ (a ∈ Σ′); it expresses in particular
the uncontrollability of events in Σu.

According to (Riedweg and Pinchinat, 2005),
∃X ′ ∈ (AG(

∧
a∈Σ′

u

xa)∧Loop(τ). f(β′, X ′) means

there exists an X ′-labeling process, say E	 , s.t.:
E	 loops on every τ -transition and all its states
possess propositions xa for a ∈ Σ′

u, in particular
xτ .

(Riedweg and Pinchinat, 2005) have established a
synthesis procedure for E	 , inspired by (Arnold et
al., 2003). To obtain the controller C ′, E	 needs
to be pruned: for each state and each proposition
xa ∈ X ′, we remove the outgoing a-transition
whenever the state is not labeled by xa. We write
(E)

X′
�

for the resulting process. In particular,

because proposition xa always holds when a ∈ Σ′
u

(see the formula in Theorem 4), all uncontrollable
events remain in (E)

X′
�

. By construction, the

process (E)
X′

�

achieves S ′ × (E)
X′

�

|= β′ and
always allows uncontrollable transitions. Hence it
is a controller of S ′ for β′.

Actually, Theorem 4 can be made a lot more gen-
eral: for example, several controllers with different
sets of observation can be specified (but not nec-
essarily synthesized for undecidability reasons),
or universal quantifications can be used to deal
with maximally permissive controllers (Riedweg
and Pinchinat, 2004).

5.2 The Control of Nondeterministic Processes

We first explain how the model-checking of a
qLµ-formula α on a nondeterministic process S
reduces to the model-checking of some 	

qLµ-
formula, written Tr(α), on the process cod≤(S).
Since the size of cod≤(S) is quadratic in the size
of S and because the size of Tr(α), as we will
see, is linear in the size of α, this reduction is
polynomial and the two problems belong to the
same complexity class.

We propose a translation Tr from qLµ to 	
qLµ

which transforms a qLµ-statement on a nondeter-
ministic process S into a statement on cod≤(S):
for example, the existence of an a-successor in
S translates to the existence of an aτ ∗-successor
in cod≤(S), hence the result for Tr(〈a〉β1) below.
Also, since cod≤(S) has now transitions labeled on
Σ′ = Σ ∪ {τ}, we turn existential quantifications
∃X into ∃X ∪{xτ} ∈ (AG(xτ)∧Loop(τ)) so that
τ -transitions in cod≤(S) will not be observed nor
disallowed by the controllers. In the following, we
take the convention that

loop(τ)
def
= AG(xτ) ∧ Loop(τ)

Let Tr : qLµ(Γ) →	
qLµ(Γ ∪ {xτ}) be the

translation inductively defined by:

Tr(>) = > Tr(p) = p Tr(Y) = Y
Tr(〈a〉β1) = 〈aτ∗〉Tr(β1)
Tr(¬β1) = ¬Tr(β1)
Tr(β1 ∨ β2) = Tr(β1) ∨ Tr(β2)
Tr(µY.β1(Y)) = µY.Tr(β1(Y))
Tr(∃X. α) = ∃X ∪ {xτ} ∈ loop(τ). Tr(α)

Theorem 5. Let S be a process and let α ∈ qLµ,
S |= α if and only if cod≤(S) |= Tr(α)

The proof of Theorem 5 is done by induction over
the structure of α. It is tedious, we refer to (Raclet
and Pinchinat, 2004) for full proofs. In particular,
for existential quantifications, which specify the
existence of a labeling process such that some-
thing holds, the proof goes through an intermedi-
ate powerful result stated in Proposition 6.

Let E	 be an (X ∪ {xτ})-labeling process with
event set Σ ∪ {τ} and satisfying loop(τ). Notice
that such a labeling process is specified by all
formulas Tr(∃X. . . .). We apply the τ -forgetting
application l to get the X-labeling process written
l(E): it has the same states as E	 and its events

set is Σ; moreover, e
a
→l(E) e′ whenever e

a
→E	 e′

and a 6= τ , and Ll(E)(e) = LE	 (e) \ {xτ}

Proposition 6. For any process S and α ∈ qLµ,

E	 ∈ LabX∪{xτ} satisfying loop(τ) is s.t.
cod≤(S) × E	 |= Tr(α)

iff
S × l(E) |= α

We can now relate controllers for nondetermin-
istic processes to controllers with unobservable
and uncontrollable event τ for the deterministic
processes, since, already explained in the previ-
ous section, controllers are simply pruned labeling
processes. We can formally demonstrate:

Theorem 7. There exists a controller of a nonde-
terministic process S for a mu-calculus definable
control objective β if and only if there exists a
controller of cod≤(S) for Tr(β) which does not
observe nor control event τ . Moreover, the former
controller is obtained by forgetting all the τ -loops
in the latter. Finally, the complexity classes of
control problems for nondeterministic processes
are the complexity classes of control problems for
deterministic processes with partial observation.

We refer to (Riedweg and Pinchinat, 2005) for
the complexity classes of control problems for
deterministic processes with partial observation.

6. CONCLUSION

We have proposed two transformations that are
used to reduce control problems for nondetermin-
istic systems to control problems under partial ob-
servation for deterministic systems. As a corollary,
the classes of complexity are identical.

It is worthwhile noting that Theorem 5 actually
says more, since it gives a polynomial reduction
of the model-checking of qLµ for nondeterminis-
tic systems into the model-checking of 	

qLµ for
deterministic systems. Notice also that the key
Proposition 6 is more powerful as it holds for
the full logic qLµ. Consequently, nested quan-
tifications can be considered. Hence Theorem 7
still holds when maximally permissive controllers
are required (Riedweg and Pinchinat, 2004). In
fact, Proposition 6 holds of the full logic 	

qLµ of
(Riedweg and Pinchinat, 2005), where maximally
permissive controllers in the class of controllers
under partial observation can be specified and
synthesized.

REFERENCES

Arnold, A., A. Vincent and I. Walukiewicz (2003).
Games for synthesis of controllers with par-
tial observation. Theorical Computer Science
303(1), 7–34.

Emerson, E.A. (1990). Temporal and modal logic.
In: Handbook of Theoretical Computer Sci-
ence, vol. B (J. van Leeuwen, Ed.). Chap. 16,
pp. 995–1072. Elsevier.

Heymann, M. and F. Lin (1998). Discrete-event
control of nondeterministic systems. 43(1), 3–
17.

Raclet, J.B. and S. Pinchinat (2004). The con-
trol of non-deterministic systems : a logical
approach. RR 1648. Irisa.

Riedweg, S. (2003). Logiques pour le controle
d’automatismes discrets. PhD thesis. IRISA
Rennes.

Riedweg, S. and S. Pinchinat (2003). Quantified
mu-calculus for control synthesis. In: Math-
ematical Foundations of Computer Science.
Bratislava, Slovak Republic. pp. 642–651.

Riedweg, S. and S. Pinchinat (2004). Maximally
permissive controllers in all contexts. In: Proc
of 7th Workshop on Discrete Event Systems,
WODES 2004. Reims, France. pp. 283–288.

Riedweg, S. and S. Pinchinat (2005). You can
always compute maximally permissive con-
trollers under partial observation when they
exist. In: Proc. 2005 American Control Con-
ference.. Portland, Oregon.

Thomas, W. (1997). Languages, automata and
logic. In: Handbook of Formal Languages
(A. Salomaa and G. Rozenberg, Eds.). Vol.
3, Beyond Words. Springer-Verlag. Berlin.

