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Abstract: This paper describes the application of differential evolution algorithm (DEA) 
to the simple assembly line balancing problem (SALBP). DEA is an evolutionary 
algorithm similar to a real-coded genetic algorithm for global optimization over 
continues spaces. The paper is concerned with SALBP type-1 whose objective is to 
minimize the number of workstations required to manufacture a product in an assembly 
line within a given fixed cycle time. Extensive experimental work over public 
benchmarks test problems show the effectiveness of the proposed approach. Copyright © 
2005 IFAC 
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1. INTRODUCTION 
 
Production planning and control is associated with a 
large number of complex optimization problems. 
Most of these problems are of combinatorial nature 
and have been proved to be NP-complete, i.e., there 
is no exact algorithm that can solve them in 
polynomial time unless it is proved that P=NP. The 
combinatorial nature of these problems encourages 
the use of modern meta-heuristics techniques such 
as evolutionary algorithms, simulated annealing, 
tabu-search, etc. 
 
The assembly line balancing problem (ALBP) is a 
decision problem arising when an assembly line has 
to be configured or redesigned. The problem 
consists of determining the optimal partitioning 
(balancing) of the assembly work among the 
workstations while optimizing one or more 
objectives without violating the restrictions imposed 
on the line (Baybars, 1986, Scholl, 1999). The 

simple assembly line balancing problem (SALBP) is 
a basic version of the general problem and has 
captured the research interest for the last four 
decades. Two formulation types are commonly used 
with SALBP: (a) SALBP-1 which attempts to 
minimize the number of stations for a given fixed 
cycle time, and (b) SALBP-2 which attempts to 
minimize the cycle time of the line for a given 
number of stations. The former type is used when a 
new assembly line has to be installed in the shop 
floor, while the latter type is used in an existing 
assembly line when changes in the production 
process and manufacturing requirements occur.  
 
Any variant of the ALBP is known to be NP-
complete combinatorial problem, which implies that 
the right way to proceed is through the use of 
heuristic techniques. A large number of exact and 
heuristic techniques for the SALBP-1 are available 
in the literature. Exact algorithms are mostly based 
on the branch and bound method and the dynamic 
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programming approach. Some of the most powerful 
branch and bound procedures are the FABLE 

(Johnson, 1988), EUREKA (Hoffmann, 1992), and 
SALOME-1 (Scholl and Klein, 1997) with the latter 

being the most effective of all (Scholl, 1999). 
Recently, some researchers turned their attention to 
meta-heuristics techniques such as tabu-search 
(Scholl and Voβ, 1996), simulated annealing 
(Suresh and Sahu, 1994) and genetic algorithms 
(GAs) (Anderson and Ferris, 1994, Kim, et 
al.,1996). However, in respect to other sequencing 
and scheduling optimization problems little attention 
has been paid to the application of GAs to ALBPs. 
 
In this paper the potential of the differential 
evolution algorithm (DEA) for the solution of the 
SALBP-1 is investigated. DEA is an evolutionary 
algorithm very similar to a real-coded genetic 
algorithm, which has been recently applied with 
high success to solve various complex numerical 
optimization problems (Storn and Price, 1997). 
 
 

2. THE SALBP-1 
 
Following the analysis given in (Baybars, 1986, 
Scholl, 1999) the SALBP-1 can be stated as follows: 

• An assembly line consists of workstations 
arranged along a conveyor belt or a similar 
materials handling equipment. Let S={1,…,m} the 
set of workstations.. 

• Manufacturing a single product on the assembly 
line requires the partitioning of the total assembly 
work into a set of elementary operations called 
tasks. Let V={1,…n} the set of tasks. 

• Each task j (j∈V) is performed on exactly one 
workstation and requires a deterministic 

processing time tj. Let tsum the sum of all task 
times. 

• The assembly line is associated with a cycle time 
denoting the maximum (or average) processing 
time available for each work cycle. Each station 
can complete its assigned tasks within the 
specified cycle time. 

• The tasks are partially ordered by precedence 
relations. That is, precedence constraints between 
the tasks occur and must not be violated. 

• The objective is to minimize the number of 
workstations subject to the given cycle time and 
the precedence constraints of the tasks. 

 
Usually, ALBPs are modeled through the use of 
precedence graphs. Each node in the graph 
corresponds to a specific task, while an edge joining 
two nodes represents the precedence relation 
between the corresponding tasks. Figure 1 illustrates 
an example of a precedence graph for an 8-tasks 
ALBP having processing times between 3 and 17 
time units. The numbers inside the nodes of the 
graph correspond to the task labels, and those 
outside the nodes to the processing times. Therefore, 
task 1 has a processing time equal to 11 time units, 
task 2 a processing time equal to 17 time units, etc. 
The precedence constraints for example, for task 6 
defines that, this task must proceed after the 
completion of tasks 3 and 4 (direct predecessors), 
and tasks 1 and 2 (indirect predecessors). While, 
task 6 must be completed before its direct (or 
indirect) successors, which is task 8.  

 
 

1 2

3

4

5

6

7 8

11 17

5

9 8

12

10 3

Precedence Graph

task-1 task-2 task-4 task-3 task-6 task-5 task-7 task-8

Station 1 Station 2

Assembly :Line                   Cycle Time=20

Station 3 Station 4 Station 5

(a)

(b)
 

Fig.1 An example of 8-tasks ALBP: (a) the precedence graph. (b) Assembly line corresponding to the feasible 
line balance solution (1 2 4 3 6 5 7 8). 

  
 



3. DIFFERENTIAL EVOLUTION FOR THE 
SALBP-1 

 
Differential evolution (DE) is an evolutionary 
algorithm very similar to a real-coded genetic 
algorithm (GA). The differences rely on the way the 
mechanisms of mutation and crossover are 
performed over the floating-point vectors 
(chromosomes). The most distinct feature of DE is 
that it mutates vectors by adding weighted, random 
vector differentials to them. As with all evolutionary 
algorithms, DE starts by generating a population of 
real-valued n-dimensional vectors whose initial 
parameter values are chosen randomly from within 
user-defined bounds. This population undergoes 
evolution in a form of natural selection. In each 
generation, the operators of selection, mutation, and 
crossover are applied on the entire population in 
order to produce new, ‘better’ populations with 
higher ‘quality’ individuals. Actually, in every 
generation, each vector (chromosome) of the 
population becomes a target vector and crossovers 
with a mutant vector in order to produce a trial 
vector. Each mutant vector is generated, by adding 
the weighted difference between two randomly 
selected population vectors to a third vector. The 
best (that with the lowest cost) between the target 
and the trial vector survives into the next generation. 
The evolutionary process terminates after a number 
of generations and the structure of the best vector 
found so far is postulated as the definite solution to 
the actual optimization problem. The basic structure 
of DE algorithm is shown in figure 2, details about 
DE and the way it operates can be found in the 
pioneered work of (Storn and Price, 1997). 
 
Procedure Differential_Evolution 
begin 

Generate randomly a population Φ of Np  
real-coded vectors; 

Evaluate (Φ);   
while termination condition not satisfied do 
begin 

 for j=1 to Np do 
 begin 
  Select the next target vector Xj from Φ; 
  Choose randomly 3 vectors Xa, Xb, Xc  
    from Φ;   // a≠b≠c≠j // 
  Generate a mutant vector Vj according  
    to the relation Vj=Xa+F.(Xb-Xc); 
  Crossover the mutant and the target  
    vector to generate a trial vector Uj; 
  Evaluate Uj; 
  if COST(Uj) < COST(Xj) then  
   Replace Xj with Uj; 

endfor 
Save best-so-far vector to X* 

endwhile 
Return X* 

end 
Fig. 2: The general body of DE algorithm. 

3.1 Encoding mechanism for the SALBP. 
 
The natural coding for sequencing and scheduling 
problems including SALBP is permutation vectors, 
i.e., strings with integers. Therefore, a solution to the 
SALBP (a phenotype) is a sequence of tasks with 
each task represented by an integer number. When 
this sequence of tasks does not break the precedence 
constraints the solution is feasible. Then, the tasks 
are allocated into workstations (according to their 
order in the solution string) such that the sum of 
their processing times in each workstation does not 
exceed the cycle time. This scheme is demonstrated 
in Fig. 1.(b) for the 8-task SALBP with precedence 
graph shown in Fig.1(a). A cycle time equal to 20 
time units was assumed. A feasible assembly 
balancing solution for this example is (1 2 4 3 6 5 7 
8) which results to five workstations in the assembly 
line.  
 
3.2 Decoding mechanism. 
 
DE works with floating-point vectors. This means 
that an appropriate mapping is needed from the 
genotypic state-level (chromosomes) to the 
phenotypic level (actual assembly balancing 
solutions). Random-keys proposed by (Bean, 1994) 
is the only published representation mechanism used 
with floating-point chromosomes on combinatorial 
optimization problems. We found this scheme 
performing rather poor in the context of a DEA and 
for this reason we implemented a new more 
effective representation scheme. This scheme called 
the Sub-Range coding scheme works as in the 
following:  
 
• For a SALBP with n tasks, divide the range 

[1…n] into n equal sub-ranges and save the 
upper bounds of each of the sub-ranges in the 
array SR=[1/n, 2/n, 3/n, …,n/n]T (SR stands for 
Sub-Ranges). 

• Build the phenotype of a specific chromosome 
according to the sub-range in which each 
specific gene’s value belongs to. 

• Check and repair if needed the phenotype so 
that not to contain redundant task labels. 

 
For example, assuming a 5-task SALBP let the 
genotype, g = (0.23, 0.82, 0.03, 0.47, 0.62). Then the 
array SR has the form 

TSR ]00.8,1. 0.6, 0.4, 0.2,[= . The 1st gene in g 
has the value 0.23, i.e., lies in the 2nd sub-range 
(0.2<0.23≤0.4), and thus the corresponding 
phenotype becomes       (2 _ _ _ _). The 2nd gene 
(=0.82) lies in the 5th sub-range (0.8<0.82≤1.0), and 
the phenotype becomes (2 5 _ _ _), and so on. 
Finally, the phenotype p corresponding to 
chromosome g is    p=(2 5 1 3 4). Which means that 
the order the tasks are to be executed is, task 2, 
followed by task 5, followed by task 1, etc. 

 



3.3 Repairing the phenotype so that to satisfy the 
precedence constraints. 

 
When the order of the tasks in the generated 
phenotype does not break the precedence constraints 
(see section 2), then this sequence corresponds to a 
feasible solution. Otherwise, the solution is 
infeasible and must be repaired. To repair infeasible 
solutions we use the following simple yet effective 
procedure: Note that, as we experimentally 
observed, it is not necessary to repair all the 
members in the entire population but only a small 
portion. In particular, when 5% of the repaired 
individuals replace their infeasible original 
structures is enough. 
 
Procedure Repair_Phenotype 
begin 

for i=1 to n-1 do begin 
 A=p[i]; 
 for j=i+1 to n do begin 
 B=p[[j];  
 if task-B is a direct or indirect predecessor  
  of  tsk-A then  
  Swap(p[i], p[j]); Swap(g[i],g[j]); A=B; 

endif 
 endfor 

endfor 
end 
 
 
3.4 Local improvement 
 
Two schemes were used to improve the performance 
of the DEA: (a) A local search heuristic is applied 
on the population best solution. This heuristic works 
as follows: Find the tasks with no predecessors. 
Insert these tasks to the head of the task-sequence. 
Generate and check all the possible permutations of 
these tasks. Always keep track for the feasibility of 
the solution. The current best is only replaced when 
a more robust solution has been found. (b) If the 
diversity of the population becomes too low, then 
regenerate randomly a portion of its entire 
individuals.. 
 

4. COMPUTATIONAL RESULTS 
 
To demonstrate the effectiveness of the proposed 
DEA we present computational results obtained on a 
set of public benchmark test problems found in the 
literature. The benchmarks are available through the 
Web at the location http://www.assembly-line-
balancing.de/ Here we report the results obtained 
over the data set proposed by (Talbot et al., 1986). 
This data set contains 64 test instances varying from 
7 tasks to 111 tasks.  
 
 
 
 

Table 1  Experimental results on Talbot et al. data 
set. 

 
Problem n CT m* mDE tcpu 

Mertens 7 6 6 5 0.0
7 5 4 0.0
8 5 3 0.0

10 3 2 0.0
15 2 6 0.0
18 2 5 0.0

Bowman 8 20 5 5 0.0
Mansoor 11 48 4 3 0.0

62 3 2 2.2
94 2 2 0.0

Jaeschke 9 6 8 8 0.0
7 7 7 0.0
8 6 6 0.0

10 4 4 0.0
18 3 3 0.0

Jackson 11 7 8 8 0.0
9 6 6 0.0

10 5 5 0.6
13 4 4 0.0
14 4 4 0.0
21 3 3 0.0

Mitchell 21 14 8 8 3.3
15 8 8 0.0
21 5 5 0.5
26 5 5 0.0
35 3 3  6.3
39 3 3 0.0

   
 
 
 
In the experiments we used as objective the 
minimization of the line efficiency CTm

tsumE ×= , 
where m is the number of workstations and CT the 
cycle time. The DEA was run with the following 
values of the control parameters: population size=10 
individuals, crossover rate=0.4, mutation scale 
factor F=0.3, maximum number of 
generations=100×n (n=number of tasks). 
 
 
Table 1 displays the results obtained by the DEA on 
the above data sets. The table provides the following 
information: the problem name, the number of tasks 
(n), the cycle time (CT), the optimal number of 
workstation (m*), the generated by the DEA number 
of workstations (mDE) and the actual CPU time 
spent in sec. All the experiments were carried out on 
a Pentium II-MMX PC running at 333MHz. 
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Table 1  (continue) 
 

Problem n CT m* mDE tcpu 
Heskiaoff 28 138 8 8  7.9

  205 5 5 0.0
  216 5 5 0.0
  256 4 4 0.0
  324 4 4 0.0
  342 3 3  2.9

Sawyer 30 25 14 14 1.1
  27 13 13 1.1
  30 12 12 3.3
  36 10 10 1.1
  41 8 8 5.0
  54 7 7 0.0
  75 5 5 1.1

Kilbridge 45 57 10 10 0.0
  79 7 7 0.0
  92 6 6 0.0
  110 6 6 0.0
  138 4 4 0.6
  184 3 3 1.1

Tonge 70 176 21 22 6.6
  364 10 10 8.2
  410 9 9 2.7
  468 8 8 0.0
  527 7 7 1.1

Arcus1 83 5048 16 16 1.1
  5853 14 14 0.5
  6842 12 12 0.0
  7571 11 11 0.0
  8412 10 10 0.0
  8898 9 9 1.7
  10816 8 8 0.0

Arcus2 111 5755 27 28 6.0
  8847 18 19 6.4
  10027 16 16  0.8
  10743 15 15 11.3
  11378 14 14 7.3
  17067 9 9 39.5
    

 
 
A summary of these results is displayed in Table 2. 
In particular, the table illustrates: (a) the number of 
the instances for which the optimum solution was 
found (nopt), (b) the average relative deviation from 
the existing optimum in percentage (av.rel%), (c) 
the maximum relative deviation from the existing 
optimum in percentage (max.rel%), and (d) the 
average CPU-time in seconds (av.cpu).  
 
 
 

Table 2. A summary of the results obtained by DEA 
 

nopt av.rel% max.rel% av.cpu 
61 0.2 5.6 2.0 

    
 
As one can see from Table 2 the DEA was able to 
find the optimum solution in 61 out the total 64 test 
instances which is a result as good as the one 
produce by the well known branch and bound 
method EUREKA (Hoffmann 1992). DEA is quite 
fast, it needed 2 sec of processing time in average to 
reach the optimum. It is underlined that the plethora 
of the exact and heuristic algorithms used to solve 
the SALBP (including the famous FABLE, 
EURECA, SALOME-1) are in fact problem-
depended and have no (or at least a limited) other 
known applicability. From the other side, the 
proposed DEA can be used with only minor changes 
to solve many other sequencing and scheduling 
problems that follows the permutation property.  
 
 

5. CONCLUSIONS 
 
The use of a differential evolution (DE) algorithm to 
solve the SALBP-1 was investigated in this paper. 
Computational experiments were carried out over 
public benchmark problems. The results obtained 
are very promising reporting a high quality 
performance for the DE.  
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