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Abstract: This paper proposes an analytical method for performance evaluation and 
optimization of a production-distribution system composed of a warehouse supplied 
from an upstream manufacturing plant. Customer orders arrive randomly with 
random order size and the production capacity is finite. Transportation time from 
plant to warehouse is fixed. The analytical approach needs only the first two 
moments of random variables of the system to evaluate the order-to-delivery lead-
time of the warehouse, the total inventory on order, the inventory holding, 
backlogging cost and fill rate. We use a gradient-based method to minimize the 
average total inventory cost subject to fill rate requirement.   Numerical comparisons 
with simulation show that the analytical approach is very efficient. Copyright © 
2005 IFAC 
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1. INTRODUCTION 
 

A production-distribution system can be viewed as a 
network of manufacturing plants, warehouses and 
customers through which orders and products flow. 
The dynamic of such a system is triggered by 
customer orders and it is subject to constraints such 
as the production capacity, inventory costs and 
transportation lead time. Numerous performance 
evaluation and optimization approaches have been 
developed in order to evaluate and help decision 
making about inventory levels and service targets. A 
detailed presentation of the main inventory control 
policies can be found in (Zipkin,2000). Due to the 
page limitation, we limit ourselves to a short review 
of papers most related to our work. 
 
The approaches proposed in (Ettl, et al.,  2000) and 
(Liu, et al.,2004) are most closely related to this 
paper. An approach for performance evaluation and 
optimization of supply chains is introduced in (Ettl, 
et al.,  2000). The supply chain considered in it is 
composed of a set of inter-related stores and each 
store location is modeled by an Mx/G/∞ queuing 
system. The authors derive analytical expressions for 
performance measures such as the store lead time, the 

service level and the inventory cost. They proposed a 
constraint nonlinear optimization model to minimize 
the inventory cost while satisfying customer service-
level requirements. The main disadvantage of this 
approach is that it does not consider the production 
capacity, which is a key constraint in production-
distribution systems. 
 
In (Liu, et al.,2004) the authors developed a multi-
stage inventory queue systems. A job-queue 
decomposition approach was proposed in order to 
evaluate the performance of serial manufacturing and 
supply systems with control at every stage. An 
efficient procedure is proposed to minimize the 
inventory cost. The model is based on GI/G/1 queue, 
with products arriving one at a time. Batch sizes and 
transportation times are not considered. 
 
The motivation of our work is to provide efficient 
methodologies for performance evaluation and 
optimization of realistic supply chains network 
models with features such as random batch orders, 
finite production capacities and transportation times. 
The work presented in this paper is the first step in 
analyzing a basic supply network with a 
manufacturing plant and a warehouse.  
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The approach that we propose deals with 
performance evaluation of a two-stage production-
distribution system with a warehouse supplying from 
a production plant. Customer orders arrive at the 
warehouse randomly. A customer order is filled if 
there is enough inventory at the warehouse and is 
backlogged if the inventory is empty. The inventory 
at the warehouse is controlled by a base-stock policy 
and replenishment orders are sent to the production 
plant upon arrival of customer orders. The production 
capacity of the plant is finite. Transportation from 
plant to warehouse is performed on the basis of 
replenishment orders and the transportation time is 
constant. To the best of our knowledge, in the 
literature, there is no inventory policy optimization 
approach related to this problem.  
 
An analytical approach is proposed for performance 
evaluation based on several approximation 
techniques that are proved efficient for most 
manufacturing systems: (i) two-moment 
approximation, (ii) markovian approximation of 
general processes, (iii) approximation of dependent 
random processes by independent ones. More 
specifically, the analytical approach needs only the 
first two moments of random variables of the system 
to evaluate the order-to-delivery lead time of the 
warehouse, the total inventory on order and the 
inventory holding and backlogging cost. The 
production plant is modeled as a MX/G/1 queueing 
system and the transportation system is represented 
as a MX/D/∞ queueing system. Approximate 
analytical expressions are derived for estimation of 
the first and/or second moments of order-to-delivery 
lead time and inventory on order. A log-normal 
distribution is then used to approximate the 
distribution of the inventory on order and to 
determine the total inventory holding/backlogging 
cost of the warehouse. The inventory cost is then 
minimized using a gradient based method while 
respecting a given service level. Numerical 
comparisons with simulation show that the analytical 
approach is very efficient and it is not sensitive on 
the workload of the production plant. 
 
The reminder of the paper is organized as follows. 
The two-stage production-distribution system we 
consider is formally defined in Section 2. The 
analytical approach is presented in Section 3. In 
Section 4, numerical results are given to compare the 
analytical approach and the simulation. Concluding 
remarks are given in Section 5. 
 
2 THE PRODUCTION-DISTRIBUTION SYSTEM 

 
This paper considers a two-stage production-
distribution system with an upstream production 
plant supplying a downstream warehouse (see Figure 
1). Only one type of products is considered. The 
warehouse faces batch customer arrival processes 
and generates orders to the plant. The plant processes 
orders from the warehouse according to its available 

capacity and on a FIFO basis. Any order filled at the 
plant is then send to warehouse and the transportation 
time is significant and cannot be neglected. Detailed 
description of the system is given in the following. 
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Fig. 1. The system topology 
 

Customer orders arrive randomly according to a 
compound Poisson process with arrival rate λ. The 
quantity of each order is a random positive integer 
variable X and the quantities of different orders are 
iid random variables. Assume that the order quantity 
X has finite first two moments with mean µX and 
standard deviation σX. Upon the arrival of customer 
order of size X, if the on-hand inventory of the 
warehouse is enough, the order is totally filled. 
Otherwise, the customer order is only partially filled 
according to the on-hand inventory level. The 
remaining quantity is backlogged and will be filled 
by future product deliveries from the plant. 
Consequently, customer orders can be split. 
 
The inventory of the warehouse is managed 
following a base-stock control policy. This policy 
relies on the concept of inventory position which is 
equal to on-hand inventory at the warehouse minus 
the backlogged quantity plus the total pending order 
quantities. The base stock policy keeps the inventory 
position constant at the so-called base-stock level R. 
As a result, whenever a customer order of size X 
arrives, the warehouse immediately issues a 
replenishment order of size X to the plant. As a 
result, the replenishment orders arriving at the plant 
also form a compound Poisson process. 
 
The manufacturing plant is modeled by a single-
server queueing system. Replenishment orders arrive 
according to a compound Poisson process and wait in 
a FIFO queue for production at the plant. The plant 
or server serves each batch order on a unit basis. The 
processing time of each product unit is a random 
variable τ of general distribution with mean mτ and 
standard deviation στ. The total service time of a 
replenishment order X depends on its order size. The 
manufacturing plant is modeled as an Mx/G/1 
queueing system. The total time elapsed between the 
arrival of a replenishment order at the plant and the 
moment when the order is ready from delivery to the 
warehouse is  the plant lead time, denoted as Ls. The 
delivery of products from plant to warehouse is made 
on the basis of replenishment orders. When a 
replenishment order of size X is ready at the plant, 
the batch of X product units is transported to the 
warehouse. The time needed to transport a batch 
from the plant to the warehouse is a given constant 

     



called transportation lead time Lt. The order-to-
delivery lead time of the warehouse, denoted by L, 
represents the time elapsed between sending an order 
to the plant and receiving at the warehouse the 
products of the order. It is defined by the sum of the 
plant lead time and the transport lead time, i.e. L = Ls 
+ Lt. 
 
Another important issue in inventory management is 
the inventory cost. Holding a unit of product in the 
warehouse incurs a cost of Ch per time unit. Demands 
waiting to be filled incur a cost of Cb per waiting 
time unit for each product unit of backlogged orders. 
 

3. PERFORMANCE EVALUATION 
 

This section addresses the performance and cost 
evaluation of the production-distribution system. We 
first evaluate the first and/or second moments of the 
following performance variables: 
• Ls: lead-time at the plant for a typical order unit 

(not batch) issued by the warehouse 
• Ns: total number of units waiting to be or being 

processed at the plant 
• Nt: total number of units in transportation to the 

warehouse 
• L: order-to-delivery lead-time for a typical order 

unit issued by the warehouse 
• N = Ns + Nt: total number of units on order also 

called inventory on order. 
These performance variables are then used in the 
evaluation of the inventory and backlogging cost. 
The replenishment orders issued by the warehouse 
are not split till delivery at the warehouse. As a result, 
we sometimes call a replenishment order a batch 
when no confusion is possible. 
 
3.1The manufacturing plant model 
 
As mentioned before, the plant can be modeled by a 
MX/G/1 queuing system. As the warehouse is 
managed according to a base-stock policy, 
replenishment orders arriving at the manufacturing 
plant follows the same compound Poisson process as 
the customer orders. Let us first consider the service 
time TB of a replenishment order. 

1
XT iB i τ∑= =                                         (1) 

 
where X is the size of the replenishment order and τi 
is the service time of i-th units of the order. By 
assumption, X and τi are mutually independent 
random variables. Hence,  

[ ]TB B xm E T m mτ= =                        (2) 
 

where : [m E ]ττ =   and  . By conditioning 
on X and by mutual independence of X and τ

: [m E Xx = ]

2τ

]

i, 
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where, 2 : [Varτσ τ=  and .    2 : [x Var Xσ = ]

2 2 2
Combining relations (2) and (3),  

( )2 :TB B x xVar T m mτ τσ σ= = + σ                   (4) 
 

Consider first replenishment orders as basic 
customers of the queueing system. The MX/G/1 
queuing system then becomes a M/G/1 queuing 
system with TB as service time. The mean number NB 
of batches in the plant can be computed by the  
Pollazek-Khinchin formula (Cassandras,1993): 

2
2 2( ) (1 / )

1 2(1 )B TB TBE N mρ ρ σ
ρ ρ

= − −
− −

         (5) 

 
where ρ is the traffic intensity for the queuing system 
defined as follows : 

TBmρ λ=                                  (6) 
From (2)-(6): 

2 2 2 2 2(2 )( )
2(1 )

x x x x
B

x

m m m m m mE N
m m

τ τ τ

τ

λ λ λ σ λ
λ

− + +
=

−
τσ     (7) 

 
By Little's law, the mean of the total time LB a 
replenishment order spends at the plant is : 

[ ] [ ] /B BE L E N λ=                           (8) 
 

Note that E[LB] is the average time a batch spends at 
the plant and  E[Ls] is a average time a product unit 
ordered by customers spends at the plant. These two 
concepts are different. Although the time of a product 
unit in a particular customer order (or batch) of size 
X spends in the pant is exactly the same as the time 
the related batch spends in the plant, i.e. Ls = LB, 
however E[LB] and E[Ls] differ according to the 
distribution of the order quantity X. Fortunately, 
according to large number of numerical experiences, 
E[LB] and E[Ls] are very close for most realistic 
distribution of X.   For this reason, the following 
approximation is used: 

[ ] [ ]s BE L E L≈                             (9) 
 

Apply Little’s law to product units, we have: 
[ ] [ ]. [ ] [ ]s s x BE N E X E L m E Nλ= ≈          (10) 

 
Consider now the second moment of the performance 
indicators. First, 

2 2: [ ] [ ] [ ]Var N E N E N 2
s s s sσ = = −              (11) 

 
The second moment of the number of products at the 
plant is given by the following expression: 

2 2
1

,

[ ] [ [( ) | ]]BN
s i i ji

i j
i j

E N E E X X X N
=

≠

= +∑ ∑ B
 

 
where Xi is the number of units of replenishment 
order i. In general, NB depends on the size X1 of the 
batch being served and X1⏐NB does not have the 
same distribution as Xi with i ≠ 1. By assuming the 
independence of NB and X1 and by assuming that 

     



X1⏐NB and Xi with i ≠ 1 are iid random variables, the 
following approximation is obtained: 

2 2

2 2 2

[ ] [ . [ ] ( 1). [ ]

[ ]. [ ] ( [ ] [ ]). [ ]]
s B B B

B B B

E N E N E X N N E X

E N E X E N E N E X

≈ + −

= + −

2 ]        (12) 

 
What remains is to estimate the second moment of 
the queue length NB of an M/G/1 queue. Given the 
service time distribution of the M/G/1 queue, 
generating function of the queue length of M/G/1 can 
be used to compute the second moment of NB by 
using the third moment of service time (Cooper, et 
al., 1981;Buzacott, et al., 1993).  
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2

2
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where 3[ ]BE T  is the third moment of the service time 
for one batch, and can be represented as: 
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As the purpose of this paper is to propose a 
performance evaluation by using only the first two 
moments of any random variable, the approach 
presented in (Cooper, et al., 1981;Buzacott, et al., 
1993) can not be used directly. Instead we propose to 
approximate the distribution of service time for one 
unit by a log-normal distribution (Saporta,1990) with 
mean mτ  and variance 2

τσ . Then we can evaluate 
the third moment of the service time for one unit 

3[ ]E τ  using the mean and variance of unit service 
time. This implies that the random variable log( )τ  
follows a normal distribution of mean M and 
standard deviation S : 

2

2
SMm eτ

+=                                 (14) 
 

2 22 2 (S M Se eτσ += 1)−                         (15) 
 

23 3 2[ ] 1(2 ) 3 [ ] [ ]-2 [ ]s SE e e E E E3τ σ τ ττ= − + + τ              (16) 
 
We obtain 22 ln ( 1 )2S

m
σ τ

τ
= + by the first two 

formulas, and then we can represent 3[ ]E τ  by the 

mean mτ and variance 2στ  of unit service time. 
 
3.2 The transport system model  
 
The purpose of this subsection is to evaluate the 
distribution of the number Nt of product units in 
transportation. Notice that the arrival process at the 
transportation system is the departure process of 
replenishment orders from the plant and it is in 
general not a Poisson process. Let us approximate the 
arrival process of batches at the transportation system 

as a Poisson process. The transportation system can 
then be approximated by a MX/D/∞ queuing system 
(Liu, et al.,1990;Masuyama, and Takine,2002) with a 
fixed transportation time Lt.  
 
As the average arrival rate of product units at the 
transportation system is λE[X] and the transportation 
delay is Lt. From Little's Law,  

: [ ] [ ].t t tm E N E X L m Lx tλ λ= = =       (17) 
 
The second moment of Nt is as follows: 
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where NBt is the number of batches in transportation. 
The MX/D/∞ approximation implies the mutual 
independence of NBt and Xi: 
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NBt is the number of Poisson arrivals in a time 
interval of length Lt with E[NBt] = λLt and 

2
BtE N⎡ ⎤⎣ ⎦ = (λLt)2 + λLt. Introducing these terms in 

the above equations leads to: 
( ) ( )( ) [ ]22 2E N L Var X L L E Xt t t tλ λ λ⎡ ⎤= + +⎢ ⎥⎣ ⎦

 

and 
( ) (2 2 2:t t t t t xVar N E N E N L mσ λ⎡ ⎤ ⎡ ⎤= = − = +⎣ ⎦ ⎣ ⎦ )2 2

xσ

]t

    (18) 
 
3.3. Order to delivery lead-time and inventory on 
order 
 
We are now ready to evaluate the order to delivery 
lead-time L = Ls + Lt and the total inventory on order 
N = Ns + Nt. The following results are immediate: 
 

E[L] = E[Ls] +Lt                       (19) 
 

: [ ] [ ] [N sm E N E N E N= = +                (20) 
 

Notice that Ns and Nt are in general dependent. An 
approximation of the second moment of N is 
obtained by considering Ns and Nt as two 
independent random variables. 

2 2:N s
2
tσ σ σ= +                           (21) 

 
3.4 Average inventory cost estimation 
 
By definition of the base stock policy, the following 
relation holds: 

R = I – B + N                          (22) 
 

where R is the base stock level, I is the random 
inventory on hand, B is the backlogged quantities and 
N is the total inventory on order. Since customer 

     



orders can be partially filled, either I = 0 or B = 0. As 
a result, 

I =(R-N)+                                              (23) 
B =(N-R)+                                             (24) 

 
where (x)+ = max{x, 0}. Note that the net inventory 
level IN = I – B = R – N. 
 
The total inventory cost is composed of two parts: the 
holding cost and the stock out penalty. The total 
inventory cost is: 

C(R) = ChE[I] + Cb E[B]              (25) 
 

Combining (23) – (25), 

0
( ) ( ) ( )NC R g R x f x dx

∞
= −∫        (26) 

 
where fN(x) is the pdf of the  inventory on order N and 

( ) , 0
, .{ h

b

C x if x
C x otherwiseg x ≥

−= . 
 

Deriving the distribution function fN(x) of N is a very 
difficult task. In this paper, we propose to 
approximate fN(x) by a log-normal distribution 
(Saporta,1990) with mean mN and variance σ2

N: 
 

2 2(ln ) /(2 )1( )
2

x M S
Nf x e

Sx π
− −≈                (27) 

With  
2

2
2ln( 1)N

N

S
m
σ

= +       and . 2ln / 2M m SN= −

The use of log-normal approximation instead of usual 
normal approximation is explained in Section 4 and 
is mainly due to the large variance of N with respect 
of its mean. Combining (26) and (27) and from the 
definition of g(x), 
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         (29) 

 
where z* is the solution of equation R – exp(M + Sz) = 0. 
 
3.5 Fill rate estimation 
 
For the warehouse which directly supplies external 
customer demand, the fill rate is an important 
indicator of the required customer service level, and 
strongly depends on the base stock level. In this 
paper, we define it as the percentage of order units 
filled from stock without delay. Let X denote the 
quantity of an order of a particular customer, Because 
of the property of Poisson arrival see average, the 
inventory level observed by this customer follows the 
stationary distribution of X and the fill rate can be 
expressed as: 
                                                             (30) (P X I≤

 

where I is the inventory on hand of warehouse. From 
Section 3.4,  

( ) ( R- ). (1P X I P N i P X ixi
∞∑≤ = ≤= =  

 
where Px is probability density function of order 
quantities, From (28):  

R-i '( R- ) ( ) ( )0
zP N i f N dN f z dzN≤ = =∫ ∫−∞  

where 'z  is the solution of equation 
(R-i) – exp(M + Sz) = 0. 

 
3.6 The optimization model 
    
The objective of our optimization model is to 
minimize the total inventory cost as specified in (29) 
while satisfying customer service-level requirement 
expressed as ( )P X I α≤ > . Let us have a closer look at 

the objective function (29). .M S zR e +−  is increasing 
in R. Let us denote Y= .M S zR e +−  , observe (27), g(Y) 
is linear convex function of R. So  

.( )M S zg R e +−  a n d 21. /( )
2

M S z z 2g R e e dz
π

+ −∞ −∫−∞
  

are both convex in R. Because of this property of 
objective function, we use gradient-based method to 
solve the constrained optimization problem with  

( )

*2 *2* *- -1 1. 2 2( - )  -2 2
*2 *2* 1 1- -.   ( ) 2 2*2 2
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( ) ( )*

* * ( ) (1 ( ))                                                     
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zC f z dz C f zh b
z

C z C zh b

π π

π π

+= + ∫ ∞

+ ∞+ − − ∫

∞= −∫ ∫−∞

= Φ − − Φ   (31)   

 
where f(z) is the pdf of standard normal distribution 
and ( )zΦ  is the distribution function of Z. 
 

4. NUMERICAL RESULTS 
 
The aim of this section is to validate by simulation 
the analytical results presented in the previous 
section. Numerical experimentation is conducted on 
one example defined as follows. The arrival rate λ of 
customer orders varies from 1 to 1.6. The batch size 
of each customer order X is an integer uniformly 
distributed in (Kleinrock,1975;Buzacott, and 
Shanthikumar,1993). The service time τ for each 
product unit is exponentially distributed with mean 
equal to 0.1. The transportation time is 3.0. Both of 
unit inventory holding cost Ch  and unit backlogging 
cost Cb are 1. Base stock level is set at R = 50. In 
order to obtain faithful simulation results, a very long 
simulation time of 10,000,000 time units is used. 
Results of both analytical approach and the 
simulation are given in Tables 1 and 2. Although 
only the first two moments of each random variable 
are taken into account, the analytical approach 
provides very good fits moment estimation of order-

     



to-delivery lead-time and the total inventory on 
order. Even though a number of approximations are 
made in the analytical approach, the second moment 
estimation of the inventory on order N is very good 
with error no more than 3.5%. Finally the log-normal 
approximation leads to good estimation of the total 
inventory cost. Another interesting phenomenon is 

that the quality of the result seems to be rather 
insensitive to the traffic intensity ρ. 
 
Note that we also tried the normal distribution 
approximation of the inventory on order N. The 
results are bad especially when the traffic intensity is 
high. This is mainly due to the large variance of N 
with respect its mean. 

 
Table 1 Simulation vs. approximation results for production lead-time Ls and order-to-delivery time L 

 

Arrival 
rate 

ρ E[Ls] 
(sim) 

E[Ls] 
(analyt) 

Error 
(  %) 

E[L] 
(sim) 

E[L] 
(analyt) 

Error 
(  %) 

1.0 0.60 1.1730 1.1750 0.1706 4.1730 4.1750 0.0480 
1.3 0.78 1.9542 1.9591 0.2506 4.9542 4.9591 0.0991 
1.5 0.90 4.0304 4.0500 0.4842 7.0304 7.0500 0.2790 
1.6 0.96 9.6031 9.8000 2.0092 12.603 12.800 1.5623 

Table 2 Simulation vs. approximation results for inventory on order and inventory cost 
Arrival 

rate 
ρ mN

(sim) 
mN

(analyt) 
Error 
(  %) 

σN
(sim) 

σN
(analyt) 

Error 
(  %) 

Cost 
(sim) 

Cost 
(analyt) 

Error 
(  %) 

1.0 0.60 25.4324 25.0500 1.5266 14.1190 13.9651 1.1023 25.5746 26.4905 3.5811 
1.3 0.78 39.1543 38.6809 1.2237 20.7695 20.6483 0.5873 19.4611 19.7240 1.3510 
1.5 0.90 63.8623 63.4500 0.6498 39.3581 39.5504 0.4867 28.6332 27.6893 3.2966 
1.6 0.96 121.597 122.880 1.0442 92.2559 95.6122 3.5103 77.7748 77.5252 0.3208 

 
Table 3 Simulation vs. approximation results for fill rate and inventory cost with optimal R* 

Arrival 
 rate 

ρ Service 
Level (%) 

optimal
R*  

Fill rate
(sim) 

Fill rate
(analyt) 

Error 
(  %) 

Cost 
(sim) 

Cost 
(analyt) 

Error 
(  %) 

1.0 0.60 90 50 0.9014 0.9092 0.8572 25.5746 26.4905 3.5811 
1.3 0.78 90 71 0.8954 0.9034 0.5448 34.2482 35.1262 2.5635 
1.5 0.90 90 119 0.8962 0.9020 0.7371 61.6398 62.2328 0.9621 
1.6 0.96 90 241 0.8902 0.9008 1.1813 137.756 137.901 0.1056 

 
To minimize the objective function C(R), we use the 
conjugate gradient method [Press, et al.,1994], which 
is a standard technique for nonlinear optimization. 
For constraint function, we use binary search method 
to estimate the bound of variable R. Numerical 
results are given in table 3. 
 

5. CONCLUSION 
 
This paper proposed an analytical model to estimate 
the performances of a two stages production-
distribution system characterized by i) a random 
client demand, ii) a finite manufacturing capacity; iii) 
a random batch size for orders, manufacturing and 
delivery quantities; iv) a constant transport time from 
the plant to the warehouse. Our future research work 
consists in extending the approach to a network of 
production-distribution systems with random 
transportation time. 
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