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Abstract: Idle speed control for an automotive engine is formulated as the problem
of computing a maximal safe set for a hybrid system modeling an SI engine
in idle mode. Since this problem is computationally intractable, we exploit the
relations between safe sets for a continuous-time switching system S and an
appropriate discrete-time switching system associated with S to reduce drastically
its complexity. An algorithm in the discrete-time domain is proposed for the
determination of the maximal safe set. The methodology is general enough to be
easily extended to different hybrid control problems. In particular, we solved the
problem of the computation of the maximal safe set in the case of un-synchronized
switching and sampling times for idle control, an open problem for quite some time.
Simulation results show the efficiency of the proposed approach. Copyright c©2005
IFAC.
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1. INTRODUCTION

Hybrid models for automotive engine control have
been proposed in the recent past, e.g., De Santis
et al. [2004]. These models are more accurate than
the standard average models that do not capture
the transients in the dynamics of the engine. The
general hybrid model for the engine control prob-
lem can be simplified considerably considering the
particular region of operation we are interested in.
A hybrid model for an engine specialized for the
idle mode is presented in detail first. The model
is used to find a controller that maintains engine

1 This work has been partially supported by European
Commission under Project HYBRIDGE IST–2001–32460

and IST NoE HyCON contract n. 511368.

speed in a given range; this constraint on engine
speed is re-formulated in terms of safety specifi-
cation, allowing the use of algorithms, based on
discretization, for finding the safe set and the use
of techniques for controller selection starting from
the safe set computation. In particular, we make
use of the results in De Santis et al. [2004] where
we showed that the maximal controlled invariant
set for a continuous-time switching system can
be arbitrarily closely approximated by an appro-
priate controlled invariant set for the discretized
switching system. The piecewise constant control,
obtained from the control law that makes the set
invariant for the discrete-time switching system by
holding the value at sampling times over the sam-
pling period, makes the set safe for the continuous-
time switching system.



With respect to previous work in this area, our
procedure does not assume that sampling times
and switching times are synchronized. This is
an important technical aspect in general, and in
particular for our application, where there is no
reason why sampling and switching caused by
the piston reaching a dead center 2 should be
synchronized. Further, it allows the extension of
the results obtained in [Balluchi et al., 2002] where
the error due to the lack of synchronization was
not taken into account.

The paper is organized as follows. In Section 2,
we describe the hybrid model of the engine in idle
mode. In Section 3, we discretize the hybrid model
introducing minimum and maximum dwell time
and the errors due to unsynchronized sampling
and switching times. In Section 4, we solve the
problem of finding the maximal safe set for the
sampled model. Finally, in Section 5, the con-
troller derived using the sampled-time system is
applied to the original continuous-time system.
Simulation results are presented to demonstrate
the efficiency of the method.

2. IDLE MODE ENGINE MODEL

In deriving a model for the engine control problem
of interest, we exploit the peculiarities of the idle
region of operation to avoid including complexity
in the model that is not needed to solve our control
problem. The engine is said to be in idle mode
if the accelerator pedal is released and no gear
is inserted. In this operation region, the car is
not moving but the engine should stay ”alive”.
The interesting aspect of this problem is that
the revolutions of the engine should stay nearly
constant no matter which load is applied to it. It
is in general difficult, if not impossible, forecasting
when loads such as air conditioning are applied.
The control objective is to maintain crankshaft
engine speed (n) limited in a range, given in terms
of nominal speed (n0) and maximum absolute
tolerance (∆n):

n ∈ [n0 − ∆n, n0 + ∆n]

2.1 Continuous dynamics in idle-mode

In the idle speed control problem two dynamics
are of interest: the intake manifold pressure and
the crankshaft dynamics. The manifold pressure
p is regulated by the throttle opening angle α:

ṗ(t) = app(t) + bpα(t) (1)

2 A dead center is the highest (TDC: Top Dead Center)
or lowest (BDC: Bottom Dead Center) position reached by

the piston in the cylinder.

The control variable α(t) is limited to a given
interval, α(t) ∈ [0 αmax], in order to avoid
manifold pressure to raise too much and to limit
control range for safety reasons.

Crankshaft variables of interest are the angular
position θC , expressed in degrees [◦], and the rev-
olution speed n, expressed in RPM (Revolutions
Per Minute); crankshaft angle θC evolves accord-
ing to the following:

θ̇C(t) = KCn(t) (2)

where KC is the factor that transforms RPM in
[◦]/[s]. Crankshaft speed evolves with the dynam-
ics:

ṅ(t) = ann(t) + bn(T (t) − Tl(t)) (3)
where T is the engine generated torque, Tl ∈
[0, Tlmax] is the disturbance torque modeling the
effect of loads to the engine coming from subsys-
tems that take energy from the engine, an = −30B

πJeq

and bn = 30
πJeq

, with B viscous friction coefficient
and Jeq driveline momentum of inertia.

2.2 Torque generation

In a four-stroke gasoline engine, torque is gener-
ated by a a piston when it reaches the highest
position in the cylinder and the air-fuel mix en-
trapped is ignited. In the model, torque is assumed
constant during the entire expansion stroke. The
torque generation mechanism and the stroke evo-
lution 3 are represented by the FSM in Figure 1;
each transition occurs when the piston reaches one
of the dead centers.

Fig. 1. Single cylinder evolution

Engine torque is expressed either with complex
polynomials or look-up tables that cover almost
each engine speed and manifold pressure range. In
our application, since engine speed is limited in a
range, and consequently we have limited torque
range, we can simplify substantially the model:

T (tC−E) = c1p(tI−C) + c2θs(tI−C) + c3 (4)

where p(tI−C) and θs(tI−C) are respectively in-
take manifold pressure and spark advance at the
end of intake stroke, corresponding to a bottom
dead center. We consider the spark advance angle
θs as the deviation from optimal spark advance,

3 We are dealing with 4-strokes SI engines.



given as a function of the engine working point.
The spark advance angle is bounded to avoid
knock (too much advance) and misfire (too little
advance). For example, θs = 0 means that spark
coils are programmed to provide the spark at
the angular position corresponding to the optimal
spark advance.

Fig. 2. Torque generation model

Fig. 3. Hybrid engine model

In a 4-cylinders 4-strokes engine only one cylinder
can be in any one stroke, so only one cylinder
is producing torque. Hence, torque is generated
every 180◦ of crankshaft angular position and the
FSM of Figure 1 reduces to the one shown in
Figure 2, where the transition is taken when a
piston reaches the TDCC−E , (that will be referred
to in the sequel simply as TDC).

2.3 Hybrid model

The models presented in Subsections 2.1 and 2.2
are heterogeneous; pressure and angular speed
follow continuous time dynamics, while torque
generation is event-driven, because of torque value
reset every TDC. These models merge in a single
hybrid model, shown in Figure 3. The transition
occurs when crankshaft angle reaches 180◦, and
the reset is performed; it is important to execute
reset assignments in the sequence, in order to con-
sider compression and spark programming delay.

3. SAMPLED DATA MODEL

All control strategies are implemented in an Elec-
tronic Control Unit (ECU), which is a discrete
time system being based on one or more micropro-
cessors. Hence, the first step in controller design is
sampling the original continuous time dynamics.
Sampling is intrinsecally periodic and is dictated

by the clock of the ECU. The discrete time dy-
namics of the hybrid model is due to switching
caused by a piston reaching a TDC. Since TDC
depends on the speed of the engine, it is not
periodic and there is no synchronization possible
between switching and sampling.

3.1 Dwell-time and synchronization error

We solve the non-synchronization problem intro-
ducing the minimum and maximum dwell time.
After one transition, the system remains in the
state at least for the minimum dwell time and
at most for the maximum dwell time. In a sam-
pled time framework, dwell time corresponds to
the minimum and maximum number of samples
during which the system stays in a given discrete
state. Given the constraints on engine speed in
idle mode, the distance in time between TDCs
is limited to an interval. In fact, given the en-
gine speed specification n ∈ [nmin , nmax], it is
possible to find the range for a TDC period:
TDCmin = 180

KCnmax
and TDCmax = 180

KCnmin

; the minimum number of samples taken while
the system stays in a state after a transition is
given by N1 =c(TDCmin/tsampling), while the
maximum number of samples is given by N2 =
e(TDCmax/tsampling).

Non-synchronization effects are described by two
physical phenomena that are taken into account
as errors in the expressions of the reset.

Manifold pressure reading error. If the reset
occurs exactly at a sampling instant, the pres-
sure read is the manifold pressure at the end
of intake stroke used in (4). This is not true in
general, so the reading error must be estimated.
By integrating the continuous pressure dynam-
ics (1) and considering that the control value is
constant during intersampling periods, we obtain:
p(t) = eaptp̂ + bpα

a (eapt − 1). The error is given by
∆p = p(t) − p̂ = (eapt − 1)(p̂ + bpα

ap
), and since

ap < 0 and bp > 0, the maximum absolute value
is given by

∆pmax = |(eaptsampling − 1)|(max|(p +
bpα

ap
)|)

where max computation is performed over the set
given by p ∈ [pmin , pmax] and α ∈ [αmin , αmax].
Let Ip = [−∆pmax , ∆pmax] be the admissible
value set for ∆p.

Engine torque reset. There is no reason to
believe that the reset occurs exactly at a sam-
pling instant. If reset does not occur at a sam-
pling instant, then torque is not detected for a
sample period, i.e. the torque value changes but
the controller cannot detect this change for an
entire sample period. Considering the torque dif-
ference ∆T we can compute the engine speed



deviation, treating ∆T as a disturbance in the
discrete time dynamics, n+ = andn + bnd(T −
Tl − ∆T ), where ∆T ∈ [−∆Tmax , ∆Tmax]. The
engine speed disturbance ∆n takes values in In =
[−bnd∆Tmax , bnd∆Tmax].

The two errors described above are taken into
account in the expressions of the reset as:

n = n + ∆n;

Tmem = c1(p + ∆p) + c2θs + c3.

∆p and ∆n are monotonically decreasing with
sampling period.

3.2 Discrete time model

The dynamics of the discrete time system in
matrix form are the following:

x(k + 1) = Adx(k) + Bdu(k) + FdTl(t)

where x(t) = [p(t) n(t) T (t) Tmem(t)]′, u(t) =
α(t) and the dynamical matrices are

Ad =




apd 0 0 0
0 and bnd 0
0 0 1 0
0 0 0 1


Bd =




bpd

0
0
0


 Fd =




0
−bnd

0
0




Consider now the reset function, in matrix form,
occurring at instant tTDC :

x(t+TDC) = Areset x (t−TDC) + Bresetur(t−TDC) +

+ Fresetdr(t−TDC) + Greset

where

ur(t−TDC) = θs(t−TDC) ∈ [θsmin , θsmax]

dr(t−TDC) = [∆p(t−TDC) ∆n(t−TDC)]′ ∈ Ip × In

and the matrices are

Areset =




1 0 0 0
0 1 0 0
0 0 0 1
c1 0 0 0


Breset =




0
0
0
c2




Greset =




0
0
0
c3


Freset =




0 0
0 1
0 0
c1 0




The model is shown in Figure 4.

4. SAFE SET COMPUTATION

Before presenting the algorithm that, by means
of external approximation, finds the maximal safe
set, we show that ta non-empty safe set exists

Fig. 4. Discrete time model with dwell time and
non-synchronization error

if the bounds on the disturbances are sufficiently
small. Consider the dynamics of the discrete time
system in matrix form as in Subsection 3.2, ob-
tained by neglecting the disturbance torque Tl(t):

x(t + 1) = Adx(t) + Bdu(t)

and the reset function occurring at instant tTDC ,
obtained by neglecting the non-synchronization
error [∆p ∆n]′ :

x(t+TDC) = Aresetx(t−TDC)+Bresetur(t−TDC)+Greset

The evolution of the system is governed by
N−consecutive discrete steps, with N ∈ [N1 , N2],
followed by the reset function. A controlled equi-
librium point exists for both discrete dynamics
and reset function, given by:





T0 =
1 − and

bnd
n0

T0 = Tmem0

Tmem0 = c1p0 + c2θs0 + c3

p0 =
−bpd

apd − 1
α0

(5)

where x0 = [p0 n0 T0 Tmem0]′ is the equilib-
rium point, α0 and θs0 the control values that
guarantee x(k) 4= xk = x0, ∀k ≥ 0.

Let us now introduce the torque disturbance, Tl,
and the non-synchronization errors, ∆p and ∆n,
as described in Subsection 3.1. Only the engine
speed dynamics is affected by those disturbances,
hence it is enough to analyze the evolution of
n(t). Consider a neighborhood O of the equilib-
rium point n0 and suppose that, after a reset, n
belongs to O. Since the engine speed dynamics
is asymptotically stable (|and| < 1), before the
next switching n belongs to a contraction of O
and after the reset n belongs to O, if Tl and the
sampling time tsampling are sufficiently small. We
can determine precise bounds on Tl and tsampling

as follows. Engine speed after N samples and
immediately after the reset, is:



nN = aN
ndn0 +

N−1∑

i=0

ai
ndbnd(T0 + c1∆p) − (6)

−
N−1∑

i=0

ai
ndbndTl(k − i − 1) + (1 + aN

nd)∆n

Iterating equation (6), engine speed after the kth

reset is:

nkN = akN
nd n0 +

kN−1∑

i=0

ai
ndbnd(T0 + c1∆p) − (7)

−
kN−1∑

i=0

ai
ndbndTl(k − i − 1) +

k−1∑

i=0

(aN
nd)

i∆n;

Since 0 < and < 1, bnd > 0, the torque distur-
bance Tl and the non-synchronization errors ∆p
and ∆n are bounded, it is possible to find the
asymptotic value of the engine speed subject to
disturbances:

n∞ = lim
k→∞

nkN =
1

1 − and
bnd(T0 + c1∆p)

− 1
1 − and

bndTl +
1

1 − aN
nd

∆n

that, considering equation (5), becomes

n∞ = n0 +
1

1 − and
bndc1∆p− 1

1 − and
bndTl

+
1

1 − aN
nd

∆n. (8)

By considering the extremal values Tl, ∆p and ∆n
in (8), we can find the extremal values for n∞.

4.1 Algorithm

The algorithm for safe-set computation shown in
Figure 5 is based on the algorithm developed in
[Berardi et al., 2000]. The following operators are
used in the computation:

• R−1(X, Y ) = {x ∈ Y |∃u ∈ U : ∀v ∈
V, R(x, u, v) ∈ X}, with R(·, ·, ·) the reset
function that transforms the state x accord-
ing to a feasible control action u ∈ U and
an admissible disturbance action v ∈ V ; in
the considered model we have u = θs and
v = dr = [∆p ∆n]′;

• Reach(X, Y ) = {x ∈ Y |∃u ∈ U : ∀v ∈
V, Ax + Bu + Fv ∈ X}, with A, B, F dy-
namical matrices of the discrete time system,
u ∈ U a feasible control and v ∈ V an admis-
sible disturbance; in the considered model we
have u = α and d = Tl.

Algorithm outputs a sequence of sets {Ωi}i=0...N ,
with the following properties:

INIT : Ω0 = Λ;

MEM : Ω0old = Ω0;

ΩN2 = R−1(Ω0) ∩ Λ;

if ΩN2 = � goto STOP NOK;

j = 1;

while j ≤ (N2 − N1)

ΩN2−j = Reach(ΩN2−j+1, ΩN2);

if ΩN2−j = � goto STOP NOK;

j = j + 1;

while j ≤ N2

ΩN2−j = Reach(ΩN2−j+1, Λ);

if ΩN2−j = � goto STOP NOK;

j = j + 1;

if Ω0 = Ω0old goto STOP OK;

else goto MEM ;

STOP NOK : Safe Set doesn′t exist!

STOP OK : Safe Set exists

Fig. 5. Safe set computation algorithm

• Ω0 is the safe set after the reset, i.e. spark ad-
vance controller selects θs in order to control
the state in Ω0;

• Ωi, for i ∈ [1, N ] is the safe set at the
ith sample after a TDC, i.e. throttle angle
controller selects α(i − 1) in order to control
the state x(i) in Ωi.

The evolution of the controlled system can be
summarized by the following sequence:

Ω0
α0−→ Ω1

α1−→ . . .
αN−1−→ ΩN

θs−→ Ω0
α0−→ . . .

where the label upon the arrow represents the
particular control used to move in the target set.

The set Λ is a polytope, because of the initial con-
straint given for the state variables. In particular,
constraints on n are part of the specifications of
the problem, while the constraints on the other
variables are essentially of physical nature: for ex-
ample, the torque is limited by engine power. The
dynamics and the reset function are respectively
linear and affine, so that each set Ωi is a polytope
too. This property simplifies the controller design;
in fact, given the affine dynamics,

x(t + 1) = Ax(t) + Bu(t) + Fv(t) + G

the controller u that guides the state in the set
Ωi = {x ∈ Λ : Wix ≤ Mi} belongs to the set
Usafe = {u ∈ U : (WiB)u ≤ Mi − (WiA)x −
WiC−max(WiFv)}, where U is the set of feasible
controller values.



5. DIGITAL CONTROL OF THE
CONTINUOUS TIME SYSTEM

By extending the results of De Santis et al. [2004]
to the current framework, the sequence of sets
{Ωi} computed by the algorithm of Figure 5 can
be proven to be safe for the continuous time
switching system with respect to the constraint

n ∈ [n0 − µ∆n, n0 + µ∆n]

where µ is a computable factor. µ is actually a
decreasing function of the sampling period and
approaches 1 as the sampling period goes to 0.
The control law that makes the sequence safe is
a piecewise constant function, computed on the
basis of the control law that makes the sequence
safe for the discretized system.

The simulation results are shown in the following
figures and demonstrate how the controller found
for the sampled-time system can be successfully
applied to the original continuous time system.
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Fig. 6. Controlled System Simulation - Continuous
Time Model

6. CONCLUDING REMARKS

Idle control in automotive design is a challenging
problem that has been the subject of extensive in-
vestigation. In this paper, we used hybrid systems
to model and to solve the problem with accuracy
adequate for real applications. The idle control
problem consists of maintaining the speed of the
engine within a given range in presence of torque
disturbances that model the energy demand on
the engine posed by subsystems, such as air condi-
tioning, that are activated at unpredictable times.
We took advantage of the characteristics of the
problem to simplify a general hybrid model of the
engine that is used to derive the control law. Our
procedure does not assume that sampling times
and switching times are synchronized, a common
assumption made by other authors who tackled
the idle control problem. This is an important

technical aspect for problems where discrete dy-
namics are due to both time and event driven
phenomena.
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