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Abstract: In this paper, the problem of mixed H2/H∞ control is considered for a
class of uncertain discrete-time nonlinear stochastic systems. The nonlinearities are
described by statistical means of the stochastic variables, and the uncertainties are
represented by deterministic norm-bounded parameter perturbations. The mixed
H2/H∞ control problem is formulated in terms of the notion of exponentially
mean-square quadratic stability, and the characterizations of both the H2 control
performance and the H∞ robustness performance. A new technique is developed
to deal with the matrix trace terms arising from the stochastic nonlinearities, and
the well-known S-procedure is adopted to handle the deterministic uncertainties.
A unified framework is established to solve the addressed mixed H2/H∞ control
problem by using a linear matrix inequality (LMI) approach.Copyright c© 2005
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1. INTRODUCTION

In engineering practice, it is always welcome to
design a controller that achieves multiple objec-
tives. A typical example is the mixed H2/H∞
control scheme, which attempts to capture the
benefits of both the H2 control performance and
the H∞ robustness performance, simultaneously.
In general, a pure H2 controller is designed for a
good measure of transient performance (Chen and
Zhou, 2001), while a pure H∞ control framework
is developed for robustness with respect to distur-
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bances and system uncertainties. Therefore, the
mixed H2/H∞ multiobjective design framework
has a better and clearer physical interpretation,
and has received much attention from the control
research community in the past few decades.

Since stochastic modeling has been playing a
more and more important role in engineering de-
signs, the stochastic H∞ control problem has at-
tracted growing research attention recently. Many
research results have been available which, unfor-
tunately, are mainly for linear stochastic systems.
In (Hinrichsen and Pritchard, 1998), a stochas-
tic bounded real lemma has been developed to
solve the H∞ control problem for stochastic linear
systems with state- and control-dependent noises.
The results have then been extended to the H∞
control problem for discrete-time stochastic lin-
ear systems with state- and control-dependent
noises(Bouhtouri et al., 1999). A robust stochas-



tic H∞ control problem has been addressed in
(Ugrinovskii, 1998) to deal with the systems in
the presence of stochastic uncertainty. Very re-
cently, a stochastic mixed H2/H∞ control prob-
lem has been considered for the system with state-
dependent noises in (Chen and Zhang, 2004),
where sufficient conditions have been provided
in terms of the existence of the solutions of
cross-coupled Riccati equations. However, despite
its importance, there are very few results on
the mixed H2/H∞ control problem for nonlinear
stochastic systems with or without parameter un-
certainties, primarily because of the mathematical
complexities. This situation motivates us to tackle
a general class of uncertain nonlinear stochastic
systems with mixed H2/H∞ control performance
constraints.

The purpose of this paper is to develop an LMI
approach to solving the mixed H2/H∞ control
problem for a class of uncertain discrete time non-
linear stochastic systems. We aim to design a state
feedback controller such that, for all admissible
stochastic nonlinearities and deterministic uncer-
tainties, the closed-loop system is exponentially
mean-square quadratically stable, the H2 control
performance is achieved, and the prescribed dis-
turbance attenuation level is guaranteed in an H∞
sense. The nonlinearities considered in this paper,
which are characterized by statistical means of
the stochastic variables, are shown to be more
general than many well-studied nonlinearities in
the literature concerning nonlinear stochastic sys-
tems. The parameter uncertainties are assumed to
be norm-bounded and enter the system matrices.
A new technique is developed to deal with the
matrix trace terms arising from the stochastic
nonlinearities, and the well-known S-procedure is
adopted to handle the deterministic uncertainties.
The solution to the mixed H2/H∞ control prob-
lem is enforced within a unified LMI framework.

2. PROBLEM FORMULATION

Consider the following class of discrete-time sys-
tems with stochastic nonlinearities and determin-
istic norm-bounded parameter uncertainties:

xk+1 = (A + H1FE)xk + f(xk, uk) + B1wk + B2uk,

z∞k = L∞xk,

z2k = L2xk, (1)

where xk ∈ Rn is the state, uk ∈ Rr is the
control input, z∞k ∈ Rp1 is a combination of the
states to be controlled (with respect to H∞-norm
constraints), z2k ∈ Rp2 is another combination
of the states to be controlled (with respect to
H2-norm constraints), wk ∈ Rm is the process
noise, which is a zero mean Gaussian white noise
sequences with covariance R, and A, B1, B2,

L∞, L2, H1 and E are known real matrices with
appropriate dimensions.

The matrix F ∈ Ri×j represents the deterministic
norm-bounded parameter uncertainties, i.e.

FFT ≤ I. (2)

The deterministic uncertain matrix F is said to
be admissible if it satisfies the condition (2).

The function f(xk, uk): Rn × Rr → Rn is a
stochastic nonlinear function of the states and
control inputs, which is assumed to have the
following first moment for all xk and uk:

E{fk|xk, uk} = 0, (3)

with its covariance given by

E{fkfT
k |xk, uk} =

q∑

i=1

θiθ
T
i (xT

k Γixk + uT
k Πiuk)(4)

where θi (i = 1, ..., q) is a known column vector,
Γi and Πi (i = 1, ..., q) are known positive-definite
matrices with appropriate dimensions.

We now consider the following state feedback
controller for the system (1):

uk = Kxk, (5)

where K is the state feedback gain to be deter-
mined.

The closed-loop system is governed as follows by
substituting (5) into (1):

xk+1 = AKxk + f(xk,Kxk) + B1wk, (6)

where

AK = A + B2K + H1FE. (7)

Before giving our design goal, we introduce the
following notion of exponentially quadratic sta-
bility in the mean-square sense for the closed-loop
system (6).

Definition 1. The system (6) is said to be expo-
nentially mean-square quadratically stable if, with
wk = 0, there exist constants α ≥ 1 and τ ∈ (0, 1)
such that

E{‖xk‖2} ≤ ατkE{‖x0‖2}, ∀x0 ∈ Rn, k ∈ I+,
(8)

for all admissible uncertainties satisfying (2).

The purpose of this paper is to seek a state
feedback controller of the form (5), for the sys-
tem (1), such that for all stochastic nonlinearities
and all admissible deterministic uncertainties, the
closed-loop system is exponentially mean-square
quadratically stable, and additional H2 control
performance constraint and H∞ robustness per-
formance constraint are also satisfied. In other
words, we aim to design a controller such that the
closed-loop system satisfies the following require-
ments (Q1) and (Q2), simultaneously:



(Q1) For a given constant β > 0, the system (6) is
exponentially mean-square quadratically sta-
ble and the following constraint is satisfied:

J2 = lim
k→∞

E{‖z2k‖2} < β. (9)

(Q2) For a given γ > 0, the system (6) is exponen-
tially mean-square quadratically stable and
the following constraint is achieved:

∞∑

k=0

E{‖z∞k‖2} < γ2
∞∑

k=0

E{‖wk‖2}, (10)

for all nonzero wk under zero initial condi-
tion.

3. ROBUST MIXED H2/H∞ ANALYSIS
PROBLEM

In this section, we shall first discuss the H2 control
problem (Q1), then deal with the H∞ control
problem (Q2), and finally give the solution to
the robust mixed H2/H∞ control problem for the
system (6).

3.1 The H2 control problem

To facilitate our discussion on the H2 control
problem (Q1), we need the following technical
result.

Lemma 1. Let V (xk) = xT
k Pxk be a Lyapunov

functional where P > 0. If there exist positive
real scalars λ, µ, ν, and 0 < ψ < 1 such that

µ‖xk‖2 ≤ V (xk) ≤ ν‖xk‖2, (11)

and

E{V (xk+1)|xk} − V (xk) ≤ λ− ψV (xk), (12)

then the sequence xk satisfies

E{‖xk‖2} ≤ ν

µ
‖x0‖2(1− ψ)k +

λ

µψ
. (13)

According to Definition 1, we have the following
theorem that provides sufficient conditions for
the system (6) to be exponentially quadratically
stable in the mean-square sense.

Theorem 1. Given the feedback gain matrix K.
The system (6) is exponentially mean-square
quadratically stable if, for all admissible uncer-
tainties, there exists a positive definite matrix P
satisfying
AT

KPAK − P +
q∑

i=1

(Γi + KT ΠiK)tr(θiθ
T
i P ) < 0.

(14)

The stability analysis problem has been discussed
in Theorem 1. Our next goal is to derive condi-
tions for the H2 performance constraint, (9), to be
satisfied. Before proceeding, we need the following
lemma.

Lemma 2. (Yaz and Yaz, 1999) If the system (6)
is exponentially mean-square quadratically stable,
then

ρ{AK ⊗AK +
q∑

i=1

st(θiθ
T
i )stT (Γi + KT ΠiK)} < 1,

(15)

or equivalently

ρ{AT
K ⊗AT

K +
q∑

i=1

st(Γi + KT ΠiK)stT (θiθ
T
i )} < 1,

(16)

where ⊗ is the Kronecker product of matrices; ρ
is the spectral radius of a matrix, and st stands
for the stack of a matrix that forms a vector out
of the columns of the matrix.

Define the state covariance by

Qk : = E{xkxT
k }

and then the Lyapunov-type equation that gov-
erns the evolution of the state covariance matrix
Qk can be derived from the system (6) and the
relation (5) as follows:

Qk+1 = AKQkAT
K +

q∑

i=1

θiθ
T
i tr[Qk(Γi + KT ΠiK)]

+B1RBT
1 , (17)

which can be rewritten (17) in the form of the
stack matrix by:

st(Qk+1) = Ψ · st(Qk) + st(B1RBT
1 ), (18)

where

Ψ := AK ⊗AK +
q∑

i=1

st(θiθ
T
i )stT (Γi + KT ΠiK).

If the system (6) is exponentially mean-square
quadratically stable, it follows from Lemma 2 that
ρ(Ψ) < 1 and Qk in (18) converges to a constant
matrix Q when k →∞, i.e.

Q = lim
k→∞

Qk. (19)

Therefore, H2 performance can be written by

J2 = lim
k→∞

E{‖z2k‖2}
= tr[L2QLT

2 ]. (20)

In order to make sure that the H2 performance
and H∞ performance can be tackled within the
same framework by using a unified LMI approach,
we will need to derive an alternative expression of
the H2 performance (20). Suppose now that there
exists a matrix P̂k > 0 such that the following
backward recursion is satisfied:

P̂k = AT
K P̂k+1AK +

q∑

i=1

(Γi + KT ΠiK)tr(θiθ
T
i P̂k+1)

+LT
2 L2, (21)

which can be rearranged in terms of the stack
operator as follows:



st(P̂k) = Φ · st(P̂k+1) + st(LT
2 L2), (22)

where

Φ := AT
K ⊗AT

K +
q∑

i=1

st(Γi + KT ΠiK)stT (θiθ
T
i ).

If the system (6) is exponentially mean-square
quadratically stable, then it follows from Lemma
2 that ρ(Φ) < 1 and P̂k in (22 converges to P̂ )
when k →∞, i.e.

P̂ = lim
k→∞

P̂k. (23)

Hence, in the steady state, (21) becomes:

P̂ = AT
K P̂AK +

q∑

i=1

(Γi + KT ΠiK)tr(θiθ
T
i P̂ )

+LT
2 L2. (24)

Summing up (21)-(24), we obtain the following
result that gives an alternative to the H2 perfor-
mance, and facilitates our later consideration on
the H∞ performance constraint.

Theorem 2. If the system (6) is exponen-
tially mean-square quadratically stable, H2 per-
formance can be expressed in terms of P̂ as fol-
lows:

J2 = tr[RBT
1 P̂B1]. (25)

where P̂ > 0 is the solution to (24).

Remark 1. We use (25) to compute the H2 per-
formance instead of (20). The reason is that the
H2 control performance and H∞ robustness per-
formance need to be characterized as a simi-
lar structure so that the solution to the mixed
H2/H∞ control problem can be obtained by using
a unified LMI approach. We will see in the next
subsection that the structure of (25) is similar to
that for the H∞ robustness performance.

Notice that the system model in (1)-(1) involves
parameter uncertainties, and hence the exact H2

performance (25) cannot be obtained by simply
solving the equation (24). One way to deal with
this problem is to provide an upper bound for
the H2 performance. Suppose that there exists a
positive definite matrix P such that the following
matrix inequality is satisfied:

4+ LT
2 L2 < 0. (26)

where

4 := AT
KPAK − P +

q∑

i=1

(Γi + KT ΠiK)tr(θiθ
T
i P )

Before proving that the solution P > 0 to (26) is
an upper bound for P̂ in Theorem 3, we need the
following lemma.

Lemma 3. Consider the system

ξk+1 = Mξk + f(ξk), (27)

where E{fk|ξk} = 0, and E{fkfT
k |ξk}=

∑q
i=1 θiθ

T
i

(ξT
k Ξiξk), θi (i = 1, ..., q) are known column

vectors, Ξi (i = 1, ..., q) are known positive-
definite matrices with appropriate dimensions.
If the system (27) is exponentially mean-square
stable, and there exists a symmetric matrix Y
satisfying

MT Y M − Y +
q∑

i=1

Ξitr(θiθ
T
i Y ) < 0, (28)

then Y ≥ 0.

Now we are ready to give the upper bound for P̂ .
Comparing (24) to (26), we obtain the following
main result in this subsection.

Theorem 3. If there exists a positive definite
matrix P satisfying (26), then the system (6) is
exponentially mean-square quadratically stable,

P̂ ≤ P, (29)

and

tr[RBT
1 P̂B1] ≤ tr[RBT

1 PB1], (30)

where P̂ > 0 satisfies (24).

The corollary given below follows immediately
from Theorem 3 and (9).

Corollary 1. If there exists a positive definite ma-
trix P satisfying (26) and tr[RBT

1 PB1] < β where
β > 0 is a given scalar, then the system (6) is
exponentially mean-square quadratically stable,
and (9) is satisfied for β > 0.

3.2 H∞ control problem

Contrary to the standard H∞ performance formu-
lation, we shall use the expression (10) to describe
the H∞ performance of the stochastic system,
where the expectation operator is utilized on both
the controlled output and the disturbance input,
see (Bouhtouri et al., 1999) for more details.

What we are going to do now is to derive sufficient
conditions ensuring the H∞-norm performance for
the uncertain nonlinear stochastic system consid-
ered in this paper.

Theorem 4. Given a scalar γ > 0 and a feedback
gain matrix K. The system (6) is exponentially
mean-square quadratically stable and the H∞-
norm constraint (10) is achieved for all nonzero
wk, if there exists a positive definite matrix P
satisfying

[4+ LT
∞L∞ AT

KPB1

BT
1 PAK BT

1 PB1 − γ2I

]
< 0, (31)

for all admissible uncertainties.



Up to now, the H2 control problem and the H∞
control problem have been considered separately.
Before proceeding to the next section, we will need
to discuss the mixed H2/H∞ analysis problem.

3.3 Robust mixed H2/H∞ analysis problem

According to the results obtained so far and from
the conditions (14), (26) and (31), we summarize
that (26) and (31) imply (14). Hence, in the mixed
H2/H∞ design problem, (14) becomes redundant.
In order to realize our design goals (Q1) and
(Q2) simultaneously, it can be easily seen that the
robust mixed H2/H∞ control problem addressed
in Section 2 can be restated as follows.

Problem A: Design a controller (5) such that
there exists a positive definite matrix P satisfying
the following inequalities:

tr[RBT
1 PB1] < β, (32)

4+ LT
2 L2 < 0, (33)[4+ LT

∞L∞ AT
KPB1

BT
1 PAK BT

1 PB1 − γ2I

]
< 0. (34)

The purpose of Problem A is to find a controller
(5) so as to ensure that (32)-(34) are satisfied
for all admissible uncertainties, and subsequently
the stability, the H2 and H∞ constraints are
all achieved. Note that at this stage, such a
problem is still complicated since the matrix trace
terms and the uncertainty F are involved in (32)-
(34). Our goal in the next section is therefore to
develop an LMI approach to designing the desired
controller based on (32)-(34).

4. ROBUST MIXED H2/H∞ CONTROLLER
DESIGN

Before giving our main result, we recall the fol-
lowing useful lemmas.
Lemma 4. (S -procedure)(Boyd et al., 1994) Let
M = MT , H and E be real matrices of appropri-
ate dimensions, with F satisfying (2), then

M + HFE + ET FT HT < 0, (35)

if and only if, there exists a positive scalar ε > 0
such that

M + εHHT +
1
ε
ET E < 0, (36)

or equivalently


M εH ET

εHT −εI 0
E 0 −εI


 < 0. (37)

In order to recast Problem A into a convex op-
timization problem, we first tackle the matrix

trace terms in (32)-(34) by introducing new vari-
ables, which is actually one of the technical con-
tributions in this paper. The following theorem
presents sufficient conditions for solving Problem
A.
Theorem 5. Given constants γ > 0, β > 0,
and the feedback gain matrix K. If there exist
positive definite matrix P > 0 and Θ > 0, and
positive scalars αi > 0 (i = 1, · · · , q) such that
the following matrix inequalities

tr(Θ) < β, (38)[
−Θ R

1
2 BT

1

B1R
1
2 −P−1

]
< 0, (39)

[
−αi αiθ

T
i

αiθi −P−1

]
< 0 (i = 1, · · · , q), (40)




−P AT
K Γ

1
2
1 · · · Γ

1
2
q KT · · · KT LT

2

AK −P−1 0 · · · 0 0 · · · 0 0

Γ
1
2
1 0 −α1I · · · 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Γ

1
2
q 0 0 · · · −αqI 0 · · · 0 0

K 0 0 · · · 0 −α1Π−1
1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
K 0 0 · · · 0 0 · · · −αqΠ−1

q 0

L2 0 0 · · · 0 0 · · · 0 −I




< 0, (41)



−P 0 AT
K Γ

1
2
1 · · ·

0 −γ2I BT
1 0 · · ·

AK B1 −P−1 0 · · ·
Γ

1
2
1 0 0 −α1I · · ·
· · · · · · · · · · · · · · ·
Γ

1
2
q 0 0 0 · · ·

K 0 0 0 · · ·
· · · · · · · · · · · · · · ·
K 0 0 0 · · ·

L∞ 0 0 0 · · ·
Γ

1
2
q KT · · · KT LT

∞
0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
−αqI 0 · · · 0 0

0 −α1Π−1
1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · −αqΠ−1

q 0

0 0 · · · 0 −I




< 0, (42)

hold, then (32)-(34) are satisfied.

In the following, we will continue to “eliminate”
the uncertainty F contained in (41) and (42) by
using the well-known S-procedure technique, and
then the desired robust mixed H2/H∞ controller
could be obtained via an LMI approach by solving
Problem A.
Theorem 6. Given constants γ > 0 and β > 0.
If there exist positive-definite matrix X > 0 and
Θ > 0, a real matrix G, positive scalars αi > 0
(i = 1, · · · , q) and εi > 0 (i = 1, 2) such that the
following linear matrix inequalities



[
1 0 · · · 0

]
Θ

[
1 0 · · · 0

]T
+ · · ·

+
[

0 · · · 0 1
]
Θ

[
0 · · · 0 1

]T
< β, (43)[

−Θ R
1
2 BT

1

B1R
1
2 −X

]
< 0, (44)

[
−αi αiθ

T
i

αiθi −X

]
< 0 (i = 1, · · · , q), (45)




−X ∗ ∗ ∗ ∗ ∗
AX + B2G −X ∗ ∗ ∗ ∗

Γ
1
2
1 X 0 −α1I ∗ ∗ ∗
· · · · · · · · · · · · ∗ ∗

Γ
1
2
q X 0 0 · · · −αqI ∗
G 0 0 · · · 0 −α1Π−1

1
· · · · · · · · · · · · · · · · · ·
G 0 0 · · · 0 0

L2X 0 0 · · · 0 0

0 ε1HT
1 0 · · · 0 0

EX 0 0 · · · 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗ ∗
· · · −αqΠ−1

q ∗ ∗ ∗
· · · 0 −I ∗ ∗
· · · 0 0 −ε1I ∗
· · · 0 0 0 −ε1I




< 0, (46)




−X ∗ ∗ ∗ ∗ ∗ ∗
0 −γ2I ∗ ∗ ∗ ∗ ∗

AX + B2G B1 −X ∗ ∗ ∗ ∗
Γ

1
2
1 X 0 0 −α1I ∗ ∗ ∗
· · · · · · · · · · · · · · · ∗ ∗

Γ
1
2
q X 0 0 0 · · · −αqI ∗
G 0 0 0 · · · 0 −α1Π−1

1
· · · · · · · · · · · · · · · · · · · · ·
G 0 0 0 · · · 0 0

L∞X 0 0 0 · · · 0 0

0 0 ε2HT
1 0 · · · 0 0

EX 0 0 0 · · · 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗ ∗
· · · −αqΠ−1

q ∗ ∗ ∗
· · · 0 −I ∗ ∗
· · · 0 0 −ε2I ∗
· · · 0 0 0 −ε2I




< 0, (47)

are feasible, then there exists a state feedback
controller of the form (5) such that the require-
ments (Q1) and (Q2) are satisfied for all stochas-
tic nonlinearities and all admissible deterministic
uncertainties. Moreover, the desired controller (5)
can be determined by

K = GX−1. (48)

5. CONCLUSIONS

A robust mixed H2/H∞ controller has been de-
signed in this paper for a class of uncertain dis-

crete time nonlinear stochastic systems. A key
technique has been used to deal with the matrix
trace terms arising from the stochastic nonlinear-
ities, and the well-known S-procedure has been
adopted to handle the deterministic uncertainties.
A unified framework has been established to solve
the addressed mixed H2/H∞ control problem,
and sufficient conditions for the solvability of the
mixed H2/H∞ control problem have been given in
terms of a set of feasible LMIs. Our method can
also be extended to output feedback case, and the
results will appear in the near future.
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