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Abstract: We are considering the problem of controlling AC/DC switched power converters of  
the Boost type. The control objectives are twofold: (i) regulating the output voltage to a desired 
reference value, (ii) assuring a unitary power factor by enforcing the voltage and the current 
delivred by the electric network to be in phase. The considered problem is dealt with by designing 
a nonlinear controller involving a cascade-structure. The inner loop regulates the active power; it 
is built-up using the backstepping design approach. The outer loop regulates the converter squared 
output voltage using a filtered PI regulator. The controller thus obtained is shown, using tools  
from the averaging theory, to achieve its objectives.  Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
Static power converters have a very wide domain of 
applications. However, these converters still have an 
important drawback as they contribute to the 
pollution of the electric network. Indeed, these 
converters constitute nonlinear loads for the 
distribution network and, consequently, generate 
harmonic currents that may cause some annoying 
effects such as extra power losses in the network. 
Therefore, converter controllers should not only have 
as objective output voltage regulation, but also 
rejection of the mentioned current harmonics. Most 
of previous works have focussed only on voltage 
regulation (Sira, et al., 1997).  
 
In the present paper, we are considering the problem 
of controlling a whole AC/DC converter (Mechi and 
Funabiki, 1993;). We will particularly focus on 
AC/DC converters with boost chopper (Fig.1). Our 
objective is to regulate the output voltage while 
ensuring a unitary power factor (PF). The last 
objective amounts to rejecting the whole current 
harmonics at the converter input. On the other hand, 
AC/DC converters are featured by their variable-
structure and their nonlinear dynamics. To deal with 

the considered control problem a nonlinear controller 
including two loops is built-up.  
 
The inner loop is first developed, using the 
backstepping technique, in such a way that the 
converter input current be sinusoidal and in phase 
with the network supply voltage. The converter 
variable-structure feature is coped with basing the 
above regulator design upon an average model of the 
system. It is worth noting, that model averaging is 
widely used in the literature (Krein, 1990).  
 
The natural purpose of the outer loop would be the 
regulation of the converter output voltage vo. 
However, we will choose to perform regulation of 2

ov  

rather than vo. Actually, 2
ov  undergoes a (first-order) 

linear differential equation while vo undergoes a 
nonlinear equation. Using this variable 
transformation (vo → 2

ov ), reference tracking on 2
ov  

can be achieved using a filtered PI regulator.   
 
A theoretical analysis, involving tools from the 
Lyapunov stability and the averaging theory, shows 
that the nonlinear cascade controller thus constructed 
actually achieves, in the mean, its objectives. The 



     

controller performances and robustness (with respect 
to load changes) are further illustrated by many 
simulated examples. 
 
 

2. MODELLING OF THE CONVERTER 
 

The converter under study is represented by Fig.1 It 
includes three main parts, namely a LC-filter, a diode 
bridge rectifier and a boost chopper. The latter 
operates according to the Pulse Width Modulation 
(PWM) principle, (Mahdavi, et al., 1997). This 
means that time is shared in intervals of length T. 
Within any period, the IGBT-switch is ON during 
αT, for some 0≤α≤1. Then, energy is stored in the 
inductance Lo and the diode Do is blocked. During 
the rest of the period, i.e. (1-α)T, the switch IGBT is 
OFF and, consequently, the inductance discharges in 
the load resistance Ro. The value of α varies from a 
period to an other and its variation law determines 
the trajectory of output voltage vo. The variable α, 
called duty cycle, then turns out to be the control 
input for the converter.  
 
Mathematical modeling of the converter is completed 
applying Kirchhoff’s laws. So doing, one gets: 
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The current irect flowing in the input rectifier is 
obtained from (5): 

 ( )rectorect vsignii =                      (5) 
The voltage IGBTv  takes undergoes different 
equations depending on the state of the IGBT-switch. 
These equations can be given a unique mathematical 
expression by introducing a binary variable µ : 

 




=µ
OFF  is IGBT  if        0
ON  is IGBT  if        1

                 (6) 

Then, one has for IGBTv the following expressions:  
 

 ( ) oIGBT v1v µ−=                       (7) 
 
 

 
 
 
 
 
 
 
 
Fig.1. AC/DC Boost converter 

Similarly, the current Doi  in the diode Do undergoes 
different laws, depending on the states of the IGBT-
switch. It is given by: 

 ( ) LoDo i.1i µ−=                             (8) 
Substituting (5), (7) and (8) in (1)-(4), yields the final 
form of the (instantaneous) converter model:  
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This model is useful to build-up an accurate 
simulator for the converter. However, it cannot be 
based upon to design a continuous control law as it 
involves a binary control input, namely µ. To 
overcome this difficulty, it is usually resorted to the 
averaging process over cutting intervals, (Krein, 
1990). This process is shown to give rise to average 
versions (of the above model) involving as a control 
input the mean value of µ which is nothing other than 
the duty cycle α. The average model turns out to be 
the following: 
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3. CONTROLLER DESIGN 
 
The controller synthesis will be performed in two 
major steps. First, a current inner loop is designed to 
cope with the PFC issue. In the second step, an outer 
voltage loop is built-up to achieve voltage regulation. 
 
 
3.1 Current inner loop design 
The PFC objective means that the converter input 
current should be sinusoidal and in phase with the 
network supply voltage. We therefore seek a 
regulator that enforces the current in to track a 

reference signal of the form  n

def

nref v i β= . At this 
point the parameter β is any real number. The 
regulator will now be designed using the 
backstepping technique (Krstic, 1995), based on the 
(partial) model (10a-c). 
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3.1.1 Step 1: Stabilization of the sub-system (10a)  
 
Let us introduce the following tracking error: 
 

 nrefn1 iiz −=                              (11) 

where n

def

nref v i β=  denote the corresponding 
reference signal. Using (10a), time-derivation of (11) 
yields the following error dynamics: 
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In (12), ( )Lvrect−  stands as a (virtual) control 
variable. Then, z1 can be regulated to zero if  

( ) σ=− Lvrect  where σ is a stabilising function 
defined by: 
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Indeed, this choice would imply that: 111 zcz −=&  
(where c1>0 is a design parameter) which clearly 
establishes asymptotyc stability of  (12) with respect 
to the Lyapunuv function : 
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As ( )Lvrect−   is not the actual control input, a new 
error variable z2 between the virtual control and its 
desired value σ (stabilising function) is introduced: 

 σ−−= Lvz rect2                            (16) 
Then, equation (12) becomes, using (13) and (16): 

 2111 zzcz +−=&                              (17) 
Also, the Lyapunov function derivative becomes :  
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3.1.2 Step 2: Stabilization of the sub-system (10a-b) 
 
Achieving the PFC objective amounts to enforcing 
the error variables (z1, z2) to vanish. To this end, one 
needs the dynamics of z2. Deriving (16), it follows 
from (10b) that: 
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In the above equation, the quantity 
LC

)v(signi rectLo  

stands as a “virtual control input”. We now need to 
select a Lyapunov function W2 for the (z1, z2)-system. 
As the objective is to drive its states (z1, z2) to zero, it 
is natural to choose the following function: 
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Using (18) and (19), this implies: 
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This shows that, for the (z1, z2)-system to be globally 
asymptotically stable, it is sufficient to choose the 
virtual control input so that 2
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c2>0). Then, it follows from (21) that: 
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Replacing in (22) 2z&  by its expression (19) and 
solving the resulting equation with respect to 

LC
)v(signi rectLo , yields the following stabilising 

function: 
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As 
LC

)v(signi rectLo   is not the actual control input, a 

new error variable z3 between the virtual control and 
its desired value δ   is introduced:  
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Then, equation (19) becomes, using (23) and (24): 
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Also, the Lyapunov function derivative becomes:  
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3.1.3 Step 3: Stabilization of the sub-system (10a-c) 
 
Time-derivation of z3 gives, using (24) and (10c): 
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The actual control variable, namely α, appears for the 
first time in equation (27). An appropriate control 
law for generating α, has now to be found for the 
system (17), (25), (27) whose state vector is (z1, z2, 
z3). Let us consider the Lyapunov  function W3: 
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Its time-derivative along trajectory of (26) and (27) is: 
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This shows that, for the (z1, z2, z3)-system to be 
globally asymptotically stable, it is sufficient to 
choose the control α so that 2

33
2
22

2
113 zczczcW −−−=&  

which in view of (29) amounts to ensuring that: 
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Solving the resulting equation with respect to α ,  
yields the following backstepping control law: 
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Proposition 3.1. Consider the system, next called 
inner closed-loop, consisting of the subsystem (10a-
d) and the control law (31). If the ratio β and its three 
first derivatives are available, then the inner closed-
loop system undergoes, in the (z1, z2, z3)-coordinates, 
the following equation: 
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Consequently, the error vector (z1, z2, z3) is globally 
asymptotically vanishing. 
 
 

3.2 Outer voltage loop design  
 
The aim of the outer loop is to generate a tuning law 
for the ratio β in such a way that the output voltage vo 
be regulated to a given reference value voref.  
 
Relation between β and vo. The first step in designing 
such a loop is to establish the relation between the 
ratio β (control input) and the output voltage vo. This 
is the object of the following proposition. 
 
Proposition 3.2. Consider the power converter 
described by (10a-d) and the inner control loop 
defined by (31). Under the same assumptions as in 
Proposition 3.1, one has the following properties: 
1°) The output voltage vo varies in response to the 

tuning ratio β according to the following equation: 
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where nv̂  denotes the magnitude of the network 
(sinusoidal) voltage vn. 

2°) The squared voltage 2
ov  varies, in response to the 

tuning ratio β, according to the linear equation: 
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Proof. 1) The first step consists in replacing the 
circuit part above the set Co-Ro, by an equivalent 
current generator, as shown by Fig. 2. In view of 
equation (10d), the underlying current value iequ 
coincides with Loi)1( α− . So, (10d) becomes: 
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 Fig.2. Equivalent current generator  
 
The equivalent current iequ will now be expressed in 
function of the tuning ratio β, using power 
conservation arguments. Using the fact that in=βvn 
(because of Proposition 3.1), the instantaneous power 
entering the converter turns out to the following: 
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On the other hand, the power that is actually 
transmitted to the load is equoload ivP = . But, the 
entering instantaneous power is integrally transmitted 
to the load (which is the only dissipative element). 
Then, the quantity Pload  does coincide with Pn, this 

yields: ( )t2cos(1
v2

v̂
i n

o

2
n

equ ω−β= , which together with 

(35) establishes (33). 
2) Let us introduce the variable change 2

ovy =  in 
(33). Deriving y with respect to time and using (33), 
yields the first-order linear model (34) and completes 
the proof of  Proposition 3.2. 
 
Squared output voltage control. The ratio β stands as 
a control input in the system (34). The problem at 
hand is to design for β a tuning law so that the 
squared voltage 2

ovy =  tracks a given reference 

signal 2
oref

def
* vy = . Ignoring time-varying feature, of 

the controlled (first order) system, a PI control law 
should be sufficient. Bearing in mind the fact that the 
third first derivatives of β should be available 
(Propositions 3.1 and 3.2), we rather use a filtered PI, 
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where s may denote as well the derivative operator 
(s=d/dt).       At this point, the regulator parameters 
(b, kp, ki) are any positive real constants. 
 
 
3.3 Control system analysis  
 
In the following Theorem, it is shown that the control 
objectives are achieved, in the mean, for a specific 
class of reference signals, with an accuracy that 
depends on the network frequency ωn. To formulate 
the results the following notations are needed:  
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Theorem 3.1 (main result). Consider the AC/DC 
Boost power converter shown by Fig.1. together with 
the controller consisting of the inner-loop regulator 
(31) and the outer-loop regulator (37-38). Then, the 
resulting closed-loop system has the following 
properties: 
1) The error in−inref vanishes asymptotically, 
2) Let the reference signal y* be nonnegative and 

periodic with period Nπ/ωn, where N any positive 
integer. Furthermore, let the regulator parameters 

iequ 

iC0 iR0

v0 R0
C0 



     

(b, kp, ki) be any positive real constants that satisfy 
the following inequalities: 

 
 ( ) ( ) 0 a aaa a aaa 00142234 >−−−         (39) 

( ) ( )[ ]( ) ( ) 0  aaaa  aaaa aaa a aaa 0
2

23401400142234 >−−−−−−

      (40) 
Then, there exists a positive *ε  such that for *ε≤ε , 
the tracking error is a harmonic signal which depends  
continuously on ε , i.e. ) ,t(ee 11 ε= . Moreover: 

0) ,t(e  lim 10
=ε

→ε
 

Remarks 3.2. 
a) The first part of the Theorem says that the power 

factor objective is actually achieved. 
b) The second part shows that the tracking 

objective is achieved, in the mean, with an 
accuracy that depends on the voltage network 
frequency (ωn). The larger ωn the better tracking 
objective. 

c) The period of the reference signal is any 
multiple of that of the power network (which is 
equal to π/ωn). That is, the reference signal is 
slower than the network voltage. This 
particularly includes constant references. 

 
Proof of Theorem 3.1 (Outline). 
Part 1 of the Theorem is a direct consequence of 
Proposition 3.1, using (37) which shows that β and 
its derivatives (up to the third order) are available. 
This also guarantees that equation (34), in 
Proposition 3.2, holds too. In order to prove the 
second part of the Theorem l, let us introduce the 
following state variables: 
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Then, it follows from (34) and (37-38) that the state 
vector X=[x1, x2, x3, x4, x5,]T undergoes the following 
state equation: 
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Stability of the above system will now be dealt with 
resorting to averaging analysis tools. First, as y* is 
periodic with period N/2ωn, it will prove to be useful 
introducing the following auxiliary reference 
function: 
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It also follows from (41-42) that X undergoes the 
differential equation: 
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Now, let us introduce the average function 
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where ry  denotes the mean value of yr, which the 
same as that of y*. Note that the mean value, over [0, 
2πN], of the derivative in the first line of (46), is zero 
because yr is periodic with period 2π. The averaging 
theory suggests to get stability results regarding the 
system of interest (41-42), from analyzing the 
following averaged system: 
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To this end, notice that (48) has a unique equilibrium 
at: 
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On the other hand, as (48) is linear, the stability 
properties of its equilibrium are full determined by 
the following state-matrix: 
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The equilibrium Z* will be globally asymptotically 
stable if all eigenvalues of A have negative real parts. 
The mentioned eigenvalues are the zeros of the 
following characteristic polynomial: 
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It can be checked, applying for instance the well 
known Routh’s algebraic criteria, that all zeros of 
polynomial (51) will have negative real parts if its 
coefficients (a0 to a4)  satisfy (39-40). 
Now applying averaging theory (see e.g. Theorem 
4.1 in (Zhi-fen, et al 1992)), one concludes that there 
exists a 0* >ε  such that for *ε<ε , the differential 
equation (41-42) has a harmonic solution, 

) ,t(XX ε= , that depends continuously on ε . 

Moreover, one has: *

0
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This, together with (48), yields in particular that  
0) (t,e im 10

=ε
→ε

. The Theorem is thus established. 

 
 

4. SIMULATIONS 
 
Performances and design aspects of the controller 
will now be illustrated by simulations performed in 
the Matlab/Simulink environment. The controlled 
AC/DC converter has the following characteristics: 

V60v̂n = , mH2L = , F10C µ= , mH20Lo = , 

F4000Co µ=  Ω= 20R o  and  it operates at the cutting 
frequency khz10fc = . The reference squared output 

voltage 2
orefv  is a step signal of amplitude 2500 

(Volts)2. The values c1= 10000, c2=10000 and  15000 
proved to be appropriate for the inner loop design 
parameters. Bearing in mind Remark 2a, the outer 
loop parameters have been chosen as follows: 

005.0k p =  , 0011.0k i =  and 1000b = . 
 

Figures 3 to 6 illustrate the controller performances. 
As expected (Remark 2b),  2

ov  converge in the mean 
to its reference value (see Fig. 3.). Furthermore, it is 
checked that the observed voltage ripple oscillate at 
the frequency 2ωn (Remark 2b) and is much smaller 
than the average value of the signals.  
Comparing Fig. 3 and Fig. 5, one particularly sees 
that the magnitude variation of the input current in is 
correlated to the (mean) value of the squared output 
voltage 2

ov . This confirms the power conservation 
through the circuit. Fig. 4 shows that the outer-loop 
control β is practically unaffected by the ripple 
phenomena. Finally,  Fig. 6 shows that the input 
current in and the output voltage vo are in phase, 
ensuring a unitary power factor.  
 

 
 
Fig. 3.  squared voltage     Fig. 4. singal β 

 
    
  Fig. 5. current in                     Fig. 6.  vn and in                                  
 
  To analyze the robustness capability of the proposed 
controller a load change is operated according to 
Fig.7. Except for this change, the rest of the converter 
characteristics are the same as previously. The 
resulting closed-loop system behavior is illustrated 
by figures 8 to 10. The first figure shows that the 
effect of the resistance changes on the output voltage 
is well compensated. Fig. 9   shows that the PFC 
property is preserved. Finally, Fig. 10 shows that 
loop mode separation is still satisfied. 
 

 
  
  Fig.  7. Load resistance Ro     Fig.  8.  voltage vo 
 

 
 
Fig. 9.  current in and voltage vn      Fig.  10.  signal β  
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