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Abstract: Due to the difficulties arising in state estimation in Model Predictive Control 
(MPC) algorithms, Kalman filtering and dynamic matrix control (DMC) estimation 
approaches were combined in the current work. Then a weighting average of both 
estimated states was passed to the algorithm. To determine the weighting coefficient of 
the mentioned average, a fuzzy supervisor was designed to control the combined 
estimation. An industrial process 'heavy oil fractionator' was used for simulation.  The 
results demonstrated the improved performance of the approach particularly in better 
disturbance rejection capability. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Model Predictive Control (MPC) has emerged as a 
powerful practical control technique during last 
years. Its strength lies in that it uses step (or impulse) 
response data which are physically intuitive, and that 
it can handle hard constraints explicitly through on-
line optimization. Various MPC techniques such as 
Dynamic Matrix Control (DMC) (Cutler and 
Remaker, 1980), Model Algorithmic Control (MAC) 
(Rouhani and Mehra, 1982), and Internal Model 
Control (IMC) (Garcia et al., 1989) have 
demonstrated their effectiveness in  industrial 
applications during the past 20 years (Cutler and 
Remaker, 1980; Richalet et al., 1987; Qin and 
Badgwell, 2003). One drawback of these 'traditional' 
MPC techniques has been that, their generalization to 
more complex cases has been difficult, because they 
are developed in an unconventional manner using 
step response models. For example, most of the 
traditional techniques incorporate feedback into the 
algorithm in an ad hoc way, such as by adding a 
constant bias term in the prediction of the future 
outputs. In addition, because of the use of step 
response models, the traditional techniques are not 
applicable to integrating systems, which are common 
in chemical process industries. Lately, there have 
been efforts to interpret MPC in a state-space 
framework. This not only permits the use of well-

known state-space theorems, but also allows   
straightforward   generalization to more complex 
cases such as systems with general stochastic 
disturbances and measurement noise. 
 
Li et al (1989) and Navratil et al (1988) showed that 
the step response model can be put into the general 
state-space model structure and presented an MPC 
technique using the tools available from stochastic 
optimal control theory. They showed how open-loop 
and closed-loop observers can be incorporated into 
the predictive control framework to improve 
regulatory control of MPC. Ricker (1990) showed 
how an MPC algorithm similar to the conventional 
MPC techniques can be developed based on a general 
state-space model. Lee et al (1992) proposed a state-
space MPC technique applicable to general multi-rate 
sampled-data systems. Bitmead et al (1990) 
presented a lucid and detailed analysis of the basic 
features inherent in all MPC algorithms from the 
viewpoint of Linear Quadratic Regulator and Linear 
Quadratic Gaussian Control theory. 
 
In section 2, we present a state-space model 
expressed in terms of step response parameters and in 
next session two state estimation techniques are 
discussed. In section 4 a fuzzy system for supervising 
the combined estimator is introduced and in the last 
section simulation results are shown. 



 

     

2. STATE-SPACE MPC MODEL 
 
This section demonstrates how the step response data 
can be put in a standard state-space form for stable 
and integrating systems (Lee et al., 1994). The 
conventional step response model was extended to 
include integrating dynamics in a manner such that 
all the desirable features of the step response are 
retained. 
 
  
2.1 Model form   
 
The model we use in this work is the following state-
space model represented by step response 
coefficients: 
 

( ) ( ) ( ) ( )1k1k1kk −+−+−= uT∆uS∆MYY          (1) 
( ) ( )kk NYy =                                (2) 
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y(k), u(k) and d(k) are output, input and disturbance 
vectors, respectively and ( )k∆u  and ( )k∆d  are the 
changes in u(k) and d(k) from the previous sampling 
time. The vector Y(k) represents dynamic states of 
the system and ( )kŷ  is  the  noise-corrupt 
measurement  of  y(k) and: 
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ilm,S  is the ith step response coefficient relating the 
mth input to the lth output, un  and 

yn  are the number 
of inputs and outputs, respectively. PA  is a diagonal 
matrix of the following form: 
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It is assumed here, after n time steps, all the effects 
of stable dynamics settle and the step responses of 
non-integrating and integrating outputs remain 
constant and increase with a constant slope 
respectively. It is assumed that all the eigenvalues of 

dA  lie strictly reside the unit disk making the 
disturbance stable (except for the integrating 
dynamics already present in M). 
 
 

3. STATE ESTIMATION 
  
In this section, two state estimation techniques for 
the step response model (1-3) is presented. 
 
 
3.1 Optimal estimator form   
 
For the system (1-3), the optimal estimator (i.e 
Kalman filter) based on the measurements at time k 
is most conveniently expressed in the following two-
step form: 
 
Model prediction: 
 

( ) ( ) ( )11|11| −+−−=− kkkkk u S∆MYY        (11) 
 
Correction based on measurements: 
 

        ( ) ( ) ( ) ( ){ }1kkk1kkkk −−+−= |ˆ|| NYyKYY    (12) 
           
The notation ( )ml |Y  represents the estimate of Y(l) 
based on the measurements up to time m. k is  the 
optimal filter gain that can be calculated from 
(Astrom and  Wittenmark, 1984): 
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if ith output is a stable (non-integrating) output 
                                                                                       (10) 
if ith output is an integrating output 
 



 

     

Where the ( ) { } ( ) { }( )dydy xdimn1nxdimn1n +×+×+×+  
matrix ∑s is the steady-state solution (i.e. the 

asymptotic solution as k→∞) of the following 
Riccati difference equation: 
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In the general case of the state space models, a 
similar Riccati equation should be solved to obtain 
the Kalman filter gain, even of much larger 
dimension. 
 
 
3.2 Constant output disturbance 
 
For stable processes, most conventional MPC 
algorithms use the same form of feedback ,based on 
comparing the current measured process output yk

m 
to the current predicted output yk: 
 

                              bk=yk
m-yk                             (15) 

 
The bias bk term is added to the model for use in 
subsequent predictions. This form of feedback is 
equivalent to assuming that a step disturbance enters 
at the output and remains constant for all future time 
(Lee et al., 1994, Morari and Lee, 1991). Muske and 
Rawlings (1993) analyzed this assumption in the 
context of the Kalman filter; the corresponding filter 
gain for a system with augmented outputs is : 
 

                             K = [0 I]T                              (16) 
 
which means no feedback for the process state 
estimates and identity feedback for the output 
disturbances. The assumption of constant output 
disturbance is called "DMC scheme" (Qin and 
Badgwell, 2003). 
 
Kalman filter gives unbiased estimate of states. 
however, in the presence of modeling errors , the 
final control signals will lead to biased outputs. In 
other words, although Kalman filter can help state 
space MPC algorithms to give better regulatory 
responses, the tracking response might be worse than 
conventional algorithms. One way to encounter this 
problem is using the above DMC approach. Clearly 
in this case we don’t have the disturbance rejection 
characteristic of Kalman filter and regulatory 
responses will descend. 
 
There is a simple idea for having a trade-off between 
both approaches. Because the DMC estimator does 
not add any computational cost to the algorithm, 
states are driven from both estimators and then a 
weighting average of them is given to the algorithm. 
So some aspects of both mentioned properties 
(setpoint tracking and disturbance rejection) are 
obtained. 

Consider that Ykf and Ydmc are estimated states of 
Kalman and DMC estimation techniques, 
respectively. The estimated state that will be given to 
the algorithm is: 
 

                    Y = α Ykf + (1-α) Ydmc                   (17) 
 
Which α is a tuning parameter in [0 1]. If α is 
increased, effect of Kalman estimator in computing 
x(k) is more than DMC estimator and consequently 
better regulation will result and vice-versa.  
 
 

4. FUZZY SUPERVISOR 
 
A fuzzy supervisor was designed to take mean and 
variance of recent outputs as input and computed α 
based on a fuzzy decision rule base. The basic 
concept behind of this idea is that, when the mean 
value of recent samples of one output is in a distant 
from desired setpoint, tracking of that output is weak 
and vice versa. On the other hand, large standard 
deviation of one output signal means that the 
controller can not reject disturbances well.  
Defining the following variables: 
 
 diffk = |mean(yk) – stpk| : difference between the     
mean value and the corresponding setpoint of each 
output. 
 vark : variance of each output signal,       k=1,2,…,n 
 
Where n is the number of outputs. Considering 100 
sampled sequence of each output for computing 
mean(yk) and vark. The membership functions for 
input and output variables are shown in figures 1 to 
3. 
 

 
Fig.1. Membership function for diffk 

 

 
Fig.2. Membership function for vark 

 

 
Fig.3. Membership function for α 



 

     

Range of variations for diffk and vark  are selected for 
the special plant that will be used in simulation 
section and may differ in other problems. The fuzzy 
supervisor has a mamdani rule base. 
 
 

5. SIMULATION 
 
The chosen model corresponds to a distillation 
column. The model which is referred as 'heavy oil 
fractionator' is described by Prett and Morari (1987) 
and has been widely used to try different control 
strategies for distillation columns (Camacho and  
Bordons, 1999). 
 
The process shown in figure 4 and has three 
variables that have to be controlled: The top and side 
product compositions and the bottom temperature. 
The related setpoints are 0.5, 0.3 and 0.1, 
respectively. In the 100 step simulation running of 
this work, top draw (Y1(s)) setpoint was changed to 
0.4 at 50th step. The manipulated variables are the top 
draw rate, the side draw rate and the bottom reflux 
duty. The bottom temperature must be kept within 
limits fixed by operational constraints. The top end 
point had to be maintained within the minimum and 
maximum value of -0.5 and 0.5. The manipulated 
variables were also constrained as follows: all draws 
were kept within hard minimum and maximum 
bounds of -0.5 and 0.5. The bottom reflux duty was 
also constrained by -0.5 and 0.5. The maximum 
allowed slew rates for all manipulated variables were 
of 0.05 per minute. The following relation can then 
describe the dynamics of the process:    
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Fig.4. Heavy oil fractionator 

Where U1(s), U2(s) and U3(s) correspond to the top 
draw , side draw and bottom reflux duties and Y1(s), 
Y2(s) and Y3(s) correspond to the top end point 
composition, side end point compositions and bottom 
reflux temperature respectively. 
 
The upper reflux duty is considered to act as 
unmeasurable disturbance. The small signal dynamic 
load model for the upper reflux duty is given by the 
following transfer function: 
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This model is considered as the internal model which 
is used by the controller to compute manipulated 
variables. Some gain perturbations are applied to the 
model based on table (9.4) of Maciejowski (2002) 
and this representation of the system is considered as 
the actual plant model, so there is a mismatch 
between the plant and the model.  First model is used 
to generate an step response model of the system and 
then is converted to state space model for State-
Space algorithm.  
 
Different experiments were implemented; First, using 
a DMC estimation approach for updating the states of 
the system, and then, by using a Kalman filter, the 
disturbance rejection capability of the controller was 
shown. In both cases prediction and control horizons 
were considered to be equal to 15 and 5 respectively. 
The weighting matrices used in the quadratic 
programming were the same for both cases. 
 
 

 
Fig.5. Tracking response using DMC estimator 
 
 
As can be seen in figure 6 despite of having a model 
for unmeasured disturbance, in the primary controller 
design, acceptable action in the face of disturbance 
was not taken place, but controller had a good 
setpoint tracking. 
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In the second design, Kalman filter leads to much 
better disturbance rejection, but the tracking response 
of the controller was descended. As mentioned 
above, this is due to mismatch between plant and the 
model. 
 

 

 
Fig.6. Regulatory response using DMC estimator 
 
 

 
Fig.7. Tracking response using Kalman filter 
 
 

 
Fig.8. Regulatory response using Kalman filter 
 
 
In the last simulation, both mentioned estimators 
were used and α was computed by the fuzzy 

supervisor. When setpoint tracking was descending 
(diffk was being large), supervisor decreased α and 
when disturbance rejection was poor (vark was large), 
α was increased by fuzzy supervisor and therefore, 
much better responses were achieved. 
 
 

 
Fig.9. Tracking response using combined estimation 
 

 
6.  CONCLUTION 

 
Although Kalman filter as the best choice in state 
estimation procedures, can help state space MPC 
algorithms to provide better regulatory responses, the 
tracking response might be worse than conventional 
algorithms due to plant/model mismatch. In order to 
reduce this problem in model predictive controllers, 
Kalman filter and DMC estimators were combined. 
A fuzzy supervisor was designed to combine the 
above estimations. Heavy oil fractionator was chosen 
as an industrial process to examine the validity of the 
proposed combination. It was noticed that, 
implementation of this approach needed 
approximately the same computational efforts as that 
in the case of using Kalman filter alone. Using the 
proposed combination showed much better 
disturbance rejection capability as well as improving 
the controller performance.  
  

 

 
Fig.10. Regulatory     response     using      combined 
estimation 
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