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Abstract: Numerical solution of filtering problem for nonlinear stochastic systems
is treated. The aim is to improve the point-mass method for multimodal probability
density functions of state. The main innovation items concern grid update, namely
covering a nonnegligible probability density function support and merging grids
in multigrid design. Comparing to the standard point-mass algorithm, the new
boundary-based grid placement technique maintains estimation quality and the
merging technique decreases computational demands for multimodal densities.
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1. INTRODUCTION

A general solution of the state estimation prob-
lem for discrete-time stochastic nonlinear non-
Gaussian system is completely described by condi-
tional probability density functions (pdfs) of state
and it is given by the Bayesian recursive relations.
A closed-form solution of the relations is known
only for linear Gaussian systems and a few special
cases, e.g. (Sorenson, 1988; Söderström, 1994).

Existing global nonlinear filtering methods are
based on the following approaches: analytical
(Sorenson and Alspach, 1971), numerical (Bucy
and Senne, 1971), and Monte Carlo (Liu and
Chen, 1998) approaches. Each of these approaches
approximates pdfs and/or state space differently.

This paper deals with the numerical approach,
namely the point-mass (PM) method. This method
was introduced by Bucy and Senne (1971) and
it is based on covering the state space by a grid
of isolated points. Values of conditional pdf’s are

computed only at these grid points. The main
advantages of the PMmethod are relative theoret-
ical simplicity of filter design and natural discrete
approximation of state space. On the other hand,
the original version of the method suffered from
enormous computational demands, the method
was focused on prediction problem only, a proce-
dure for setting the number of the grid points was
not specified, and the method was not appropriate
for cases with multimodal pdfs. The multimodal-
ity may arise in Bayesian inference as a result
of prior pdf, nonlinear functions in state or mea-
surement equations, and multimodal pdf of state
and/or measurement noise, which may represent
e.g. abrupt changes of state or parameters and
measurement outliers, respectively.

The PM method was elaborated by Sorenson
(1988) and Kramer and Sorenson (1988) where
the formal presentation of the method was im-
proved by introducing the p-vector approach and
piece-wise representation of pdfs and both filter-



ing and prediction steps of estimation process
were expressed. The complete solution of filtering,
prediction and smoothing by PM approach was
presented by Královec and Šimandl (2004). Fur-
ther, Šimandl et al. (2002) designed an adaptive
technique for setting the number of grid points,
partially eliminating also numerical demands of
the PM method. Grid design techniques for solu-
tion of filtering problems with multimodal pdfs by
means of PM approach were proposed by Šimandl
and Královec (2003). These techniques included
merging and splitting of grids and allowed an
effective treating of multimodal pdf’s with sep-
arable modes.

The PM method has been successfully applied in
a number of practical problems, e.g. in tracking
and navigation (Bergman, 1997).

The goal of this paper is to improve the grid
design for multimodal pdfs from (Šimandl and
Královec, 2003), namely the merging technique,
and introduce a new general grid design procedure
which can substitute the standard design tech-
nique. The new procedure should be more effective
in covering state pdf support and appropriate for
multimodal pdfs with non-separable modes for
which existing techniques are ineffective or may
cause divergence of state estimate.

The paper is organized as follows. The PM ap-
proach to state estimation is described and the
goal of the paper is stated in Section 2. A general
multigrid PM algorithm is introduced in Section 3.
A new boundary-based grid placement for PM
algorithm is derived in Section 4 and an improved
technique for handling multiple grids is provided
in Section 5. The results of the paper are illus-
trated by a numerical example in Section 6.

2. PROBLEM STATEMENT

2.1 Point-Mass Approach to State Estimation

Consider the nonlinear stochastic system

xk+1 = fk(xk) +wk, k = 0, 1, 2, . . . (1)

zk = hk(xk) + vk, k = 0, 1, 2, . . . (2)

where the vectors xk ∈ Rn, zk ∈ Rm represent the
state of the system and the measurements at time
k, respectively, fk : Rn → Rn, hk : Rn → Rm are
known vector functions, and wk ∈ Rn, vk ∈ Rm

are state and measurement zero-mean white noise
sequences with positive definite covariance matri-
ces Qk, Rk, respectively, mutually independent
and independent of x0. The pdf of the initial state
p(x0) is assumed to be known, as well as the pdf’s
of the noises p(wk), p(vk).

It is well-known that the filtering pdf p(xk|z
k)

and predictive pdf p(xk+1|z
k) are given by the

Bayesian recursive relations

p(xk|z
k) =

p(xk|z
k−1) p(zk|xk)

∫

p(xk|zk−1) p(zk|xk) dxk
(3)

p(xk+1|z
k) =

∫

p(xk|z
k) p(xk+1|xk) dxk (4)

where zk = {z0, . . . , zk} and p(x0|z
−1) = p(x0).

The transition pdf p(xk+1|xk) can be expressed
as p(xk+1|xk) = pwk

(

xk+1−yk+1

)

where yk+1 =
fk(xk). The measurement pdf can be written using
(2) as p(zk|xk) = pvk

(

zk − hk(xk)
)

.

The key idea of the PM method (Bucy and
Senne, 1971) for generating conditional pdfs of
state at kth instant is to substitute a nonnegligible
continuous support of the pdf by a grid of Nk

isolated points. Values of the pdf are computed
only at these grid points and thus the solution
of (3), (4) is performed numerically over the grid
instead of the continuous support. Nonnegligible
support is a region in the state space where the
true state is probable to lie and hence values of
the pdf are nonnegligible there. However, finding a
nonnegligible support effectively is a complex task
and particularly for multimodal pdfs an efficient
procedure is missing. The crucial point is delimit-
ing a support by setting boundary points of a grid
as a proper support delimiting yields significant
reduction of computational demands of the PM
algorithm without a decline in estimation quality.

2.2 Problem Formulation

The aim of the paper is twofold. The first aim
is to propose a novel technique of grid placement
which should overcome the weaknesses of the stan-
dard state-covariance-based grid placement tech-
nique. The second aim is improving the multi-
grid handling techniques of splitting and merging
(Šimandl and Královec, 2003) namely by utilizing
the Mahalanobis distance for merging of grids.

3. MULTIGRID POINT-MASS ALGORITHM

The PM approach represents a pdf p(xk) by a set
of Mk rectangular grids of points Ξk[µ](Nk[µ]) =
{ξki[µ]; ξki[µ] ∈ Rn, i = 1, . . . , Nk}, µ = 1, . . . ,Mk,
by volume masses ∆ξk[µ] for each grid and
by a set of pdf values at the grid points,
Pk[µ] = {Pk,i[µ];Pk,i[µ] = pxk(ξki[µ]), ξki[µ] ∈
Ξk[µ](Nk[µ])}. Each grid Ξk[µ](Nk[µ]) is assigned
a weight ωk[µ] which represents probability of
appearance of the state in the region covered by
the µth grid:



ωk[µ] = ∆ξk[µ]

Nk[µ]
∑

i=1

Pk,i[µ] (5)

and it holds that
∑Mk

µ=1 ωk[µ] = 1.

This PM representation can be used for approxi-
mation of filtering and predictive pdf’s p(xk|z

k),
p(xk+1|z

k).

For a µth grid with corresponding filtering pdf
values it is possible to compute local predictive
mean vector η̂k+1[µ] and local predictive covari-
ance matrix Ck+1[µ] as follows

η̂k+1[µ] =

∆ξk[µ]
Nk[µ]
∑

i=1

ηk+1,i[µ]Pk|k,i[µ]

ωk|k[µ]
(6)

Ck+1[µ] =

∆ξk[µ]
Nk[µ]
∑

i=1

ηk+1,i[µ]η
T
k+1,i[µ]Pk|k,i[µ]

ωk|k[µ]

−η̂k+1[µ] η̂
T
k+1[µ] +Qk . (7)

Global predictive mean E(xk+1|z
k) and covari-

ance matrix cov(xk+1|z
k) can be approximated

using the local moments as follows:

η̂k+1 =

M
∑

µ=1

ωk|k[µ] η̂k+1[µ] (8)

Ck+1 =

M
∑

µ=1

ωk|k[µ]
(

Ck+1[µ] + η̂k+1[µ] η̂
T
k+1[µ]

)

−η̂k+1 η̂
T
k+1 . (9)

Moments of the filtering pdf can be enumerated
analogously.

The algorithm of the PM method can be written
in the following steps.

Algorithm of the PM method

Initialization: Define initial grids Ξ0[µ](N0[µ])
in Rn for the prior pdf p(x0|z

−1): Ξ0[µ](N0[µ]) =
{ξ0i[µ]; i = 1, . . . , N0[µ]}, volumes ∆ξ0[µ] and
sets of pdf values P0|−1[µ] = {P0|−1,i[µ]; i =
1, . . . , N0[µ]} for µ = 1, . . . ,M0.

Then proceed for k = 0, 1, . . ..

Step 1: At time k compute values of the approx-
imate filtering pdf at points of grids Ξk[µ](Nk[µ])
using (3), for i = 1, . . . , Nk[µ], µ = 1, . . . ,Mk.

Pk|k,i[µ] = c−1
k Pk|k−1,i[µ] pvk

(

zk − hk(ξki[µ])
)

(10)
where the normalizing constant ck must be enu-
merated by the sum over all grids as

ck =

Mk
∑

µ=1

∆ξk[µ]

Nk[µ]
∑

i=1

[

Pk|k−1,i[µ]

· pvk
(

zk − hk(ξki[µ])
)]

. (11)

Step 2: Transform Ξk[µ](Nk[µ]) to a grid
Hk+1[µ](Nk[µ]) = {ηk+1,i[µ]; i = 1, . . . , Nk[µ]} by
the system dynamics for µ = 1, . . . ,Mk

ηk+1,i[µ] = fk(ξki[µ]) (12)

Step 3: Redefine each grid Hk+1[µ](Nk[µ]), µ =
1, . . . ,Mk, to obtain a new grid Ξk+1[µ](Nk+1[µ]),
µ = 1, . . . ,Mk+1, for state xk+1 with the
same structural properties as the original grids:
Ξk+1[µ](Nk+1[µ]) = {ξk+1,j [µ]; j = 1, . . . , Nk+1[µ]}.

Step 4: Compute values of the approximate pre-
dictive pdf for the new grids Ξk+1[µ](Nk+1[µ])
using (4)

Pk+1|k,j [µ] =∆ξk[µ]

Nk[µ]
∑

i=1

[

Pk|k,i[µ]

· pwk
(ξk+1,j [µ]− ηk+1,i[µ])

]

(13)

for j = 1, . . . , Nk+1[µ], µ = 1, . . . ,Mk. 2

The Step 3 of the PM algorithm can be realized
by anticipative grid design technique which was
presented by Šimandl et al. (2002). The technique
consists of two main parts. The first one treats
placing a grid in the state space, i.e. delimits a
nonnegligible pdf support, and it is important
for the subject of this paper. The second part
deals with setting a number of grid points and
positioning of points within a grid which is not
necessary to be discussed in this paper.

The delimiting of nonnegligible pdf support is
based on the following steps:

Step 3a) Compute estimates of local predictive
means η̂k+1[µ] by (6) and predictive covariance
matrices Ck+1[µ] by (7) for µ = 1, . . . ,Mk.

Step 3b) Perform Jordan decomposition ofCk+1[µ]:
Ck+1[µ] = Tk+1[µ]Λk+1[µ]T

T
k+1[µ] where

Λk+1[µ] = diag{λ
(`)
k+1[µ]}

n
`=1 and transform the

state noise covariance matrix as Q̄k+1[µ] =
TT
k+1[µ]Qk+1Tk+1[µ].

Step 3c) Design transformed axis grid supports

Ī
(`)
k+1[µ] =

[

−b
√

λ
(`)
k+1[µ], b

√

λ
(`)
k+1[µ]

]

and the sup-

port Ωk+1[µ] of pdf p(xk+1|z
k)

Ωk+1[µ] = {xk+1;xk+1 = Tk+1[µ]x̄k+1 + η̂k+1[µ],

∀x̄k+1 ∈ Ī
(1)
k+1[µ]× . . .× Ī

(n)
k+1[µ]} (14)

where × denoted Cartesian product and b > 0 is
a design parameter. 2

In the anticipative grid design technique, an
estimated predictive covariance matrix of state
Ck+1 ≈ cov(xk+1|z

k) plays a key role for grid
design. The grid is rotated according to eigen-
vectors of the matrix Ck+1 and thus respect a



shape of the predictive pdf p(xk+1|z
k). A bound-

ing box of the grid Ξk+1(Nk+1) (i.e. a box in n-dim
space determined by border points of the grid)
is given by eigenvalues of Ck+1. However, using
eigenvalues for grid placement is suitable only for
Gaussian or Gaussian-like pdfs where an analogy
with the 3-sigma or 4-sigma rule, for instance,
can be applied. If, for example, the predictive
pdf was multimodal, the eigenvalue technique can
generally create a grid that will leave some non-
negligible subspaces of the state space uncovered
by a grid, or on the other hand, that will cover
too large negligible areas by grid points. Note
that distribution of predictive pdf is not actually
known, so the both described undesirable cases
cannot be detected in a simple way and grid design
technique should eliminate them automatically.

4. BOUNDARY-BASED GRID PLACEMENT

The goal of this chapter is to present an im-
proved procedure of nonnegligible support delim-
iting given by Steps 3a–3c of the anticipative grid
design technique.

The idea of the new grid placement will be first
explained by 1-dim case. Boundary points of a
grid Ξk+1(Nk+1) = {ξk+1,i; i = 1, . . . , Nk+1} are
given by boundary points of the deformed grid
Hk+1(Nk) = {ηk+1,j ; j = 1, . . . , Nk}. Let the
boundary points of Hk+1(Nk) be denotes as

ηk+1,min = min
j=1,...,Nk

ηk+1,j (15)

ηk+1,max = max
j=1,...,Nk

ηk+1,j . (16)

A nonnegligible interval Ik+1 in the state space,
which will be covered by a grid Ξk+1(Nk+1), is
then given by the interval

[

ηk+1,min, ηk+1,max

]

enlarged by involving the state noise wk influence:

Ik+1 =
[

ηk+1,min − aσk, ηk+1,max + aσk
]

(17)

where σ2
k = var(wk).

Since ηk+1,min, ηk+1,max represent a boundary
of the nonnegligible domain of p

(

fk(xk)|z
k
)

, the
interval Ik+1 does not exclude any significant
nonnegligible subsets of p(xk+1|z

k) domain and it
depends on the known variance of the state noise.

The described technique will be called boundary-
based grid design, as the grid is designed by means
of the boundary of the grid Hk+1(Nk).

A nonnegligible area of n-dim state space is ap-
proximated by a grid Ξk+1[µ] rotated according to
eigenvectors of the corresponding local predictive
covariance matrix Ck+1[µ] as described above.
Borders of the grid are set as follows (grid index
[µ] will be omitted in the sequel of the section for
notational convenience).

The deformed grid Hk+1(Nk) = {ηk+1,j ; j =
1, . . . , Nk} is first transformed to the basis of the
state space of x̄k+1, i.e. η̄k+1,j = TT

k+1ηk+1,j ,

H̄k+1 = {η̄k+1,j ; j = 1, . . . , Nk}. Minima and
maxima in all coordinates ` = 1, . . . , n of grid
points η̄k+1,j are found as

η̄
(`)
k+1,min = min

j=1,...,Nk

η̄
(`)
k+1,j (18)

η̄
(`)
k+1,max = max

j=1,...,Nk

η̄
(`)
k+1,j (19)

and they delimit borders of significant intervals

Ī
(`)
k+1 =

[

η̄
(`)
k+1,min−a

√

Q̄
(`)
k+1, η̄

(`)
k+1,max+a

√

Q̄
(`)
k+1

]

(20)

where Q̄
(`)
k+1 is `th diagonal element of trans-

formed state noise covariance matrix Q̄k+1 =
TT
k+1Qk+1Tk+1. The predictive pdf support Ωk+1

can be then computed by (14).

The proposed boundary-based grid placement
technique ensures comprehensive approximation
of state space by a rectangular grid also for non-
Gaussian pdfs, including multimodal pdfs.

5. APPROXIMATION OF MULTIMODAL
DENSITIES

5.1 Grid Splitting by Marginal Densities

Probability of certain areas of the state space may
drop significantly by including new information
at the filtering step, causing that the pdf can be
taken for multimodal. For that reason splitting
of the grid should be considered at the filtering
step. Moreover, it is possible to utilize the advan-
tageous regular shape of the grid. Thus, the grids
Ξk[µ](Nk[µ]), µ = 1, . . . ,Mk with the filtering pdf
values Pk|k[µ] are examined for splitting.

It is necessary to find out if a grid Ξk[µ] covers sep-
arable nonnegligible areas. To avoid searching sep-
arable areas in Rn, which would be an extremely
computationally expensive process, Šimandl and
Královec (2003) proposed examining separable
areas individually for each state component by
means of marginal pdfs and axis grids.

5.2 Grid Merging by Mahalanobis Distance

The development of grids is determined by the
system dynamics in Step 2 of the general PM
method algorithm. This transformation may cause
more grids to overlap. To keep the algorithm ef-
fective it is advantageous to use only one grid
for covering each nonnegligible region of the state
space. Contrary to the prediction step, overlap-
ping of grids cannot happen at the filtering step
because grid points are fixed in this step.



Šimandl and Královec (2003) formed a decision
rule for merging two grids based on a comparison
of the distance of grids’ centers with a limiting
distance dependent on the least eigenvalues of the
grids’ local covariance matrices. In this paper,
a more simple and straightforward criterion is
presented, based on the Mahalanobis distance.

The Mahalanobis distanceD(x,y;C) of the points
x, y with respect to a positive-definite symmetric
matrix C is defined as:

D2(x,y;C) = (x− y)T C−1 (x− y) (21)

The following set of grids is considered
{

Hk+1[µ](Nk[µ]);µ = 1, . . . ,Mk

}

, (22)

where

Hk+1[µ](Nk[µ]) =
{

ηk+1,i[µ]; i = 1, . . . , Nk[µ]
}

and points of these grids were obtained by (12).

For each grid Hk+1[µ](Nk[µ]), µ = 1, . . . ,Mk,
local mean η̂k+1[µ] and local covariance matrix
Ck+1[µ] are computed by (6) and (7), respectively.

The Mahalanobis-distance decision rule for merg-
ing two grids can be stated as follows. Grids
Hk+1[µ](Nk[µ]) and Hk+1[ν](Nk[ν]) should be
merged if one of the Mahalanobis distances of the
grids’ local centers is less than a threshold δ > 0:

[

(η̂[µ]− η̂[ν])T C−1[µ] (η̂[µ]− η̂[ν])
]

1

2 < δ

or
[

(η̂[µ]− η̂[ν])T C−1[ν] (η̂[µ]− η̂[ν])
]

1

2 < δ (23)

The threshold is recommended to be set as δ = 4
analogously to the 4-sigma rule. The time index
was omitted for notational convenience in (23).

Criterion (23), which decides about merging two
grids and replaces the merging criterion from
(Šimandl and Královec, 2003), is quite simple but
it does not cover all possible situations when two
grids overlap. Simplicity of the rule is thus pre-
ferred to its generality because full-range verify-
ing of grid overlapping would be computationally
burdensome and algorithm efficiency would be
decreased.

The merging of grids is realized by creating index
sets Mν , each of which contains indexes of grids
that should be merged. A new grid is thus defined
by grid indexes from one index set. Index sets are
constructed by the following algorithm (index sets
have vector structure; time index k + 1 will be
omitted in η and C for notational convenience).

Grid merging algorithm

1. ν := 1, µ := 1
2. Mν := [µ]
3. µ := µ+ 1, i := 0

4. i := i+ 1, j := 0
5. j := j + 1
6. if D2(η̂[µ], η̂[Mi(j)];C[µ]) < δ

or D2(η̂[µ], η̂[Mi(j)];C[Mi(j)]) < δ

Mi :=
[

MT
i , µ

]T
, go to 11

7. if j < dim(Mi), go to 5
8. if i < ν, go to 4
9. ν := ν + 1

10. Mν := µ

11. if µ < Mk, go to 3
12. end

The symbol := in the algorithm stands for the as-
signment statement. Let the number of the index
sets be denoted as Mk+1, i.e. ν = 1, . . . ,Mk+1.
The number of index sets is equal to the number
of new grids Ξk+1[ν]. Note that the algorithm en-
sures thatMν1

∩Mν2
= ∅ for ν1 6= ν2. The index µ

of such a grid Hk+1[µ](Nk[µ]) which cannot merge
with any other grid belongs to a one-element set
Mν = [µ].

New grids Ξk+1[ν](Nk+1[ν]) are designed sepa-
rately by Step 3 of the PM method algorithm.

Finally, values of predictive pdf are enumerated
for the points of each new grid Ξk+1[ν](Nk+1[ν]),
ν = 1, . . . ,Mk+1, using grids Ξk[µ](Nk[µ]) speci-
fied by the index set Mν

Pk+1|k,j [ν] =
∑

µ∈Mν

∆ξk[µ]

Nk[µ]
∑

i=1

[

Pk|k,i[µ]

· pwk

(

ξk+1,j [ν]− ηk+1,i[µ]
)

(24)

for j = 1, . . . , Nk+1[ν]. The relation (24) sub-
stitutes (13) in Step 4 of the PM algorithm if
merging is applied.

The grid merging technique thus consists of two
procedures. The first one (Grid merging algo-
rithm) selects groups of overlapping grids and the
second one (24) produces pdf values at grid points
of newly created grids.

6. NUMERICAL ILLUSTRATION

Consider the following stochastic system

x
(1)
k+1 = x

(1)
k x

(2)
k + w

(1)
k

x
(2)
k+1 = x

(1)
k + w

(2)
k

zk = 0.2
(

x
(2)
k

)2
+ vk

where xk = [x
(1)
k x

(2)
k ]T, both state noise wk =

[w
(1)
k w

(2)
k ]T and measurement noise vk are zero-

mean white Gaussian noises with cov(wk) =
Q = diag{0.25, 10−4}, and cov(vk) = R = 1.
Initial state is given by Gaussian pdf with
mean E{x0} = [0 0.5]T and covariance matrix
cov(x0) = diag{16, 0.02}.



The state is estimated by PM method with
boundary-based grid design and splitting/merging
technique. Results of the estimation are presented
in Figure 1. The algorithm is started with one
grid covering initial Gaussian pdf of state x0. Due
to the quadratic nonlinearity in the measurement
equation the grid is splitted just after the filtering
step at time k = 0 to cover a support of two
separable modes of the filtering pdf, as shown in
the first graph of Figure 1. The two grids then
develop separately until they overlap and fulfill
the Mahalanobis distance criterion (23). Grids are
merged at time k = 12. Filtering pdfs for k = 11
(before the merging) and for k = 12 (after the
merging) are depicted in Figure 1 as well.

The computational demand of the algorithm was
about three times lower than for the standard PM
algorithm which used single grid and covariance-
based grid design.
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Fig. 1. Splitting and merging of pdfs.

7. CONCLUSIONS

A new boundary-based grid design for point-mass
method was presented, which was more robust
and for a general pdf it ensured a more effec-
tive covering of nonnegligible subspace of the
state space than the standard technique based
on estimation of predictive covariance matrix of
state. Further, handling multiple grids in the state
space was improved by introducing Mahalanobis
distance criterion for merging of grids. The pre-
sented techniques enable an effective usage of PM
method for systems with multimodal pdfs of state.
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(2002). Anticipative grid design in point-
mass approach to nonlinear state estima-
tion. IEEE Transactions on Automatic Con-
trol 47(4), 699–702.


