
PREDICTIVE COMPUTED-TORQUE

CONTROL OF A PUMA 560 MANIPULATOR

ROBOT

Victor M. Becerra, Steven Cook and Jiamei Deng

University of Reading, Department of Cybernetics,
Reading RG6 6AY, UK

Abstract: This paper describes the integration of constrained predictive control and
computed-torque control, and its application on a six degree-of-freedom PUMA
560 manipulator arm. The real-time implementation was based on SIMULINK,
with the predictive controller and the computed-torque control law implemented
in the C programming language. The constrained predictive controller solved a
quadratic programming problem at every sampling interval, which was as short
as 10 ms, using a prediction horizon of 150 steps and an 18th order state space
model. Copyright c©2005 IFAC

Keywords: Predictive control, robotic manipulators, computed-torque control.

1. INTRODUCTION

This paper describes the integration of con-
strained predictive control and computed-torque
control, and its application in real time to control
a six degree-of-freedom PUMA 560 manipulator
arm. Until recent years the application of con-
strained predictive control to a manipulator with
six degrees of freedom, although theoretically pos-
sible, has not been practical as computer proces-
sors have not been fast enough to solve online
the associated constrained optimisation problem
within the short sampling periods that are re-
quired by the application. Predictive control has
been proposed on a simulated two-link PUMA 560
arm as described in (Torres et al., 2001), who used
local linearisation to define the internal model. In
the work by (Bemporad et al., 1997), a predictive
path generator was designed to deal with various
constraints, and experiments on a PUMA 560
manipulator were made using three links of arm.

The essence of predictive control is to optimise,
over the manipulable inputs, forecasts of process
behaviour (Maciejowski, 2002). One of the main

benefits of predictive control is that constraints
on the inputs and outputs of the system can
be explicitly considered in the control problem
formulation and its solution.

The success of linear predictive control has in-
spired researchers to look into the possibility of
extending it for non-linear control applications.
Since manipulator robots exhibit strong nonlin-
earities, their performance can be significantly
improved by using nonlinear control strategies.
Computed-torque control (Lewis et al., 2004) is a
technique that uses a nonlinear dynamic model of
the system to remove the nonlinearities of the ma-
nipulator, facilitating external control with fixed
gains. Poignet et al. (2000) describe a combined
predictive functional control / computed-torque
control scheme, with simulated tests on a two
degree-of-freedom SCARA robot.

The PUMA 560, shown in Figure 1, is a six-
degree of freedom robotic manipulator that uses
six dc servomotors for joint control. Joint po-
sitions are measured using encoders and poten-
tiometers. Three large motors provide control of

the waist, shoulder, and elbow, while three smaller
motors position the orientation of the wrist. The
PUMA 560 has a large reach, and can achieve
impressive acceleration. Originally designed for
assembly and manipulation tasks, the PUMA arm
is now widely adopted by academic institutions for
research purposes.

Fig. 1. PUMA robot manipulator arm

2. DESCRIPTION OF THE CONTROL
SCHEME

2.1 Computed torque control (CTC)

The reference torque for each joint of the arm is
calculated using computed-torque control (Lewis
et al., 2004). This technique is used to remove the
nonlinearities of the PUMA by employing feed-
back linearisation. The arm dynamics are given
by:

M(q)q̈ +N(q, q̇) + τd = τ (1)

where q(t) ∈ <6 is a vector of joint variables,
τ(t) ∈ <6 the control torque, τd(t) ∈ <6

is a disturbance, M(q) is the inertia matrix,
N(q, q̇) represents nonlinear terms including cori-
olis/centripetal effects, friction, and gravity.

Suppose that a reference trajectory qd(t) has been
chosen for the arm motion. The tracking error is
defined as:

e(t) = qd(t) − q(t) (2)

If the tracking error is differentiated twice, then

ë = q̈d +M−1(N + τd − τ). (3)

Define the feedback linearising input function as

u = q̈d +M−1(N − τ), (4)

and the disturbance function as

w = M−1τd. (5)

Then the tracking error dynamics can be ex-
pressed as follows

d

dt

[

e

ė

]

=

[

0 I6×6

0 0

] [

e

ė

]

+

[

0
I6×6

]

u+

[

0
I6×6

]

w.

(6)

Notice that, as a result of using the feedback
linearising transformation (4), the tracking error
dynamics are given by a linear state equation
with constant coefficients. The feedback linearis-
ing transformation (4) can be inverted to give

τ = M(q)(q̈d − u) +N(q, q̇). (7)

This is the computed-torque control law. An outer
loop controller is often used. The role of the outer
loop controller is to provide the input u. For
example, PD and PID and LQR computed-torque
controllers have been proposed as outer loop con-
trollers (Lewis et al., 2004). The computed-torque
control technique is known to perform well when
the robot arm parameters are known fairly accu-
rately. Fortunately, the dynamics of the PUMA
560 manipulator are well known and reported.
The inverse dynamics and Denavit-Hartenberg
arm parameters employed in this work are based
on those reported in (Lewis et al., 2004) and
(Corke and Armstrong-Helouvry, 1994).

2.2 The predictive control problem

In this work, a constrained predictive controller is
employed as an outer loop controller to generate
the input u, and the robot dynamics are feedback
linearised by means of the computed-torque con-
trol law (7). The predictive control formulation
below assumes a linear, discrete-time, state-space
model of the plant:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cyx(k)

z(k) = Czx(k),

(8)

where x(k) is the state vector at time k, u(k) is
the vector of inputs, y(k) is the vector of measured
outputs, and z(k) is the vector of outputs which
are to be controlled to satisfy some constraints, or
to particular set-points, or both. In this work, a
Kalman filter was used that can be described as
follows:

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) + Lê(k|k)

ŷ(k|k − 1) = Cyx̂(k|k − 1)

ẑ(k|k − 1) = Czx̂(k|k − 1),
(9)

where x̂(k + 1|k) is the estimate of the state
at future time k + 1 based on the information
available at time k, ŷ(k|k − 1) is the estimate of
the plant output at time k based on information
at time k − 1, L is the Kalman filter gain matrix
and ê(k|k) is the estimated error: ê(k|k) = y(k)−
ŷ(k|k − 1).

The formulation given in this paper is inspired
by the constrained predictive control algorithm
presented in (Maciejowski, 2002). The cost func-
tion V minimised by the predictive controller
penalises deviations of the predicted controlled

outputs ẑ(k+i|k) from a reference trajectory r(k+
i|k) and also it penalises changes in the future
manipulated inputs ∆û(k + i|k). Define the cost
function as follows

V (k) =

p
∑

i=1

||ẑ(k + i|k) − r(k + i|k)||2Q(i)

+

m−1
∑

i=0

||∆û(k + i|k)||2R(i), (10)

where the prediction and control horizons are p
and m, respectively, Q(i) and R(i) are output
and input weight matrices, respectively. The cost
function can also be written as follows:

V (k) = ||Z(k) − T (k)||2Q + ||∆U(k)||2R, (11)

where

Z(k) =







ẑ(k + 1|k)
...

ẑ(k + p|k)







T (k) =







r̂(k + 1|k)
...

r̂(k + p|k)







∆U(k) =







∆û(k|k)
...

∆û(k +m− 1|k)






,

(12)

R =











R(0) 0 . . . 0
0 R(1) . . . 0
...

...
. . .

...
0 0 . . . R(m− 1)











Q =











Q(1) 0 . . . 0
0 Q(2) . . . 0
...

...
. . .

...
0 0 . . . Q(p)











.

(13)

Note that

Z(k) = ψx(k) + Υu(k − 1) + Θ∆U(k), (14)

where

ψ =





















CzA
...

CzA
m

CzA
m+1

...
CzA

p





















,

Υ =







































CzB
...

m−1
∑

i=0

CzA
iB

m
∑

i=0

CzA
iB

...
p−1
∑

i=0

CzA
iB







































,

Θ =











































CzB . . . 0
AB +B . . . 0

...
. . .

...
m−1
∑

i=0

AiB ... B

m
∑

i=0

AiB ... AB +B

...
. . .

...
p−1
∑

i=0

AiB ...

p−m
∑

i=0

CzA
iB











































.

Define

ε(k) = T (k) − ψx(k) − Υu(k − 1). (15)

Now the following can be obtained:

V (k) = ||Θ∆U(k) − ε(k)||2Q + ||∆U(k)||2R

= ε(k)TQε(k) − 2∆U(k)T ΘTQε(k)

+ ∆U(k)T [ΘTQΘ +R]∆U(k). (16)

Equation (16) has the form

V (k) = const − ∆U(k)Tϑ+ ∆U(K)TH∆U(k),
(17)

where

ϑ = 2ΘTQε(k), (18)

and

H = ΘTQΘ +R. (19)

Then, to minimise V as given by equation (10),
the following constrained optimization problem
can be solved:

min
∆U(k)

∆U(k)TH∆U(k) − ϑT ∆U(k), (20)

subject to the inequality constraints:

u(k) ≥ umin(k)

u(k) ≤ umax(k)

|∆u(k)| ≤ ∆umax(k)

z(k) ≥ zmin(k)

z(k) ≤ zmax(k).

(21)

This optimisation problem can be expressed as
follows:

min
θ
θTφθ + ϕT θ, (22)

subject to

Ωθ ≤ ω, (23)

where θ = ∆U(k), φ = H, ϕ = −ϑ. Expressions
for matrix Ω and vector ω are obtained from
Equations (21) and (14).

2.3 The state space model employed

The linear tracking dynamics (6) can be discre-
tised using the zero order hold method with sam-
pling interval h to yield, ignoring the unmeasured
disturbance input w, the following discrete time
model:

xd(k + 1) = Adxd(k) +Bdu(k)

y(k) = Cdxd(k)
(24)

where k is an integer time index, xd(k) =
[e(kh) ė(kh)]T is the discrete time state vec-
tor, y(k) = e(kh) is the output vector, and
Ad, Bd, Cd, Dd are discrete time model matrices.
Define

∆u(k) = u(k) − u(k − 1)

∆x(k) = x(k) − x(k − 1).
(25)

A convenient augmented model can be obtained
as follows:

x(k + 1) = Ax(k) +B∆u(k)

y(k) = Cx(k)
(26)

where

x(k) =

[

∆xd(k)
y(k)

]

A =

[

Ad 012×6

CdAd I6

]

B =

[

Bd

CdBd

]

C = [012×12 I6]

(27)

This augmented 18th order model was used by
the real-time predictive controller employed in
this work. If the system is at steady state, then
∆x(0) = 0. As y(0) is the initial position of the
system, x(0) is known. This augmented model is
therefore easily initialized, which is an advantage
over the general state space model (24).

3. IMPLEMENTATION AND RESULTS

3.1 Hardware configuration

The original Mark II controller of this PUMA
arm has been retrofitted to enable control from
a personal computer. Special purpose TRC041
retrofit cards (Mark V Automation Inc., 2000)
are installed in the backplane of the Mark II
controller. Custom-made cables are used to inter-
face the TRC041 cards and a Q8 data acquisition
board (Quanser Consulting Inc., 2003a), which is
connected to the PCI interface of the personal
computer. An Intel Pentium 4 2.4 GHz personal
computer running the Windows 2000 operating
system is used to control the arm. Servo torques
are controlled by the Mark II controller, with
reference values sent as analog voltages from the
personal computer through the Q8 board. The
Q8 board receives encoder and potentiometer sig-
nals from the TRC041 and is interfaced with
SIMULINK.

3.2 Software configuration

Figure 2 shows a SIMULINK diagram of the
real-time control scheme. MATLAB’s Real Time
Workshop and Wincon (Quanser Consulting Inc.,
2003b) were used to generate and execute real-
time code.

Fig. 2. SIMULINK system implementing the real-
time control scheme

The computed torque control law given by Equa-
tion (7) was implemented by means of a SIMULINK
S-function written in C (The Mathworks, Inc.,
2001). The predictive algorithm has been imple-
mented in the C programming language and in-
terfaced to SIMULINK through an S-function.
The implemented predictive control algorithm is
described in Table 1. The algorithm uses linear
state space models of the form given in Equa-
tion (26). The algorithm follows the formulation
given in section 2.2. A public domain quadratic
programming (QP) algorithm by K. Schittkowski
was employed (Schittkowski, 1992). The controller
tuning parameters can be set through the S-
function interface.

Table 1. Predictive control algorithm
implemented by S-function

Step Description

1 read in measured output vector y(k).

2 form matrices φ, Ω and vectors ϕ and ω.

3 solve the quadratic programming problem

given by Eqns. (22) and (23).

4 compute the control vector from the resulting

increment u(k) = u(k − 1) + ∆û(k|k).

5 store u(k) and increase the sampling index:
k ← k + 1.

6 write out control signal vector u(k).

7 go to 1 and repeat again.

The software was designed with the assumption
that the bounds on variables are constant over
their relevant time horizons. Under this assump-
tion, the limits ulim and ylim, which are ma-
nipulated and output variable constraints, respec-
tively, are defined as follows:

ulim = [uT
minu

T
max]T

ylim = [zT
minz

T
max]T .

(28)

Similarly, it is assumed that the input and out-
put weights are constant along the relevant time
horizons, so that R(1) = R(2) = · · ·R(m) = R

and Q(1) = Q(2) = · · ·Q(p) = Q, with R and
Q diagonal matrices. Under this assumption, the
weight vectors uwt and ywt, which are input and
output weight vector, respectively, are defined as
follows:

uwt = [R1,1, . . . , Rnu,nu
]

ywt = [Q1,1, . . . , Qny,ny
].

(29)

3.3 Constraints

The feedback input to the predictive controller is
the tracking error on each joint. The controller
output is a correctional value of the angular ac-
celeration which must be subtracted from the
required angular acceleration. Constraints can be
placed on the input and output of the predictive
controller. This is useful since it is, in theory,
possible to prevent the manipulator from moving
too far away from the reference trajectory. It is
also possible to constrain the rate at which the
controller can change its input to the system.
With the formulation given in this paper, it would
be difficult to consider physical constraints such
as torque or current, due to the nonlinear connec-
tions between the actual torque and servo-motor
current, and the predictive controller output.

3.4 Controller tuning

The tuning parameters associated with the pre-
dictive controller are the sampling period h, the

prediction horizon p, the control horizon m, and
the input and output weights uwt and ywt.

For rapidly changing systems, such as the PUMA
arm, a high sample rate is required. A sampling
period of about h = 0.001 s is usually considered
suitable for such a system. It is important to
consider the amount of time taken to solve the
QP problem, as it must be solved within each
sampling period. This load is influenced by factors
such as the prediction and control horizon, as well
as the size of the model and the speed of the
computer. Through experimentation, it was found
that the use of a sampling period of h = 0.01 s
was feasible, as the computer was not fast enough
to calculate the solution to the QP with suitable
prediction and control horizons within 1 ms.

Initial tuning was carried out based on simultane-
ous filtered step changes on the references using
a simulated manipulator based on the Denavit-
Hartenberg model of the PUMA (Lewis et al.,
2004), (Corke and Armstrong-Helouvry, 1994).
Controller tuning was refined through real-time
experiments on the actual manipulator, and the
final tuning employed was:

• p = 150,
• m = 6,
• uwt = [60, 60, 60, 65, 60, 60]
• ywt = [50, 50, 50, 50, 50, 50]

Figure 3 shows the trajectory of the joint vari-
ables q1 and q2 of the PUMA under predictive
computed-torque control, and the corresponding
references, for one of the experiments carried out
as part of this work.

0 5 10 15 20
−2

−1.5

−1

−0.5

0

time (s)

q 1

q
d1

q
1

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

time (s)

q 2

q
d2

q
2

Fig. 3. Trajectory following under predictive
computed-torque control.

4. CONCLUSIONS

This paper describes the integration of con-
strained predictive control and computed-torque

control, and its application in real-time to control
a 6-DOF PUMA manipulator arm.

It is felt by the authors that the work reported
here is a good start in exploring the benefits of
using predictive computed-torque control on the
PUMA arm. However, the tuning reported in this
paper can be improved. A significant improvement
in performance could be achieved with a faster
control computer. This is because the sampling
period could be made shorter and, conversely, the
prediction horizon longer.

Constraints can be placed on the input and output
of the predictive controller. This is useful since, in
theory, it is possible to prevent the manipulator
from moving too far away from the reference tra-
jectory. It is also possible to include information
about future reference trajectories in the predic-
tive control computations, such that the controller
can optimally anticipate future changes in the
reference trajectory. This feature may be useful
when the manipulator is required to do repeti-
tive tasks. These capabilities give constrained pre-
dictive control a significant advantage over PID
computed-torque control which can not optimally
handle constraints on input or output variables, or
information about future reference trajectories.

5. ACKNOWLEDGEMENTS

This paper summarises the results obtained by
Steven Cook in his final year project of the MEng
in Cybernetics at the University of Reading. The
real-time predictive control algorithm employed
in this work was implemented by Jiamei Deng
and Victor Becerra with funding from the EPSRC
under grant GR/R64193. The computed-torque
control algorithm was implemented by Callum
Cage as part of his 3rd year project of the MEng
in Computer Science and Cybernetics at the Uni-
versity of Reading.

REFERENCES

Bemporad, A., T. Tarn and N. Xi (1997). Pre-
dictive path parameterization for constrained
robot control. IEEE Trans. on Control Sys-
tems Technology 7(6), 648–656.

Corke, P.I. and B. Armstrong-Helouvry (1994). A
search for consensus among model parame-
ters reported for the PUMA 560 robot. In:
Proc. IEEE Conf. Robotics and Automation.
pp. 1608–1613.

Lewis, F.L., D.M. Dawson and C.T. Abdallah
(2004). Robot Manipulator Control. Marcel
Dekker.

Maciejowski, J.M. (2002). Predictive control with
constraints. Prentice Hall.

Mark V Automation Inc. (2000). TRC004 User’s
Manual.

Poignet, P. and M. Gautier (2000). Nonlinear
model predictive control of a robot manip-
ulator. In: Proc. 6th International Workshop
on Advanced Motion Control. Nagoya, Japan.
pp. 401 – 406.

Quanser Consulting Inc. (2003a). Q8 Data Acqui-
sition System: WinCon Support and Installa-
tion Guide, Version 1.0.

Quanser Consulting Inc. (2003b). WinCon 4.1
User’s Manual, Version 1.2.

Schittkowski, K. (1992). Quadratic Programming
implementation - C version translated from
Fortran Version 1.4 (March 1987) - C transla-
tion 1992, modified by M.J.D. Powel (Univer-
sity of Cambridge), A.L. Tits, J.L. Zhou and
C. Lawrence (University of Maryland). Math-
ematisches Institut, Universitaet Bayreuth,
Germany.

The Mathworks, Inc. (2001). Writing S-Functions.
The Mathworks, Inc.

Torres, S., J.A. Mendez, L. Acosta, M. Sigut, G.N.
Marichal and L. Moreno (2001). A predictive
control algorithm with interpolation for a ro-
bot manipulator with constraints. In: Proc.
2001 IEEE Int. Conference on Control Appli-
cations. Mexico City, Mexico. pp. 536 – 541.

