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Abstract: Active Queue Management (AQM) applies a suitable control policy upon
detecting congestion in networks. In this paper, an adaptive Proportional-Integral (PI)
controller based on Artificial Neural Networks (ANN) is applied to AQM for the
objective of congestion avoidance and control in middle nodes. The proposed controller is
simple and can be easily implemented in high-speed routers. Neural Network PI (NNPI)
dynamically adapts its parameters with respect to changes in the system. It is anticipated
that this results in better response compared to linear controllers due to the nonlinear
nature of NNPI. We simulated our method in ns2 and compared its performance with the
conventional PI controller. The simulation results show NNPI yields better performance.
Copyright © 2005 I[FAC
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1. INTRODUCTION

Congestion is a major problem in data networks and
it is considered an active and a hot research area for
researchers (Low, et al., 2002). Initially, this problem
introduced by Jacobson (1988), in the last 80’s, it
caused proposing different improved versions of
TCP in order to have more control on congestion.
Most of the proposed methods for congestion are
implemented on end nodes while there is no special
control policy in middle nodes and packets are
simply dropped when the queues are full, known as
DropTail (Low, et al., 2002). In 1993, RED (Random
Early Detection) was introduced to regulate queues’
lengths in middle nodes based on a desired policy
(Floyd, Jacobson, 1993). This approach, named
Active Queue Management (AQM), manages the
queue length by dropping packets randomly before

the queue buffer overflows. Researchers have found
that the basic RED does not meet their requirements
and it causes some instability in the network when
the number of sources increases or the parameters of
the network change (Hollot, ef al. 2001a). Even in
some cases its performance is worse than the simple
DropTail policy (Christiansen, et al., 2000). Some
new approaches based on the primary RED have
been introduced to improve the performance of RED
and solve its challenges (Ott, et al., 1999; Feng, et
al., 1999a). Some new methods also have been
proposed such as BLUE (Feng, ef al., 1999b) and
GREEN (Feng, et al, 2002) to achieve better
performance and provide more sophisticated control
policy.

Definitely, using a mathematical model can give a
more general view of a dynamical model. We can



also better analyze the behavior of the system and its
transient response to an input based on a
mathematical model. Due to the nonlinear and time
variant dynamics of the global computer network,
some researcher attempted to describe its behavior by
some mathematical formula (Floyd, 2001; Misra, et
al., 2000). One of the best models of this type about
TCP is a model that was developed by Misra, ef al.
(2000), which is based on the fluid flow model. In
this model, the probability of packet drop is
calculated according to the control law. Therefore,
one’s primary goal is to design a controller that
produces appropriate control signals. The first
controller of this model was a simple PI controller
proposed by Hollot, et al. (2001a) which gives a
better performance than RED.

Unfortunately, studies proved that AQM with PI
controller is not robust in response to uncertainties in
the network and increasing the number of sources
(Fengyuan, ef al., 2002). Therefore, designing a more
robust algorithm became a hot research topic
(Fengyuan, et al., 2002). Some researchers tried to
introduce non-model-based controllers because of
their robustness in parameters changing (Fengyuan
and Xiuming, 2002; Fatta, ef al., 2002).

Certainly, any new AQM algorithm should have
better performance and easy to implement. In this
paper, we apply an adaptive PI controller based on
ANN to AQM in order to control traffic in middle
nodes and avoid congestion in the network. Our
algorithm is simple to implement and have a more
satisfactory performance in comparison to the
existing mechanisms. NNPI dynamically adapts its
parameters with changes in the system. Due to the
nonlinear nature of NNPI, it is anticipated that our
controller results in better response than those of
linear controllers designed before.

The rest of the paper is organized as follows: In
Section 2, we introduce the active queue
management scheme. Section 3 presents the
mathematical modeling of congestion in computer
networks. In Section 4, the structure of NNPI is
discussed. Simulation result is presented in Section 5.
Finally, Section 6 concludes the paper.
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Fig. 1. A middle node router

Figure 1 shows a middle node router that applies the
active queue management policy for packets arriving
to its queue.

In the algorithms previously proposed, the router was
dropping packets when its queue buffer was full.
This policy is known as DropTail. One of the most
important weaknesses of DropTail is that the router
drops any arriving packets even a short-lived flow,
known as mice, when long-lived flows, known as
elephants, fill the buffer. This conflicts with the well
respected fairness principle of computer networks.
Meanwhile, the variation of the queue length in
middle nodes causes jitter, variation in the delay, in
packet delivery, which is not desired for real-time
applications. The amount of delay experienced in the
network depends on the amount of round trip time of
packets. Equation 1 describes this relevance.

Ri(1) = a; + 2 (1)

Index I indicates flow number and ¢; is a constant

indicating the propagation delay of the link. C and
q(t) are line capacity and the queue length

respectively. The second part of equation 1
represents the time wasted to process incoming
packets.

With fixing the queue length, since a@; and C are

constants, we can guarantee a constant round trip
time delay. Therefore, AQM can help to provide
Quality of Service (QoS) in networks.

RED was the first proposed AQM policy which
drops all arriving packets if the average queue length
exceeds the maximum threshold. In this model
routers processes and sends all packets if the average
queue length was smaller than the minimum
threshold. When the average queue length lies
between the maximum and minimum thresholds,
packets are dropped with a probability of p, which is

proportional to the average queue length. The RED
behavior is illustrated in figure 2.
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Fig. 2. RED dropping policy

Indeed, AQM acts as a regulator for the queue length
regarding the control theory point of view. The input
of this controller is the degree of congestion
measured by the average and the current queue
lengths. The output is the probability of packet
dropping or marking. The control block diagram of
computer networks is illustrated in figure 3.
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Fig. 3. AQM as a controller

There are many control theoretic-based approaches
for AQM such as PI, FPI, REM, AVQ and etc. In the
next section, we introduce a mathematical model for
computer networks which helps us to design a
controller for AQM.

3. MATHEMATICAL MODEL OF
COMPUTER NETWORKS

A practical model of active queue management based
on fluid flow was proposed in 2000 and verified by
some computer simulations, which has introduced an
acceptable accuracy for the proposed model (Misra,
et al., 2000). The behavior of packet loss in this
model was considered as a Poisson process. Then, a
stochastic differential equation is derived based on
some assumptions.

Consider a router with N sources. As explained
previously, the round trip time of packets in each
flow is as below:

(O]
Ri(t)—al-i- C

Now, we can determine the congestion window size
by:

w.
i:i__ldNi 2
R(1) 2

Where dN; is equal to 1 when the packet loss

occurs. Equation 2 consists of two increasing and
decreasing parts. The increasing part indicates the
additive increase of the AIMD algorithm while the
decreasing part indicates the multiplicative decrease.
Chiu and Jain (1989) try to prove that AIMD
achieves fair and efficient network utilization. AIMD
increases congestion window size by one in each
round trip time. This occurs in the congestion
avoidance phase of TCP. Equation 2 only considers
the congestion avoidance phase of TCP. This is true
for elephant flows such as FTP flows, since the time
of slow start in long-lived flows is small. To model
this phase, we have:

3
R.(1)

i

In this equation, we ignore the effect of the packet
loss in the slow start stage. The decrease section

halves the congestion window size in packet loss due
to the multiplicative decrease in AIMD.

Equation 2 models an end to end system. We should
also model the middle node’s behavior or the queue
length variation dynamic. So we have:

a0 o (4)
R Dy

The decreasing part of this equation corresponds to
the line capacity, while the increasing part is the
number of packets arriving to the queue.

Hollot, et al., (2001), assume a constant round trip
time and suppose same sources and rewrite equation

2 and 4 as the following (Hollot, ef al. 2001b):

1 "o
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Indeed, they ignored some delays in the model
parameters and clearly stated that these assumptions
are acceptable. Equation 5 is nonlinear with time
delay in its input. The AQM control law should
produce a suitable probability, p(¢f), which

eventually yields a good performance. Figure 4
represents an overall view of the AQM controller
position.
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Fig. 4: AQM block diagram

4. PI AND NNPI CONTROLLERS

The proposed PI controller in (Hollot, et al. 2001a)
calculates the probability of drop using the error and
integral of the error between the current queue size
and the desired queue length. A formal PI controller
is as follows (Franklin, et al., 1995):

p(O) =K ye(t) +K; jé e(r)dr (6)

Where K, and K; are the proportional and integral

coefficients and the equation of error is:

e(t) = q() = 9 gesired (7



PI controller yields a zero steady state error because
of the integral term. The most challenging problem in
designing a PI controller is choosing the appropriate

K , and K;. In (Hollot, et al. 2001a), the authors

linearized the nonlinear equations and designed a
robust and stable PI controller using this linear
model. They assumed a minimum number of sources
and a maximum amount of round trip time for their
uncertainty boundaries. However, it can be shown
that the PI controller dose not operate well when the
number of flows increases or the parameters of
network changes.

We introduce a neural network-based PI
(Matsukuma, et al., 1997) controller that adapts its
parameters with respect to the difference between the
current queue length and the desired queue length.

Consider the one layer feedforward neural network
that is shown in figure 5.
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¢ f(x)
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1

Fig. 5. A simple neural network-based PI (NNPI)

e(t) is the error function and f(x) is the activation
function of neuron. We have:

p(0)=f(x)
While (3)

x=K,e(t)+K, I;e(r)dr

We choose the activation function as a hyperbolic
tangent. The maximum value of the hyperbolic
tangent is 1, so it is suitable for probability function
that its maximum is 1.

—2kx
£(x) = tanh(k) = =

l+e 20

9

In this equation, k instances for the slope of
hyperbolic tangent function.
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Fig. 6. The activation function of neural network

A lower k yields a smoother activation function and
a higher & yields a sharper activation function. The
hyperbolic tangent function for k =1is shown in
figure 6.

To update the weight of neural networks, we use the
error back propagation rule. Using the steepest
decent, we have:

OE
Kpnew =Kpold _’717 oK

P
1
OF (10)

Kinew = Kiold i %

i
Where E is the cost function. The cost function can

be defined as the sum of square errors, and so we
have:

E= %E(e(t))z (11)

Therefore,
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We choose % =1 for convenience.
/4

For the initial weight of the neural network, we use
the proposed PI coefficients mentioned by Hollot, et
al., (2001). Neural network will change their weight
that acts as PI coefficient according to system
properties. Our experiments show that the learning
rates of order of 107! are suitable for this problem.

5. SIMULATION RESULTS

We evaluated the effectiveness and performance of
the proposed method via simulations using ns2
simulator. The network topology for our simulations
is shown in figure 7. In these simulations, we
consider a network with a link capacity of 15Mbps.
The only bottleneck link lies between node 1 and
node 2. Our simulation duration was 100 seconds. PI
controller’s gains were chosen as the coefficient
derived in (Hollot, ef al. 2001a). The learning rates
of the neural network were equal to 2e-10.

Fig. 7. Network topology of our simulations

Simulation 1: For the first experiment, we set the
round trip time to 246 milliseconds and considered
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400 ftp sources connected to node 1. The mean
packets size of TCP packets was 500 bytes. The
desired queue length was 200 packets while the
physical limit of our queue was 800 packets. The
queue length responses for PI and NNPI are depicted
in figure 8. Considering this figure, it is clear that the
proposed method should results in a better
performance and queue regulation than that of the PI
controller.

Our proposed method guarantees the maximum
queue length of 200 packets while the AQM with PI
oscillates around 200 packets. Variation of the queue
length in the PI algorithm causes jittering in delay
that is not desired in multimedia applications.
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Fig 8. N=60, RTT=246ms, Qgefrence=200 pkts

Simulation 2: Now, we increase the number of
sources to 400. While PI has a sluggish response, our
method achieves a more acceptable and faster
response (figure 9).
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Fig. 9. N=400, RTT=246ms, Qgrefrence=200 pkts

Simulation 3: We tested the controllers at one of the
end of stability spectrum by reducing the number of
sources to 20. As illustrated in figure 10, PI
controller exhibits oscillations while the NNPI
controller operates in a relatively stable mode.

Simulation 4: Figure 11 shows the queue length plots
when we increase our desired queue length to 400

Queue Length (packets)

Queue Length (packets)

packets. While PI controller oscillates heavily, the
NNPI regulates the queue length to the desired value.

Simulation 5: In this experiment we decrease the
time delay of the link to 70 milliseconds. It is
obvious from figure 12 that NNPI controller acts
better in this test bed in comparison to PI controller.
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Fig. 10. N=20, RTT=246ms, Qgefrence=200 pkts
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Fig 12: N=400, RTT=70ms, Qgrefrence=200 pkts



6. CONCLUSION

We propose a new method for active queue
management based on Neural Network PI controller.
Our algorithm adapts itself in response to
uncertainties in network parameters. Our method is
simple to implement and deploy in high speed
routers. To investigate the performance of the
proposed controller, some computer simulations have
been done using ns2 simulator. The simulations’
results show that NNPI controller has a superior
performance than that of the classical PI controller in
different networks.

Our next step will be studying the effect of
unresponsive flows like UDP on the AQM.
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