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Abstract: Due to their increasing complexity, the development of control software has 
become a difficult task. It is therefore necessary to consider a rigorous process for 
software design which integrates the different design phases in a unified manner. This 
is the aim of the present paper which proposes a coherent approach based on models 
that guarantee the development of validated applications. From an analysis model, the 
approach helps to obtain both a validation model which can be exploited with existing 
model checking tools and a specific implementation model which conforms to the 
validated model. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The design of software systems has become more and 
more difficult due to their increasing complexity.  It is 
the same for control software (Sanz, et al., 2001) in 
which the constraints of concurrence, interaction and 
synchronization, make their comprehension awkward. 
To allow the development of reliable applications, 
such complexity must be controlled and design 
accuracy must be ensured at all levels. The bottom up 
Object Oriented methods, based on reusable entities, 
help to understand this complexity and to make the 
design process easier (Booch, 1994). Despite the 
undeniable advantage in terms of productivity and 
intelligibility, this approach does not guarantee a 
suitable global behavior. So, it becomes necessary to 
check and validate the software systems modeled in 
this way before their implementation into real 
systems. 
 
A series of approaches try to introduce more formal 
aspects and semantics into the Unified Modeling 
Language (UML) (Object Management Group, 2003) 
specification of systems to allow their validation 
(Mikk, et al., 1998; Apvrille, et al., 2001). Since 
Object Oriented concepts and model checking 

techniques have matured, it is becoming possible to 
establish a design approach based on model driven 
engineering. The present approach is based on the 
composition and transformation of models to make 
checking and reliable implementation possible 
(figure1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Conceptual representation of the approach 
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The aim of the present paper is to propose a rigorous 
approach of design which simplifies, rationalizes, and 
validates the software design. To do so, this paper 
suggests to integrate, in a coherent manner, 
heterogeneous concepts and formalisms as Object 
Methods, Finite State Machines (FSM), Model 
Checking and Design Patterns. The present approach 
is based on: 
- an object oriented analysis in which the structural 

aspect is divided into two conceptual levels: the 
resource objects and the behavior objects. This 
hierarchical decomposition provides a simple means 
to identify, then isolate – in distinct classes – the 
entities of a domain and the behaviors applied to 
these entities. The abstraction and organization of 
the behaviors obtained through this modeling 
process make them easier to understand and specify. 

- a model of the dynamic aspect. In UML, Statecharts 
are commonly used to model the reactive behavior of 
entities. However, the organization obtained through 
structural modeling allows the use of simpler, more 
precise formalism. To do so, Finite State Machines 
present an appropriate notation to capture formally 
the behaviors associated with each behavioral class.  

- a particular configuration of the system in order to 
obtain the specific behaviors required. 

- a validation of the behavioral model. The FSMs are 
translated into process algebra called Finite State 
Processes (FSP) (Magee and Kramer, 1999). This 
leads to a validation model which can be exploited 
with the Labeled Transition System Analyzer 
(LTSA) model checking tool (Magee and Kramer, 
1999).  

- an implementation which agrees with the 
specifications. To this aim, this paper proposes a 
translation of the validated model based on the 
recurring use of Design Patterns (Gamma, et al., 
1995) to ensure reliable implementation. 

 
This paper is divided into two main parts. The first 
part presents the proposed approach by describing the 
analysis, validation and implementation models 
respectively and the way to obtain a coherent 
translation between these models. The second section 
presents an example of a legged robot which 
illustrates the present approach.   
 
 

2. THE PROPOSED APPROACH   
 
2.1  Analysis model 
 
The analysis model consists in finding a robust and 
adapted structure that fits the system to be modeled. 
This structure must be easy to handle and organized in 
such a way that a complex macroscopic behavior can 
be created. Since it was standardized by the Object 
Management Group (Object Management Group, 
2003), the UML has become a standard for the 
description of software systems (Gomaa, 2000). So, in 
the present approach, the analysis model is based on 
an object oriented design formed of three aspects 
which represent respectively the structure, the 
behavior and the configuration of a software system. 

The structural aspect helps to organize the 
abstractions (classes) of the model. The behavioral 
one describes the behaviors associated with the 
structure and the configuration part establishes the 
links between the instances from the abstractions. The 
specification of these links is necessary for the 
description of a particular application. This separation 
helps the designer to focus his attention on a particular 
aspect to reduce the complexity of the conception.  
 
Structural Aspects. Through different levels of 
abstraction, the specification of the structural aspects 
helps to better understand the organization and the 
interactions within a system. The UML class diagram 
is the representation which is best adapted to the 
structural organization of the abstractions. The 
structural aspect (figure 2.a) of the present models is 
based on a two-level conceptual model which allows a 
systematic separation between resources and their 
behaviors (Thiry, et al., to appear). The classes 
describing the resources represent controlled entities 
of the system. The behavioral classes describe the 
behaviors which apply to the resources and control 
them in their state space. This separation helps to 
isolate and abstract the behaviors of the resources and 
so, to simplify their specification. This concept can be 
used in a recurrent manner for the design of complex 
systems, since a resource/behavior association can be 
considered as a new resource which is, itself, 
controlled by a higher level behavior (figure 2.b). So, 
each behavior becomes an object which has an 
internal state and which interacts with other behaviors. 
This hierarchical composition proposes a simple way 
to reuse and coordinate the entities within a system. 
 
Behavioral aspects. Each behavioral class is 
associated with a Finite State Machine which specifies 
the dynamic aspect of each resource in the form of 
event/state sequences (figure 3). This choice has been 
motivated because this simple formalism which has 
formal semantics is usually used for the behavioral 
specification and can be easily integrated into a UML 
design. The independent evolution of the local 
behaviors describes the entire state-space of the 
system. In accordance with the supervision control 
architecture (Ramadge and Wonham, 1988), it is the 
aim of the higher level behaviors to coordinate local 
behaviors to obtain the global behavior of the system. 
This coordination is possible by a mechanism of 
sending/receiving events.  
 
 
 
 
 
 
 
 
 
 
 
Figure 2: a) Structural aspect at two conceptual levels, 

b) Generalization of the concept 
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Figure 3: FSM associated with behavioral classes and 

hierarchy of behavior 
 
So, local behaviors notify the global behavior of their 
change of state and so, according to the events 
received, the global behavior controls local behaviors 
in their state-space allowed. To make sure the global 
behavior meets the requirements, the behaviors which 
are isolated in the behavioral classes must be checked 
then implemented in accordance with the validation 
(section 2.2 and 2.3). 
 
Configuration aspects. The dynamic and structural 
aspects which have been described so far, propose a 
family of potential configurations of a system in terms 
of behavior, class and interaction. However, software 
design usually requires the use of many instances of 
the same abstraction. Consequently, to describe a 
system, it is necessary to know the topology of these 
instances. In UML, this information is specified with 
an object diagram, so, this representation refines the 
structural aspects by specifying the links between the 
instances and refines the behavioral aspects by 
specifying the particular messages which are 
exchanged through these links (concept of 
synchronization). Thus specified, the configuration 
helps to understand complex systems and allows the 
design of a particular application whose behavior 
must meet the requirements.  
 
The system is now fully specified and can be 
translated into the validation model to be checked and 
translated once again into an implementation model to 
be implemented in conformity with the validation. As 
will be seen in the next sections, FSMs find an 
equivalence with Design Patterns and with formal 
languages used for the implementation and validation. 
Consequently, their use makes the translation between 
the different models easier and so, simplifies the 
proposed approach.  
 
 
2.2  Validation Model 
 
The aim of all validation tools is to make software 
design reliable and to ensure designers that their 
specifications actually correspond to the requirements 
(Bérard, et al., 2001). Among the checking methods, 
two major categories can be distinguished: simulation 
and model checking. These methods are not 
competitive but complementary. It is sensible to 

associate them within UML design, so as to bring an 
effective answer to the numerous checking problems. 
However, model checking methods require the use of 
formal methods which provide a mathematical context 
for the rigorous description of some aspects of 
software systems. In the present approach, the 
validation model will be expressed using a process 
algebra notation called Finite State Processes or FSP 
(Magee and Kramer, 1999) based on the semantics of 
the Labeled Transition System (LTS). This formalism 
which is commonly used in the field of checking 
provides a clear and non ambiguous means to describe 
and analyze most aspects of finite state process 
systems (Arnold, 1994). It allows the use of the LTSA 
model checker (Magee and Kramer, 1999) in which a 
system is structured by a set of elementary 
components whose behavior is described in FSP. The 
present approach proposes to collect the behaviors 
specified with FSMs in the analysis model, then to 
translate them into FSP. The FSM formalism is also in 
accordance with the LTS’s semantics; consequently 
they immediately find a correspondence with FSP 
(table 1). 
 
Table 1: Mapping from the analysis model concepts to 

the validation model 
 
 
 
 
 
 
 
 
 
 
 
 
 
The global behavior is obtained from all the instances 
of these elementary components and all their 
interactions within a particular configuration. These 
are executed concurrently and synchronized using the 
FSP relabeling operator to specify the set of valid 
states and the set of valid transitions of the software. It 
is this global behavior which is checked by LTSA. 
 
 
2.3  Implementation Model 
 
The formal specification techniques and the use of 
model checking tools do not prevent model mismatch 
during the development cycle; this is particularly true 
during the passage to the implementation model. The 
Design Patterns (Gamma, et al., 1995) representing 
generic implementation models have been proposed to 
bring an explicit, proven solution to some recurring 
design problems. They reduce the development effort 
and increase software quality. Among these design 
patterns, the State Design Pattern gives an elegant 
solution which is commonly used for the 
implementation of Finite State Machines. The State 
Design Pattern in figure 4 specify and modify the 
behavior of an object when its state changes. 
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Figure 4: State Design Pattern  
 
In the present analysis model, the behavior of each 
component is described as a Finite State Machine; it is 
therefore pertinent to translate these FSMs into an 
implementation which corresponds to the State Design 
Pattern. The Context class has a set of methods which 
represents the set of the FSM’s actions. It manages the 
call of these methods to change the current state and 
delegates to each ConcreteState subclass the 
implementation of the task associated with the 
corresponding state. So, the passage from a 
ConcreteState class to another ConcreteState class 
evokes the change of state of a Context component. Its 
similarity with FSM helps to explicitly represent the 
concepts of states and transitions. So, it allows an 
implementation which is in accordance with the 
behaviors specified in the analysis model and checked 
in the validation model. This Design Pattern keeps the 
coherence of the approach in this last development 
phase. So, a valid implementation on specific 
platforms can be considered.  
 
 
2.4  Synthesis of the approach proposed 
 
In the present approach, the object oriented method is 
abstract enough to capture and integrate, within 
models, some heterogeneous formalisms which are 
usually used. To reduce the gap between models, each 
of them must respect the semantics of LTS. So, to 
ensure reliable software design, the present approach 
proposes - from an analysis model - to obtain a 
validation model specified with FSP and an 
implementation model based on Design Patterns. To 
illustrate this approach, the next section presents the 
example of a legged robot. 
 
 

3. LEGGED ROBOT 
 
3.1  Presentation 
 
The system (figure 5.a) used to illustrate the present 
approach is an omnidirectional hexapod robot 
(Thirion and Thiry, 2002). This mobile platform 
requires efficient and appropriate control architecture 
for the integration of a number of coordinated 
functions. This system is the source of numerous 
problems concerning concurrence, synchronization, or 
decentralized control. Only the locomotion function 
will be considered here. 
 

 
 
 
 
 
 
 
 
 
 
Figure 5 a) Mobile platform, b) Configuration  
 
A leg moves in a cyclic way between two positions 
aep (anterior extreme position) and pep (posterior 
extreme position) (figure 6.c). A leg is in retraction 
when it rests on the ground and pushes the platform 
forward. It is in protraction when it resumes its aep. 
To ensure robustness and flexibility in locomotion, the 
control software must satisfy a set of progress and 
safety rules. According to the progress rules, all the 
legs must continue to move, whatever the possible 
execution traces of the system. According to the 
safety rules, all the legs must not be raised at the same 
time. So, the robot’s control software is representative 
of a class of software systems which must be 
validated to avoid any problems in their exploitation. 
 
3.2  Analysis model 
 
Structure of the system in two conceptual levels. The 
control architecture is based on decentralized control: 
each local behavior obtained with a local controller 
(LC) is applied to a leg (L) and a global controller 
(GC) coordinates six local behaviors (figure 5.b). 
 
Leg behavior. Figure 6.b shows the discrete behavior 
of a leg equipped with its local controller (figure 6.a). 
The beginning of the walking cycle is triggered by the 
occurrence of the start action. Each local controller is 
autonomous and their parallel execution describes the 
entire state-space of the system. However, to ensure 
reliable locomotion, only few states are allowed. It is 
the aim of the global controller to control the local 
behavior in the state-space allowed. 
 
Global behavior. The global controller supervises 
(Ramadge and Wonham, 1988) each local controller 
by allowing (or not) its walking cycle (here, only the 
start action is controllable). It coordinates the legs and 
keeps the platform stable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: a) Architecture at two conceptual levels, b) 

Leg behavior and c) Walking cycle  
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Figure 7: Parallel execution of a) the LCs and b) the 

GC  
 
The global controller is not the goal of this example, 
so its specification (figure 7.b) will not be detailed 
here. It is the synchronization (sharing) of the start 
actions and the concurrent execution of all the local 
controllers (figure 7.a) and the global controller that 
provide the global behavior of the system. This global 
locomotion behavior must be validated to guarantee 
the above mentioned properties (section 3.1). Only the 
behavioral aspects which have been specified in this 
way will be validated, as will be seen in the next 
section. 
 
 
3.3  Validation model 
 
In the validation model proposed, attention will be 
given to progress properties which assert that 
“something good eventually happens" (Bérard, et al., 
2001). Indeed, adapted locomotion requires above all 
the recurrent motion of each leg. It must then be 
checked that each local controller will always be able 
to carry out its walking cycle. In agreement with the 
present approach, this property will be validated by 
the LTSA analyzer. 
 
Specification of the behavioral model. The first step 
consists in specifying the behavior of the software 
components. In this model, the behavior of each 
component is defined as a Labelled Transition System 
(LTS) and modeled using process algebra notation 
FSP. So, the LC and GC elements which have a 
behavior in the analysis model are specified in FSP. 
Figure 8 represents the FSP translation of the 
behavioral classes of the  local controller (LC) class 
graphically described by its Finite State Machine in 
figure 6.b. The global behavior is obtained from all 
the instances of these elementary components (LC, 
GC) and all their interactions within a particular 
configuration (figure 5.b).  
 
 
 
 
 
 
 
 
Figure 8: Behavior description of an LC component in 

FSP 

 
 
 
 
 
 
 
 
Figure 9: Parallel composition and synchronization in 

FSP 
 
In FSP, a process labeling (lci:LC) provides multiple 
instances of elementary components which are in 
accordance with the instances of the behavioral 
classes of the present analysis model. A set of six 
local controller processes (lci) is thus created, in 
which the labels of the actions (start, aep, pep) are 
prefixed with the label of the particular local 
controller (lc1.aep, lc2.aep,...). The global ROBOT 
behavior is expressed as a parallel composition ( || ) of 
the local (lci) and the global (gc) controllers. These are 
executed concurrently and synchronized on the start 
action (figure 9) using the FSP relabeling operator ( / 
). This ROBOT behavior is validated by the LTSA 
model checker 
 
Specification of the properties. In LTSA, the progress 
properties are expressed with the progress key word. 
The progress property previously stated (section 3.1) 
consists in checking the occurrence of the start action 
for each local controller and their infinitely repeated 
execution (figure 10).  
 
Analyze of the model. The LTSA tool allows an 
interactive simulation of the different possible 
execution scenarios of the model specified. This 
exploration allows the user to improve his confidence 
in the coherence between the expected behaviors and 
the models which describe them. This first non 
exhaustive type of validation can be complemented by 
a search for property violations. If properties are 
violated by the model, the analyzer produces the 
sequence of actions that leads to the violations. The 
designer can then modify his model according to the 
results obtained.  
 
 
3.4  Implementation model  
 
The State Design Pattern proposes a simple way to 
implement the FSM. This implementation explicitly 
preserves the LTS concepts which are described in 
terms of states, actions and transitions. The 
implementation of the State Design Pattern for the 
behavior of a leg and of its local controller is shown in 
figure 11. The LC class can be in the state: Wait, 
Protraction or Retraction (figure 6.b) according to the 
current state and the occurrence of the event aep, pep, 
or start.   
 
 
 
 
Figure 10: Progress properties in FSP 
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Figure 11: Implementation of a LC using the State 
Design Pattern  
 
This implementation diagram consists of a number of 
elements including:  
- the LC_Interface which defines all the possible 

actions of a component (alphabet of its Finite State 
Machine). 

- the Local Controller class (LC) which exploits the 
abstraction of the leg as a resource by giving it a 
behavior described as a succession of states. It 
implements the LC_Interface and lets a local object 
called state perform the specific behaviors. This 
local object represents the current state of the local 
controller and changes according to the transitions 
inherent in its behavior (aep, pep, or start).    

- the LC_State class which implements, in an abstract 
way, the behavioral LC_Interface and represents the 
parent class of all the states of a local behavior. Each 
particular state (Wait, Protraction, Retraction) 
implements the specific task associated with the state 
of the component. Each of these subclasses only 
defines the actions/transitions that are associated 
with them and the call of the corresponding methods 
causes the adaptation of the state of the local 
controller. 

 
In this way, the State Design Pattern provides a safe 
means to produce the translation of an abstraction (the 
analysis model) into its implementation (the 
implementation model). 

 
 

4. CONCLUSION AND PERSEPECTIVES 
 
This paper has presented a rational method for 
software design by proposing a model based approach 
(analysis, validation and implementation models). It 
depends on an object oriented architecture with two 
conceptual levels and formal specifications based on 
Finite State Machines. From the information 
(structure, object, configuration and behavior) 
contained in the present analysis model, a validation 
model is obtained which fits the specified behavior. 
An implementation model adapted to this specification 
is obtained using the State Design Pattern, while 
conforming to the validation performed previously. 

Each model corresponds to the semantics of Finite 
State Machines which reduces the gaps between the 
different models. The present approach thus allows 
the coherent transition between heterogeneous 
models, ensuring the rational integration of the 
different phases in software development. The current 
work will be followed by the precise definition of 
transformation models aiming at a systematic or even 
automatic translation between the different models 
proposed. This automated model transformation will 
make the development process easier and more 
reliable.  
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