

TOWARDS A VALIDATED OBJECT ORIENTED DESIGN APPROACH TO CONTROL
SOFTWARE

Alban Rasse, Jean Marc Perronne, Bernard Thirion

MIPS Laboratory, LSI Group
University of Haute Alsace, ESSAIM

12 rue des frères lumière, 68093 Mulhouse cedex, France

Abstract: Due to their increasing complexity, the development of control software has
become a difficult task. It is therefore necessary to consider a rigorous process for
software design which integrates the different design phases in a unified manner. This
is the aim of the present paper which proposes a coherent approach based on models
that guarantee the development of validated applications. From an analysis model, the
approach helps to obtain both a validation model which can be exploited with existing
model checking tools and a specific implementation model which conforms to the
validated model. Copyright © 2005 IFAC

Keywords: Software Engineering, Control System Synthesis, Object Modeling
Technique, Models, Validation, Implementation

1. INTRODUCTION

The design of software systems has become more and
more difficult due to their increasing complexity. It is
the same for control software (Sanz, et al., 2001) in
which the constraints of concurrence, interaction and
synchronization, make their comprehension awkward.
To allow the development of reliable applications,
such complexity must be controlled and design
accuracy must be ensured at all levels. The bottom up
Object Oriented methods, based on reusable entities,
help to understand this complexity and to make the
design process easier (Booch, 1994). Despite the
undeniable advantage in terms of productivity and
intelligibility, this approach does not guarantee a
suitable global behavior. So, it becomes necessary to
check and validate the software systems modeled in
this way before their implementation into real
systems.

A series of approaches try to introduce more formal
aspects and semantics into the Unified Modeling
Language (UML) (Object Management Group, 2003)
specification of systems to allow their validation
(Mikk, et al., 1998; Apvrille, et al., 2001). Since
Object Oriented concepts and model checking

techniques have matured, it is becoming possible to
establish a design approach based on model driven
engineering. The present approach is based on the
composition and transformation of models to make
checking and reliable implementation possible
(figure1).

Figure 1: Conceptual representation of the approach

proposed

Implementation model
- State Design Pattern -

Model Checker
- LTSA -

Specific platform

Checking Execution

Validation model
- FSP -

 :A

Analysis model
- UML, FSM -

public static void main (String arg[])
{
…
}

PROCESS = PROCESS0,
PROCESS0= (action PROCESSn),
…
PROCESSn = action PROCESS0).

|| SYSTEM = (PROCESS-A |
 |PROCESS_B).

Transformation Transformation

Coherent
approach

 :C
 :B

The aim of the present paper is to propose a rigorous
approach of design which simplifies, rationalizes, and
validates the software design. To do so, this paper
suggests to integrate, in a coherent manner,
heterogeneous concepts and formalisms as Object
Methods, Finite State Machines (FSM), Model
Checking and Design Patterns. The present approach
is based on:
- an object oriented analysis in which the structural

aspect is divided into two conceptual levels: the
resource objects and the behavior objects. This
hierarchical decomposition provides a simple means
to identify, then isolate – in distinct classes – the
entities of a domain and the behaviors applied to
these entities. The abstraction and organization of
the behaviors obtained through this modeling
process make them easier to understand and specify.

- a model of the dynamic aspect. In UML, Statecharts
are commonly used to model the reactive behavior of
entities. However, the organization obtained through
structural modeling allows the use of simpler, more
precise formalism. To do so, Finite State Machines
present an appropriate notation to capture formally
the behaviors associated with each behavioral class.

- a particular configuration of the system in order to
obtain the specific behaviors required.

- a validation of the behavioral model. The FSMs are
translated into process algebra called Finite State
Processes (FSP) (Magee and Kramer, 1999). This
leads to a validation model which can be exploited
with the Labeled Transition System Analyzer
(LTSA) model checking tool (Magee and Kramer,
1999).

- an implementation which agrees with the
specifications. To this aim, this paper proposes a
translation of the validated model based on the
recurring use of Design Patterns (Gamma, et al.,
1995) to ensure reliable implementation.

This paper is divided into two main parts. The first
part presents the proposed approach by describing the
analysis, validation and implementation models
respectively and the way to obtain a coherent
translation between these models. The second section
presents an example of a legged robot which
illustrates the present approach.

2. THE PROPOSED APPROACH

2.1 Analysis model

The analysis model consists in finding a robust and
adapted structure that fits the system to be modeled.
This structure must be easy to handle and organized in
such a way that a complex macroscopic behavior can
be created. Since it was standardized by the Object
Management Group (Object Management Group,
2003), the UML has become a standard for the
description of software systems (Gomaa, 2000). So, in
the present approach, the analysis model is based on
an object oriented design formed of three aspects
which represent respectively the structure, the
behavior and the configuration of a software system.

The structural aspect helps to organize the
abstractions (classes) of the model. The behavioral
one describes the behaviors associated with the
structure and the configuration part establishes the
links between the instances from the abstractions. The
specification of these links is necessary for the
description of a particular application. This separation
helps the designer to focus his attention on a particular
aspect to reduce the complexity of the conception.

Structural Aspects. Through different levels of
abstraction, the specification of the structural aspects
helps to better understand the organization and the
interactions within a system. The UML class diagram
is the representation which is best adapted to the
structural organization of the abstractions. The
structural aspect (figure 2.a) of the present models is
based on a two-level conceptual model which allows a
systematic separation between resources and their
behaviors (Thiry, et al., to appear). The classes
describing the resources represent controlled entities
of the system. The behavioral classes describe the
behaviors which apply to the resources and control
them in their state space. This separation helps to
isolate and abstract the behaviors of the resources and
so, to simplify their specification. This concept can be
used in a recurrent manner for the design of complex
systems, since a resource/behavior association can be
considered as a new resource which is, itself,
controlled by a higher level behavior (figure 2.b). So,
each behavior becomes an object which has an
internal state and which interacts with other behaviors.
This hierarchical composition proposes a simple way
to reuse and coordinate the entities within a system.

Behavioral aspects. Each behavioral class is
associated with a Finite State Machine which specifies
the dynamic aspect of each resource in the form of
event/state sequences (figure 3). This choice has been
motivated because this simple formalism which has
formal semantics is usually used for the behavioral
specification and can be easily integrated into a UML
design. The independent evolution of the local
behaviors describes the entire state-space of the
system. In accordance with the supervision control
architecture (Ramadge and Wonham, 1988), it is the
aim of the higher level behaviors to coordinate local
behaviors to obtain the global behavior of the system.
This coordination is possible by a mechanism of
sending/receiving events.

Figure 2: a) Structural aspect at two conceptual levels,

b) Generalization of the concept

Resource

Behavior

Resource

Behavior

Behavior

 Resource

Behavior

Resource

a) b)
behavior

space

target
space

Figure 3: FSM associated with behavioral classes and

hierarchy of behavior

So, local behaviors notify the global behavior of their
change of state and so, according to the events
received, the global behavior controls local behaviors
in their state-space allowed. To make sure the global
behavior meets the requirements, the behaviors which
are isolated in the behavioral classes must be checked
then implemented in accordance with the validation
(section 2.2 and 2.3).

Configuration aspects. The dynamic and structural
aspects which have been described so far, propose a
family of potential configurations of a system in terms
of behavior, class and interaction. However, software
design usually requires the use of many instances of
the same abstraction. Consequently, to describe a
system, it is necessary to know the topology of these
instances. In UML, this information is specified with
an object diagram, so, this representation refines the
structural aspects by specifying the links between the
instances and refines the behavioral aspects by
specifying the particular messages which are
exchanged through these links (concept of
synchronization). Thus specified, the configuration
helps to understand complex systems and allows the
design of a particular application whose behavior
must meet the requirements.

The system is now fully specified and can be
translated into the validation model to be checked and
translated once again into an implementation model to
be implemented in conformity with the validation. As
will be seen in the next sections, FSMs find an
equivalence with Design Patterns and with formal
languages used for the implementation and validation.
Consequently, their use makes the translation between
the different models easier and so, simplifies the
proposed approach.

2.2 Validation Model

The aim of all validation tools is to make software
design reliable and to ensure designers that their
specifications actually correspond to the requirements
(Bérard, et al., 2001). Among the checking methods,
two major categories can be distinguished: simulation
and model checking. These methods are not
competitive but complementary. It is sensible to

associate them within UML design, so as to bring an
effective answer to the numerous checking problems.
However, model checking methods require the use of
formal methods which provide a mathematical context
for the rigorous description of some aspects of
software systems. In the present approach, the
validation model will be expressed using a process
algebra notation called Finite State Processes or FSP
(Magee and Kramer, 1999) based on the semantics of
the Labeled Transition System (LTS). This formalism
which is commonly used in the field of checking
provides a clear and non ambiguous means to describe
and analyze most aspects of finite state process
systems (Arnold, 1994). It allows the use of the LTSA
model checker (Magee and Kramer, 1999) in which a
system is structured by a set of elementary
components whose behavior is described in FSP. The
present approach proposes to collect the behaviors
specified with FSMs in the analysis model, then to
translate them into FSP. The FSM formalism is also in
accordance with the LTS’s semantics; consequently
they immediately find a correspondence with FSP
(table 1).

Table 1: Mapping from the analysis model concepts to

the validation model

The global behavior is obtained from all the instances
of these elementary components and all their
interactions within a particular configuration. These
are executed concurrently and synchronized using the
FSP relabeling operator to specify the set of valid
states and the set of valid transitions of the software. It
is this global behavior which is checked by LTSA.

2.3 Implementation Model

The formal specification techniques and the use of
model checking tools do not prevent model mismatch
during the development cycle; this is particularly true
during the passage to the implementation model. The
Design Patterns (Gamma, et al., 1995) representing
generic implementation models have been proposed to
bring an explicit, proven solution to some recurring
design problems. They reduce the development effort
and increase software quality. Among these design
patterns, the State Design Pattern gives an elegant
solution which is commonly used for the
implementation of Finite State Machines. The State
Design Pattern in figure 4 specify and modify the
behavior of an object when its state changes.

Analysis model Validation model

FSM state local process
P=(a P).

FSM event Action prefix
a

classes processes

instances process labeling
instance_name : type_name

configuration parallel composition
instance_1 || instance_2

synchronization

relabeling operator: a / b

 receive event b

1

0

2

FSM Model Object Model

Resource

Behavior

Behavior

Behavior

 Resource

receive event e
/ send event b

receive event a

0

Resource

1

events

events

synchronization

receive
event c

receive
event d

Figure 4: State Design Pattern

In the present analysis model, the behavior of each
component is described as a Finite State Machine; it is
therefore pertinent to translate these FSMs into an
implementation which corresponds to the State Design
Pattern. The Context class has a set of methods which
represents the set of the FSM’s actions. It manages the
call of these methods to change the current state and
delegates to each ConcreteState subclass the
implementation of the task associated with the
corresponding state. So, the passage from a
ConcreteState class to another ConcreteState class
evokes the change of state of a Context component. Its
similarity with FSM helps to explicitly represent the
concepts of states and transitions. So, it allows an
implementation which is in accordance with the
behaviors specified in the analysis model and checked
in the validation model. This Design Pattern keeps the
coherence of the approach in this last development
phase. So, a valid implementation on specific
platforms can be considered.

2.4 Synthesis of the approach proposed

In the present approach, the object oriented method is
abstract enough to capture and integrate, within
models, some heterogeneous formalisms which are
usually used. To reduce the gap between models, each
of them must respect the semantics of LTS. So, to
ensure reliable software design, the present approach
proposes - from an analysis model - to obtain a
validation model specified with FSP and an
implementation model based on Design Patterns. To
illustrate this approach, the next section presents the
example of a legged robot.

3. LEGGED ROBOT

3.1 Presentation

The system (figure 5.a) used to illustrate the present
approach is an omnidirectional hexapod robot
(Thirion and Thiry, 2002). This mobile platform
requires efficient and appropriate control architecture
for the integration of a number of coordinated
functions. This system is the source of numerous
problems concerning concurrence, synchronization, or
decentralized control. Only the locomotion function
will be considered here.

Figure 5 a) Mobile platform, b) Configuration

A leg moves in a cyclic way between two positions
aep (anterior extreme position) and pep (posterior
extreme position) (figure 6.c). A leg is in retraction
when it rests on the ground and pushes the platform
forward. It is in protraction when it resumes its aep.
To ensure robustness and flexibility in locomotion, the
control software must satisfy a set of progress and
safety rules. According to the progress rules, all the
legs must continue to move, whatever the possible
execution traces of the system. According to the
safety rules, all the legs must not be raised at the same
time. So, the robot’s control software is representative
of a class of software systems which must be
validated to avoid any problems in their exploitation.

3.2 Analysis model

Structure of the system in two conceptual levels. The
control architecture is based on decentralized control:
each local behavior obtained with a local controller
(LC) is applied to a leg (L) and a global controller
(GC) coordinates six local behaviors (figure 5.b).

Leg behavior. Figure 6.b shows the discrete behavior
of a leg equipped with its local controller (figure 6.a).
The beginning of the walking cycle is triggered by the
occurrence of the start action. Each local controller is
autonomous and their parallel execution describes the
entire state-space of the system. However, to ensure
reliable locomotion, only few states are allowed. It is
the aim of the global controller to control the local
behavior in the state-space allowed.

Global behavior. The global controller supervises
(Ramadge and Wonham, 1988) each local controller
by allowing (or not) its walking cycle (here, only the
start action is controllable). It coordinates the legs and
keeps the platform stable.

Figure 6: a) Architecture at two conceptual levels, b)

Leg behavior and c) Walking cycle

+ handle ()

Context
context state

state. handle () ConcreteState _N

 + handle ()

ConcreteState_1

 + handle ()

State

 + handle ()

...

// specific handle

:P

:P

:P

:P

:P

:P

:GC : LC : LC

: LC :LC

: LC : LC

b) a)

a)

Leg

Structure / Classes

LC
(local behavior)

Behavior / FSM

b)

 aep

start

pep

WAIT

PROTRACTION

RETRACTION

Walking cycle

pep

aep

Rétraction

Protraction

c)

Figure 7: Parallel execution of a) the LCs and b) the

GC

The global controller is not the goal of this example,
so its specification (figure 7.b) will not be detailed
here. It is the synchronization (sharing) of the start
actions and the concurrent execution of all the local
controllers (figure 7.a) and the global controller that
provide the global behavior of the system. This global
locomotion behavior must be validated to guarantee
the above mentioned properties (section 3.1). Only the
behavioral aspects which have been specified in this
way will be validated, as will be seen in the next
section.

3.3 Validation model

In the validation model proposed, attention will be
given to progress properties which assert that
“something good eventually happens" (Bérard, et al.,
2001). Indeed, adapted locomotion requires above all
the recurrent motion of each leg. It must then be
checked that each local controller will always be able
to carry out its walking cycle. In agreement with the
present approach, this property will be validated by
the LTSA analyzer.

Specification of the behavioral model. The first step
consists in specifying the behavior of the software
components. In this model, the behavior of each
component is defined as a Labelled Transition System
(LTS) and modeled using process algebra notation
FSP. So, the LC and GC elements which have a
behavior in the analysis model are specified in FSP.
Figure 8 represents the FSP translation of the
behavioral classes of the local controller (LC) class
graphically described by its Finite State Machine in
figure 6.b. The global behavior is obtained from all
the instances of these elementary components (LC,
GC) and all their interactions within a particular
configuration (figure 5.b).

Figure 8: Behavior description of an LC component in

FSP

Figure 9: Parallel composition and synchronization in

FSP

In FSP, a process labeling (lci:LC) provides multiple
instances of elementary components which are in
accordance with the instances of the behavioral
classes of the present analysis model. A set of six
local controller processes (lci) is thus created, in
which the labels of the actions (start, aep, pep) are
prefixed with the label of the particular local
controller (lc1.aep, lc2.aep,...). The global ROBOT
behavior is expressed as a parallel composition (||) of
the local (lci) and the global (gc) controllers. These are
executed concurrently and synchronized on the start
action (figure 9) using the FSP relabeling operator (/
). This ROBOT behavior is validated by the LTSA
model checker

Specification of the properties. In LTSA, the progress
properties are expressed with the progress key word.
The progress property previously stated (section 3.1)
consists in checking the occurrence of the start action
for each local controller and their infinitely repeated
execution (figure 10).

Analyze of the model. The LTSA tool allows an
interactive simulation of the different possible
execution scenarios of the model specified. This
exploration allows the user to improve his confidence
in the coherence between the expected behaviors and
the models which describe them. This first non
exhaustive type of validation can be complemented by
a search for property violations. If properties are
violated by the model, the analyzer produces the
sequence of actions that leads to the violations. The
designer can then modify his model according to the
results obtained.

3.4 Implementation model

The State Design Pattern proposes a simple way to
implement the FSM. This implementation explicitly
preserves the LTS concepts which are described in
terms of states, actions and transitions. The
implementation of the State Design Pattern for the
behavior of a leg and of its local controller is shown in
figure 11. The LC class can be in the state: Wait,
Protraction or Retraction (figure 6.b) according to the
current state and the occurrence of the event aep, pep,
or start.

Figure 10: Progress properties in FSP

LC = WAIT,
WAIT = (start -> PROTRACTION),
PROTRACTION = (aep -> RETRACTION),
RETRACTION = (pep -> WAIT).

|| ROBOT = (lc1:LC || lc2:LC || ... || gc:GC)
/{
gc.start1 / lc1.start,
gc.start2 / lc2.start,
...
}.

progress Cycle_lc1 = {lc1. start}.
…

progress Cycle_lc6 = {lc6. start}.

||: concurrent execution

...

a)

 aep

start

pep

WAIT

PROTRACTION

RETRACTION

startn

 aep

start

pep

WAIT

PROTRACTION

RETRACTION

X

Y

b)

Figure 11: Implementation of a LC using the State
Design Pattern

This implementation diagram consists of a number of
elements including:
- the LC_Interface which defines all the possible

actions of a component (alphabet of its Finite State
Machine).

- the Local Controller class (LC) which exploits the
abstraction of the leg as a resource by giving it a
behavior described as a succession of states. It
implements the LC_Interface and lets a local object
called state perform the specific behaviors. This
local object represents the current state of the local
controller and changes according to the transitions
inherent in its behavior (aep, pep, or start).

- the LC_State class which implements, in an abstract
way, the behavioral LC_Interface and represents the
parent class of all the states of a local behavior. Each
particular state (Wait, Protraction, Retraction)
implements the specific task associated with the state
of the component. Each of these subclasses only
defines the actions/transitions that are associated
with them and the call of the corresponding methods
causes the adaptation of the state of the local
controller.

In this way, the State Design Pattern provides a safe
means to produce the translation of an abstraction (the
analysis model) into its implementation (the
implementation model).

4. CONCLUSION AND PERSEPECTIVES

This paper has presented a rational method for
software design by proposing a model based approach
(analysis, validation and implementation models). It
depends on an object oriented architecture with two
conceptual levels and formal specifications based on
Finite State Machines. From the information
(structure, object, configuration and behavior)
contained in the present analysis model, a validation
model is obtained which fits the specified behavior.
An implementation model adapted to this specification
is obtained using the State Design Pattern, while
conforming to the validation performed previously.

Each model corresponds to the semantics of Finite
State Machines which reduces the gaps between the
different models. The present approach thus allows
the coherent transition between heterogeneous
models, ensuring the rational integration of the
different phases in software development. The current
work will be followed by the precise definition of
transformation models aiming at a systematic or even
automatic translation between the different models
proposed. This automated model transformation will
make the development process easier and more
reliable.

REFERENCE

Apvrille, L., P. de Saqui-Sannes, C.Lohr, P. Sénac and
J.P. Courtiat (2001). A new UML Profile for
Real-time System Formal Design and Validation,
Proceedings of UML'2001, Toronto, Canada, 287-
301.

Arnold, A. (1994). Finite Transition System, Prentice
Hall, Prentice Hall.

Bérard, B., M. Bidoit, A. Finkele, F. Laroussinie, A.,
Petitand P. Schnoebelen (2001). Systems and
Software Verification. Model Checking
Techniques and Tools. Springer, New York.

Booch, G. (1994). Object-oriented Analysis and
Design with Applications, Second Edition, The
Benjamin/Cummings Publishing Company Inc,
Redwood City, California.

Gamma, E., R. Helm, R. Johnson and J. Vlissides
(1995). Design Patterns – Elements of Reusable
Object Oriented Software, Addison Wesley,
Reading, Massachusetts.

Gomaa, H. (2000). Designing Concurrent, Distributed
and Real Time Application with UML. Addison
Wesley, Reading, Massachusetts.

Magee, J. and J. Kramer (1999). Concurrency. State
Models & Java Programs. John Wiley & Sons,
Chichester, UK.

Mikk, E., Y. Lakhnech, M. Siegel and G.J. Holzmann
(1998). Implementing Statecharts in
PROMELA/SPIN, Proceedings of WIFT’98,
Boca Raton, FL, USA, 90-101.

Object Management Group, (2003). OMG, Unified
Modeling Language Specification, Version 1.5,
http://www.omg.org/docs/formal/03-03-01.pdf

Ramadge, P.J. and W. Wonham (1988). The control
of Discrete Event Systems. Proceeding of the
IEEE, 77, 81-98.

Sanz, R., C. Pfister, W. Schaufelberger and A. De
Atonio (2001). Software for Complex Controllers
In: Control Of Complex Systems (Karl Astrom, P.
Albertos, M. Blanke, A. Isidori, W.
Schaufelberger, R. Sanz, Ed.). pp.143-164.
Springer-Verlag, London.

Thirion, B. and L. Thiry (2002). Concurrent
programming for the Control of Hexapode
Walking, ACM Ada letters, 21, 12-36.

Thiry, L., J.M. Perronne and B. Thirion (to appear).
Patterns for Behavior Modeling and Integration,
Computer in Industry, Elseier, Amsterdam.

LC

start ()
aep()
pep()
changeState(State)

state

start ()
aep()
pep ()

LC_State

LC_Interface

start ()
aep ()
pep ()

Leg

resource

<< implements >>

PROTRACTION

aep ()

WAIT

start ()

RETRACTION

pep ()

Abstraction Execution

<< interface >>

 aep

start

pep

WAIT

PROTRACTION

RETRACTION

