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Abstract: A first principles model of a cement grinding circuit is developed for
the purpose of multi-variable model predictive control (MPC). The model is based
on a series of mixed flow reactors with an ideal screen to model flow between
the two chambers in the ball mill. The separator is modelled by efficiency curves.
Breakage of the particles is modelled as a first order process in terms of functions
for the specific rate of breakage and the fragment distribution from breakage. These
breakage functions are empirically based. A stationary solution for the model is
found and dynamic simulations of step changes in the manipulated variables are
shown. Copyright c© 2005 IFAC.
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1. INTRODUCTION

Production of cement is one of the most energy
intensive industrial processes, consuming up to
2 % of the worlds electricity due to several low
efficiency processes. The grinding of cement clin-
ker from the kiln is the most inefficient process
in the manufacturing, with an efficiency of 1 %
(Benzer et al., 2001). This low efficiency makes
optimization of cement clinker grinding circuits
a task with large economical and environmental
perspectives.

Predictive control of cement processes inclu-
ding the grinding circuits has been reviewed by
Sánchez and Rodellar (1996). Studies of resi-
dence time distribution for the transport of charge
through continuous ball mills have concluded that

neither ideal mixed flow nor plug flow can model
the transport satisfactorily (Austin et al., 1984).
Model proposals based on a series of ideally mixed
reactors or plug flow with axial dispersion have
been presented in the literature in recent years for
the ball mill, in order to develop model predictive
control schemes. Contributions to modelling ball
mills with two chambers by PDE models have
been made by Boulvin et al. (1999) using grey box
modelling and Lepore et al. (2003) using a reduced
order PDE model with only three discrete particle
sizes. Magni et al. (1999) have also proposed a
simple three state ODE model for cement grinding
circuits for control purposes by dynamical model-
ling of the holdup in the mill, the product and
tailings flow rates. This model formulation does
not make it possible to predict the particle size
distributions in the system. Benzer et al. (2001)



have used ideally mixed reactors to model the flow
through the mill with a screen to simulate the
diaphragm between the chambers in the mill. The
authors successfully validated their model against
data from industrial ball mills in operation.

Difficulties in modelling and controlling the mil-
ling operations arise because the grinding me-
dium sizes are distributed over several orders of
magnitude and consist of a mixture of cement
clinker, gypsum and possibly a filler all with dif-
ferent breakage properties. It is difficult, at best,
to obtain reliable measurements of key variables
such as the mill hold up and the particle size
distributions in the system. The size distribution
of the product can be measured continuously by
laser diffraction but to reduce investments this
measurement is frequently provided using sieving
analysis at discrete time intervals. The hold up in
the mill is important in order to run the operation
at the optimum efficiency. If the clinker to ball
ratio is too small, energy is lost on too many ball
to ball impacts, while too high a ratio cushions
the impacts and risks choking the mill (Austin et

al., 1984).

The characteristics for the operation presented
here imply that a MPC algorithm based on a mo-
del with good ability to describe the dynamic be-
havior of the grinding operation could be effective.
The predictive nature of this controller can com-
pensate for the lack of continuous measurements.
The use of predictive control on cement grinding
circuits based on statistical models obtained by
process identification has proven more efficient as
compared to the more conventional fuzzy control
(Knudsen, 2004).

The purpose of this study is to develop a simple
first principles model description of a cement
grinding circuit for control purposes. The dynamic
properties of this model will be validated and
parameters estimated, against plant data or a
more sophisticated simulation model. Ultimately
this work aims at the development of a MPC
strategy for control of cement mill circuits.

In the following section a brief introduction to the
system is provided and section 3 gives the model
formulation of the grinding circuit including the
grinding kinetics. Sections 4 and 5 discuss pa-
rameter estimation, model validation and shows
dynamic simulations of the model.

2. PROCESS DESCRIPTION

The grinding circuit investigated here is sketched
on figure 1. It consist of an F. L. Smidth UMS
46 × 14.0 ball mill, which is a two compartment
mill with a Stanex grate diaphragm between the
chambers (F.L.Smidth, 2004a). Classification is
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Fig. 1. The closed-loop cement grinding circuit.

performed by a F. L. Smidth SEPAX 375M-122
separator (F.L.Smidth, 2004b). The process is
monitored by measuring the recycle flow rate and
the rate and finness of the product. Measurements
of the elevator current are proportional to the
load on the carrier and the noise emission from
the mill measured by a folaphone and the power
consumption by the mill can be related to the hold
up in the mill. Low clinker to ball ratio yields a
high noise emission. Manipulated variables for this
system are the feed rate and the rotor speed of the
separator ωr.

3. THE PROCESS MODEL FORMULATION

The ball mill is modelled as a series of equally
sized continuous, stirred tank reactors (CSTR).
The first chamber consists of two reactors and the
number of reactors modelling the mixing in the
last chamber can vary in order to fit residence time
distribution data. Here the second chamber will
be modelled using three additional reactors. The
flow between the chambers will be restricted by an
ideal screen such that only particles smaller than
a certain size can pass. The model is illustrated in
figure 2.

Particles in the system will be described by di-
scretizing the size distribution into n size inter-
vals using sieving sizes (z = 4

√
2) or a more rough

discretization depending on the scaling factor z.

Top size of i’th interval = xp
max

(

1

z

)i−1

(1)

i ∈ [1; n], z ∈ { 4
√

2,
√

2, 2}

Top size particles will be labelled xp
1 and the

top size in this interval is xp
max. The smallest

particles up till the top size of xp
n will belong to

this sink interval. All particles in each size inter-
val will be assumed to have identical properties
with respect to flow and breakage. In this paper
xp

max = 25mm, z = 2 and n = 10 giving a top size
of xp

n = 48.8µm.
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Fig. 2. A model of the cement mill consisting on five continuous, stirred tank reactors. A screen is used
to model the flow between the two chambers and restrict parssing of oversizesed particles. m are
vectors with the mass flow for each size.

3.1 Breakage kinetics

Breakage of particles from one size to a smaller
one will be described using breakage functions
Si for the specific rate of breakage out of size i
and bi,j for the probability that a particle that is
broken out of size j will be distributed to size i.
The breakage functions Si and bi,j depends on the
physico-mechanical properties of the material and
the grinding conditions (Park et al., 1998). Studies
by Austin et al. (1984) and Deniz (2003) show
that assuming first order breakage for ball milling
is often an excellent approximation. Due to the
first order kinetics in the mill, a vector with the
rate of formation for all the sizes can be written
as

rate of formation = KrateW (2)

where the vector W contains the holdup of par-
ticles from size 1 to n. The rate matrix Krate is
constructed from the breakage functions as a lower
triangular matrix.

Krate =


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
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
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−S1 0 · · · 0 0
S1b2,1 −S2 · · · 0 0
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Specific rate of breakage functions

The rate of breakage for the individual parti-
cle sizes can be approximated by a power law
expression but since a small ball size is inefficient
to break large lumps, Austin et al. (1984) have
proposed the following expression for the rate of
breakage for ball milling.

Si = ab

(

xp
i

1000µm

)αb

QiC2C3 (3a)

where

Qi =
1

1 +
(

x
p

i

C1µ

)Λ
(3b)

µ is the particle size for which Qi = 0.5 and Λ
is a positive parameter reflecting how rapidly the
breakage rate decreases with particle size. Since

the environment in the ball mill is not uniform
or static, a set of scale up and correction factors,
(4), are multiplied in equation (3) to account for
changes in e.g. ball size and hold up.

C1 =

(

d

dT

)2

(4a)

C2 =

(

dT

d

)N0

(4b)

C3 =
1 + 6.6J2.3

T

1 + 6.6J2.3
exp(−c(U − UT )) (4c)

The subscript T refers to a set of reference con-
ditions and d, J and U are the ball diameter,
fraction of balls filling by volume in the mill and
void fraction between balls, filled with particles
for a mill at rest respectively.

A similar approach has been used by Sato et

al. (1996) where the authors relates the material
dependent parameter ab in (3) to the Hardgrove
grindability index, HGI , as follows:

ab = 1.5(1− exp(−0.0026HGI1.5)) (5)

and the exponet αb was found to 1.25.

Breakage distribution functions

Austin et al. (1984) have presented (6) as an
empirical correlation for the cumulative breakage
distribution function where bi,j = Bi,j − Bi+1,j

for i < n.

Bi,j = Φj

(

xp
i−1

xp
j

)γ

+ (1 − Φj)

(

xp
i−1

xp
i

)β

(6)

where

Φ1 =

1 −
(

1

z

)β

− b2,1

(

1

z

)γ

−
(

1

z

)β
(7a)

Φj+1 = Φj

(

1

z

)

−δN

(7b)

and z is the same as used in equation (1). The
parameters γ and β are related to the distribution
of fragments as shown on figure 3. The parameter
δN ≈ 0.2 for cement clinker (Austin et al., 1984).



Fig. 3. Cumulative fragment distribution from
breakage of the top size interval, xp

i=1, of a
sample of quartz under changing ball and
charge filling. (Austin et al., 1984, page 87)

3.2 Mass balances

Given the formulation in terms of well mixed rea-
ctors the mass balances for the system becomes.

dW1

dt
= m0 + m21 −m12 + Krate,1W1 (8a)

dW2

dt
= m12 −m21 −m2 + Krate,2W2 (8b)

dW3

dt
= m2 + m43 −m34 + Krate,3W3 (8c)

dW4

dt
= m34 + m54 −m43 −m45 + Krate,4W4

(8d)

dW5

dt
= m45 −m54 −m5 + Krate,5W5 (8e)

where m0 is given by the feed to the mill and
all the mass flows from reactor i to the j’th,
mij , is first order functions of the hold up in the
i’th reactor as shown in equation (9a) and not
depending on the conditions in reactor j. m2 and
m5 are given as first order functions of the particle
hold up in the chamber the particles are flowing
from.

mij = k1Wi (9a)

m2 = q1

(I −R)W2
∑

(I −R)W2

(9b)

where

q1 = 0.0171
∑

Chamber 1

W− 0.0981

m5 = q2

W5
∑

W5

(9c)

where

q2 = 0.00705
∑

Chamber 2

W− 0.0717

The matrix (I− R) gives a diagonal matrix which
elements are the fraction of a particle size that
are transported thourgh the diaphragm. Since
the diaphragm is model as an ideal screan these
elements does only take the values 0 or 1. The
restrictions on the flow in the mill expresses that
the flow between two of the reactors inside a mill
chamber in the model is driven by the difference
in hold up. The flow through the diaphragm in
the middle is only occurring from the first to the
second chamber.

3.3 Classification

The separator will be described by a static model
since it is assumed to have much faster dynamics
than the ball mill. The model consists of a effici-
ency curve (Tromp curve) giving the fraction of
accepted particles, wp

i , as a function of particle
size. These particles leaves with the product flow.
Separators like the F. L. Smidth SEPAX 375M-
122 separator has Tromp curves which exhibit a
”fish hook” shape and a small amount of the feed
to the separator is bypassed without classification
(F.L.Smidth, 2004b). Benzer et al. (2001) uses a
Tromp curve with the desired properties.

wp
i = (1 − δbp)

(

1 + β1β2

xp
i

d50

)

(exp(αT ) − 1)

exp

(

αT β2

xp
i

d50

)

+ exp (αT ) − 2

(10)

i ∈ {1, 2, .., n}
where δbp is the bypass factor and β1 is the
fish hook parameter. The parameter β2 determine
the location for the cutsize d50. Variation in the
air speed, vair, and the rotor speed, ωr, in the
separator are incorporated in the Tromp curve
through the cut size and the sharpness factor αT .

d50 = f(vair, ωr)

αT = g(vair, ωr)

Choosing β1 = 0 in equation (10) removes the
hook shape for the efficency curve.

4. ESTIMATION AND VALIDATION

The model for the circuit containes a number of
known and unknown parameters. Known parame-
ters are the dimensions of the equipment and the
properties of the feed. The unknown parameters
can in some cases be determined from independent
experiments and have been reported in litera-
ture (Austin et al., 1984; Sato et al., 1996). For
parameter estimation a selection of parameters



representing the transport through the mill, the
grinding and the separation have been chosen

θ =
[

k1 αb b21 β2 Cb

]T
(11)

where the parameter Cb is a shape factor cor-
recting for the non spherical appearance of the
product.

The parameter estimates are produced by mini-
mizing a weighted least squares objective function
based on simulated steady state data from a sophi-
sticated simulation model, the CEMulator, deve-
loped by FLS-Automation A/S for operator trai-
ning and test of control systems (Jensen, 2004).
The inputs for these static solutions have been
chosen to span the operational space with respect
to feed composition, mill feed rate and the angu-
lar velocity of the rotor in the separator. The
validation criterion for the model is to reduce
the systematic errors in the residuals between the
prediction from the two models. Further more
dynamic responses have been simulated to illu-
strate how the gains in the simple mixed flow
model resembles step responses from the more
comprehensive CEMulator. Estimation based on
simulated outputs provide information on how the
system behaves under ideal circumstances without
noise and assuming access to all measurements
online. These investigations have revealed strong
correlations between some parameters. The mixed
flow model have shown potential to predict the
dynamic behavior from the CEMulator with an
offset error but this work have not been completed
at this stage and estimation using plant data have
not been attempted.

5. PROCESS SIMULATIONS

The process model has been implemented and
simulated in Matlabr. A stationary solution
is found by solving equation (8) with the time
derivatives equal to zero. The composition of the
feed is 80 % clinker, 15 % gypsum and 5 %
filler with a size distribution. The initial model
parameters are based on preliminary estimations,
and the feed size distributions are presented in
Huusom (2005).

Figure 4 shows the normalized cumulative size
distribution of the feed, recycle and product flows
at the stationary operation point. Particles belon-
ging to the two largest size intervals are not able
to enter the second chamber in the mill through
the screen hence these sizes are not present in
the feed to the separator. The figure shows that
the parameters used in the simulation causes an
effective grinding in the mill reducing the particle
size below 1 mm. Given a mill in steady state
operation some step changes has been simulated in
the manipulated variables in order to investigate
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Fig. 4. Normalized cumulative size distribution of
the mill feed, mF , tailings, mR and product
flow, mP .
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Fig. 5. Simulation of step responses in recycle and
product flow rate for a 20 tonne/hour changes
in the feed rate to the system. The full line
is the reference response from the CEMulator
and the dotted line is the simulation with the
mixed flow model.
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Fig. 6. Simulation of step responses in recycle
and product flow rate for 30 % change in the
angular velocity of the rotor in the separator.
The full line is the reference response from
the CEMulator and the dotted line is the
simulation with the mixed flow model.

the dynamic behavior of the system. An increase
in the feed rate to the circuit has been introduced
after 15 minutes simulation and the actuator is
again given its initial value after the transient has
settled. After four hours simulation a step in the
angular velocity of the separator rotor has been
introduced and after an one hour transient the
system is brought back to the initial state. Here



only the response for the two flow rates from the
separator are shown of the six process outputs.
Figure 5 shows the step response of the flow rate
for the product and recycle together with a re-
ference response simulated with the CEMulator
model. Figure 6 shows the corresponding respon-
ses for a step change in the angular velocity. These
figures show that the system is faster to return
to a steady state solution given a change in the
separator speed compared to changes in the feed
rate. The figure also reveals that the estimated set
of parameters gives accurate predictions for the
dynamic response in the product flow but that
the gain for the reject flow rate is estimated with
an offset. It is seen that an increase in the feed
rate produces a general increase in the flows of the
system while a change in the separation does not
change the static value for the production rate but
only the size distributions in the system and the
recirculation ratio. On figure 6 it is observed that
the separator in the CEMulator has a dynamic
and not an instant transition when the step is
applied but that the modelling of the separation
using a static model is a reasonable simplification.
The step responses of the product and recycle
flow for a change in the separator speed resembles
responses in the PDE-model by Boulvin et al.

(1999).

6. CONCLUSION

A nonlinear process model for the cement grin-
ding circuit has been developed and presented.
It consists of a mixed flow model for the ball
mill and an efficiency curve for the separator.
Comminution of particles is modelled using a first
order rate expression and an empirical correlation
for the specific breakage rate and the breakage
distribution functions.

Given a set of model parameters, a steady state
solution has been found for the circuit. The cu-
mulative particle size distributions for the feed,
product and recycle flows are presented for this
solution. The parameters have been estimated ba-
sed on simulated static data.

The dynamic responses show that changes in
the separator speed controls the flow rate of
rejected particles and the fineness of particles in
the product flow while changes in the feed rate
change the production rate of the grinding system.
The responses are similar compared to other step
responses in the literature.

The model have not yet been validated on expe-
rimental data and further work has to be done to
reduce the systematic errors in the residuals. The
mixed flow model has shown potential to predict
the dynamic behavior of the reference model de-
spite a far simpler structure.
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