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Abstract: A class of uncertain systems nonlinear in the input variable and driven
by a dynamic actuator device is dealt with. We give sufficient conditions under
which the feedback controller based on the “Sub-optimal” second-order sliding-
mode control algorithm can guarantee the attainment of a boundary layer of the
sliding manifold. The relationship between the actuator parameters and the size
of the boundary layer is investigated. We discuss about the possible ways for
estimating, or even shaping, the parameters of the periodic limit cycles that may
occur in the steady-state within the boundary layer. A simulation example is given
that confirm the results of the proposed analysis Copyright c© 2005 IFAC.

Keywords: Sliding-mode control, variable structure systems, limit cycles,
uncertain systems, nonlinear systems.

1. INTRODUCTION

It is known (Anosov, 1959) that in the presence
of parasitic dynamics (provisionally associated
with actuator devices) the standard 1-SMC ap-
proach leads to high-frequency oscillations around
the sliding manifold (chattering). This conclusion
were confirmed via the describing function anal-
ysis (Shtessel and Young-Ju, 1996), the “locus
of a perturbed relay system” (LPRS) analysis
(Boiko, 2003), Tsypkin locus (Tzipkin, 1984), and
singular perturbation analysis (Fridman, 2001).

Second order sliding mode control (2-SMC) the-
ory has been an area of activity of many re-

searchers and practitioners over the last decade
(see (Levant, 2003), (Shtessel, 2003), and refer-
ences therein).

2-SMC algorithms performance with dynamic
actuators was analyzed in recent years. The
“Twisting” algorithm in the system composed of
a linear plant and a linear unmodelled actuator
was analyzed in (Boiko, 2004). Necessary condi-
tions for the existence of periodic motions in a
small boundary layer of the sliding manifold, and
a methodology for computing the parameters of
those motions, were obtained via the describing
function analysis and the “modified Tsypkin lo-
cus”.



In the present work we make reference to uncer-
tain systems nonlinear in the input variable and a
class of non-linear dynamic actuators. The aim
of this paper is to present sufficient conditions
under which the trajectory of the system enters an
invariant vicinity of the sliding manifold. We also
discuss about possible ways for estimating, or even
shaping by proper setting of the controller, the
parameters of the periodic limit cycles that may
occur in the steady-state within the boundary
layer. Simulation results are given.

2. PROBLEM FORMULATION

We consider the nonlinear single-input system

ẋ = a(x, z1) (1)

with state vector x ∈ X ⊂ Rn and scalar control
input z1 ∈ Z1 ⊂ R not accessible for direct
modification due to the dynamical fast actuator

µż = b(z,x, u), (2)

where z = [z1, z2, . . . , zm] ∈ Z ⊂ Rm and u ∈ U ⊂
R are the actuator′s state and input, respectively,
and µ > 0.

Let a : X × Z1 → Rn and b : Z × X × U → Rm

be unknown vector-fields satisfying proper growth
and smoothness constraints to be specified.

We consider, as control task, the finite-time van-
ishing of the output variable

s1 = s1(x) : X → R (3)

Assume that the following conditions hold glob-
ally

∂

∂z1

ṡ1 = 0,
∂

∂z1

s̈1 6= 0 (4)

which imply that the ”sliding variable” s1 has a
well–defined relative degree r = 2 with respect to
the plant input variable z1.

Then, it is always possible (Isidori, 1995) to define
a vector w ∈ W ⊂ Rn−2 and a map Φ : Rn → Rn

such that

x = Φ(w, s1, ṡ1) (5)

is a diffeomorfism on W×R2 preserving the origin.
The w dynamics are generally referred to as the
“internal dynamics” (Isidori, 1995).

The input-output, internal and actuator’s dynam-
ics form the following overall dynamical system

ṡ1 = s2 (6)

ṡ2 = f(w, s1, s2, z1) (7)

ẇ = g(w, s1, s2) (8)

µż = h(z,w, s1, s2, u) (9)

where functions f : W × S × Z1 → R, g : W ×
S → Rn−2 and h : Z ×W ×U → Rm are smooth
functions of their arguments. Note that if n = 2
there are no internal dynamics.

Assume what follows:

Assumption 1: The internal dynamics (8) are
input-to-state stable (ISS)

Assumption 2: The zero-dynamics ẇ = g(w, 0, 0)
are globally asymptotically stable (GAS) at the
origin.

Assumption 3: There exist positive constants z∗,
F , F , with F < 3F , such that if |z1| = z∗ then,
whenever (w, s1, s2) ∈ (W × R2), the following
conditions hold

0 < F ≤ sign(z1)f(w, s1, s2, z1) ≤ F (10)

Assumption 4: Let u∗ be an arbitrary constant.
If u(t) = u∗ at t ≥ t0 then ∀ε > 0 there exists
N = N(ε, u∗) s.t.

|z1 − u∗| ≤ ε ∀t ≥ t0 + Nµ (11)

Assumption 5: The magnitude of the actuator
output z1 is globally bounded by the constant Z.

Assumption 3 guarantees that the plant input
z1 affects the sign of ṡ2 and has a sufficient
“dominance” over the system uncertain dynamics.
It gives semi-global validity to the attained result
since in order to evaluate a proper value for z∗

bounds on the magnitude of system variables must
be known a-priori. Assumption 4 establishes that
the actuator step-response has a settling time that
is directly proportional to the µ parameter.

We focus this work on the analysis of the closed
loop system (6)-(9) with the Suboptimal 2-SMC
algorithm (Bartolini and Ferrara, 2001)

u(t) = −z∗sign (s1 − βsM1) β =
1

2
(12)

where sM1 is the last “singular point” of s1 (i.e.
the frozen value of s1 at the most recent time
instant at which ṡ1 = 0)

3. MAIN RESULT

We show that under Assumptions 1-5 the tra-
jectories of the considered class of plants with
the Sub-optimal 2-SMC control algorithm (12)
enter in finite time a bounded invariant domain
containing the so-called “second order sliding set”
s1 = s2 = 0. We investigate, in particular, how the



µ parameter appearing in the actuator dynamics
affect the size of the attracting, invariant, domain.

Theorem 1. Consider system (6)-(9), satisfying
Assumptions 1-5, driven by the Sub-Optimal con-
troller (12). Then, the closed loop system trajecto-
ries enter in finite time the domain

Oµ ≡
{

(s1, s2) : |s1| ≤ ρ∗0µ
2, |s2| ≤ ρ∗1µ

}

(13)

where ρ∗0 and ρ∗1 are positive constants indepen-
dent of µ, to stay there afterwards.

Proof. Let t = t0 be the initial time instant (we
get t0 = 0 without loss of generality). The proof
is organized in three steps:

STEP 1 There exist a time instant t = tM1 ≥
0 at which s2(tM1) = 0. The point P1 ≡
(s1(tM1), s2(tM1)) ≡ (s∗1, 0) is referred to as the
first “singular point” on the s1 − s2 phase plane.

By the definition of sM1 it follows that whenever
0 ≤ t < tM1 then

sM1 = s1(0), sign(ṡ(t)) = sign(ṡ(0)) (14)

and the actuator’s input u is given by

u = −z∗sign

(

s1 −
1

2
s2(0)

)

, 0 ≤ t < tM1 (15)

Define

V1 = |s1| V2 = |s2| (16)

If s(0)ṡ(0) ≥ 0 then taking into account (14)
it follows that in the time interval 0 ≤ t <
tM1 condition V̇1 > 0 holds, which implies that
|s1| is increasing so that s1 will not change sign
and, moreover, condition s1(t) = 1

2
s1(0) is never

satisfied. Thus we get

u = −z∗sign (s(0)) 0 ≤ t < tM1 (17)

Considering the Assumption 4 it can be concluded
there exist k1 ≥ 0 such that

V̇2 ≤ −k2 k1µ ≤ t < tM1 (18)

where k is a nonzero constant. Condition (18)
implies that |ṡ| is decreasing and, in turns, the
existence of tM1.

If s(0)ṡ(0) < 0 then from (14) it follows that
V̇1 < 0 in the time interval 0 ≤ t ≤ tc0, where
tc0 ∈ [0, tM1) is the first time instant at which
condition s1(tc0) = (1/2)s1(0) is met (existence
of tc0 is proved below). Thus, the actuator input
u is undergoing a discontinuity (of both its sign
and magnitude) at t = tc0. More precisely

u =−z∗sign (s(0)) 0 ≤ t < tc0 (19)

u = z∗sign (s(0)) tc0 ≤ t < tM1 (20)

Thus, again considering the Assumption 4, it
follows that there exists k2 > 0 such that

V̇2 ≥ k2 k2µ ≤ t ≤ tc0

which implies, in turns, the existence of tc0. Con-
dition s1(t) = (1/2)s(0) will be never satisfied
whenever t ∈ (tc0, tM1), then there exists k3 > 0
such that for any t ∈ (tc0 + k3µ, tM1)

V̇2 ≤ −k2 tc0 + k3µ ≤ t ≤ tM1,

which guarantees the existence of tM1 and con-
cludes the proof of step 1.

STEP 2 A sequence of singular points (i.e points
of the type Pi ≡ (s∗1i, 0), i = 1, 2, . . .) is enforced
at the time instants t = tMi

, i = 1, 2, . . .

Let s1i = s1(tMi), s̈1i = s̈1(tMi) and z1i =
z1(tMi). By the definition of tMi the following
condition holds

sign(s2(t)) = sign(s2(t
+

M1
)) t+M1

≤ t < tM2 (21)

Let us assume, without loss of generality, that the
first singular point P1 lies in the right half-plane
(i.e. s11 > 0). If z11 is such that s̈11 > 0 then
s2(t

+

M1
) > 0 and the actuator input u is given by

u = −z∗ tM1 ≤ t < tM2 (22)

Considering Assumption 4 it follows from (22)
that there exist k4 > 0 such that

V̇2 ≥ k2 tM1 ≤ t < tM1 + k4µ (23)

V̇2 ≤−k2 tM1 + k4µ ≤ t ≤ tM2 (24)

that implies the convergence to zero of s2, i.e. the
finiteness of tM2. If z11 < 0 then the actuator
input u is given by

u = −z∗ tM1 ≤ t < tc1 (25)

where tc1 > tM1 is the first time instant subse-
quent tM1 such that condition s1(tc1) = (1/2)s11

holds.

From this point on condition s1(t) = (1/2)s1(0)
will be never satisfied whenever t ∈ (tc1, tM2).
Thus we get

u = z∗ tc1 ≤ t < tM2 (26)

so that there exists k6 > 0 such that

V̇2 < −k2 tc1 + k6µ ≤ t ≤ tM2

which implies, in turns, the existence of tM2. By
iteration the Step 2 is demonstrated.



STEP 3 There exist ρ∗0 > 0 such that whenever
|s1i| > ρ∗0µ

2 the next singular point Pi+1 will
satisfy the contraction condition

|s1,i+1| ≤ γ|s1i| (27)

Let (with no loss of generality) s1i > 0, then
since z1i < 0 the worst-case for the purpose of
our analysis is to consider the value

z = −z∗ − ε ε > 0 tMi ≤ t < tci, (28)

which gives rise to an upper bound for the actual
value of for |s2(tci)|. By integrating (6)- (7), taking
into account Assumption 3, it follows that

|s2(tci)| ≤
√

s1iF (29)

At the switching time instant t = tci the sign of u
changes from negative to positive according to

u = z∗ tci ≤ t < tM,i+1 (30)

Considering (30) and (14), it follows that there
exists k7 > 0 such that

V̇1 < 0 tci ≤ t < tM,i+1, (31)

V̇2 ≥ k2 tci + k7µ ≤ t ≤ tM,i+1 (32)

The worst-case for the z1 time evolution is

z1 = −Z tci ≤ t ≤ tci + k7µ,
z1 = z∗ − ε tci + k7µ ≤ t ≤ tM,i+1

(33)

Now considering the trajectories of (7) using,
as input z1, the worst-case values in (33), after
some algebraic manipulations, it follows that the
“arrival” point s1,i+1 is such that

|s1,i+1| ≤
F

3F
|s1i| + ξ0µ

√

|s1i| + ξ1µ
2 (34)

for some positive ξ0, ξ1. It readily follows that
condition F < 3F is sufficient to guarantee the
satisfaction of the “contraction condition” (27)
within the domain |s1i ≤ ρµ2| for some ρ > 0.
To show that |s2| will remain confined to a O(µ)
domain, it suffices to note that when s1i is O(µ2)
then |s2(t

′

ci)|, which constitutes the maximum
value of |s2| along the trajectory between the two
successive singular points, is O(µ).

Condition (27), in turns, guarantees that the
system trajectory crosses the axis s2 = 0 of the
s1−s2 plane closer and closer to the origin, which
implies the convergence toward the vicinity (13).

Due to the guaranteed contraction (27) occurring
at each step, analogous arguments as those that
were used in (Bartolini and Ferrara, 2001) allow
us to establish that the sequence the convergence
process towards the attracting set Oµ is guaran-
teed to take pace in a finite time. ⊲

4. DF ANALYSIS OF THE STEADY-STATE
TRAJECTORIES

One could argue that as it often happens in
conventional relay-based control systems periodic
limit cycles might take place within the boundary
layer Oµ.

In the nonlinear setting the formal investigation
of periodic trajectories existence and stability is
often prohibitive due to the complex nonlinear im-
plicit Poincare′ maps that arise, which constitute,
unfortunately, the unique available exact analysis
tool.

One can observe, however, that if in the steady
state the nonlinear system has been steered close
to some operating point, and the local lineariza-
tion has low-pass characteristics, then it is pos-
sible to achieve useful informations regarding the
periodic behaviours by means of a DF analysis
of the linearized system dynamics. DF analysis
(Atherton, 1984; Tzipkin, 1984) is a very simple
method that gives, in most cases, sufficient in-
formations regarding the existence of limit cycles
and also gives the possibility to evaluate, approxi-
mately, the parameters (amplitude and frequency)
of the limit cycle (if any).

Consider the feedback interconnection between a
stable transfer function W (s), that represents the
linearized plant plus actuator dynamics, and the
Sub-optimal controller (Fig. 1). The Sub-optimal
2-SMC (12) can be represented by an active hys-
teretic relay with time-varying hysteresis thick-
ness 1

2
s1M . If the actual steady-state behavior of

the system is a periodic motion then s1M would
be an alternating (ringing) series of positive and
negative values, so that the hysteresis thickness
remains constant. Thus, classical frequency-based
methods (Atherton, 1984; Tzipkin, 1984) become
applicable for the analysis of the closed-loop sys-
tem.

 

W(s)

Suboptimal
2-SMC

yv

Fig. 1. The considered closed-loop control system

The expression of the DF of the negative-hysteresis
relay is (Atherton, 1984)

q(Ay) =
4c

πAy

√

1 − b2

A2
y

+ j
4bc

πA2
y

(35)

where b is a half of the hysteresis (b = s1M/2),
c is the relay amplitude (c = z∗1), and Ay is



the amplitude of the harmonic input to the relay.
Replacing b with 0.5Ay, the following expression
for the DF of the sub-optimal algorithm can be
obtained:

q(Ay) =
2c

πAy

(√
3 + j

)

(36)

The periodic solution can be found if on the
complex plane the negative reciprocal of the DF
(36) intersects at some point the Nyquist plot of
the transfer function W (Atherton, 1984). The
negative reciprocal of the DF (36) is:

−1

q
= −πAy

8c

(√
3 − j

)

(37)

The locus (37) is depicted on the complex plane
as a straight line backing from the origin with a
1500 angle with the horizontal axis, as in Fig. 2.
The periodic motion occurs if at some frequency
ω = ω the phase characteristic of the actuator-
plant transfer function is equal to −2100. In
that case the frequency and amplitude of the
periodic solution can be derived from the “cross-
over frequency” ω and from the magnitude of
vector OA in Fig. 2, respectively. It is easy to
conclude that the intersection point A may only
exist if the overall relative degree of the actuator
and plant is higher than two.
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Fig. 2. Classical DF-analysis on the complex plane

If the so-called “Generalized Suboptimal” algo-
rithm, i.e. the control law in (12) with β ∈ [0.5, 1),
is considered, then the DF (36) changes as follows:

q(Ay) =
4c

πAy

(

√

1 − β2 + jβ
)

(38)

which means that the Φ angle in Fig. 2 is now a
function of β,

Φ(β) = arcsin(β) (39)

Note that Φ(1/2) = 300. Even in those cases when
the linearization error makes the actual oscillation
parameters be very different from those predicted
by DF analysis, we can derive a qualitative tuning
guideline according to the following reasoning:

if the plant has a low-pass characteristics, and
the Nyquist plot of W is sufficiently “regular”,
then one can reasonably expect that increasing
the anticipation factor β, i.e rotating the negative
reciprocal of the DF (38) in the clock-wise direc-
tion towards the vertical axis, the frequency of
the periodic oscillation increases and at the same
time the amplitude decreases. The effectiveness of
this tuning guideline is tested in the simulation
section.

5. SIMULATION EXAMPLE

To validate the present analysis consider the fol-
lowing second-order system nonlinear in the input
variable

ẋ1 = x2

ẋ2 =
x2

1 + x2
2

+ [x1 + (2 + cos(z1 + x2)z1]
3 (40)

with the second-order actuator

µż = Cz + Du, z = [z1, z2]
T

C =

[

0 1
−1 −1

]

D =

[

0
1

] (41)

Let only x1 be available for measurement. If
the sliding variable is defined as s1 = x1 then
it has relative degree two with respect to the
plant input z1 and, moreover, there are no zero-
dynamics. It yields that the overall plant plus
actuator dynamics meets Assumptions 1-5. Note
that since both s1 and its derivative s2 are steered
to a neighbourhood of zero (this is main advantage
of the 2-SMC approach), it is possible to achieve
the practical stabilization of the full state vector
without measuring explicitly x2.

The initial conditions are [x1(0), x2(0)] = [1, 1]
and [z1(0), z2(0)] = [0, 0]. The chosen discontin-
uous control magnitude of the Sub-optimal con-
troller (12) is z∗ = 2. In a first test (Test 1) the
actuator’s time constant was set to µ = 10−2s.
Figs. 3 show that the sliding variable x1 and its
derivative x2 converge to a bounded neighborhood
of the second-order sliding domain x1 = x2 = 0.

To check whether the accuracy order (13) is ac-
tually achieved we performed a second test in
which the actuator’s time constant is reduced by a
factor 2 (µ = 0.005s). By comparing Figs. 3 with
Figs. 4 it is apparent that the sliding accuracy is
improved by a factor 4, as for the sliding variable
s = x1, and by a factor 2 as for its derivative
ṡ = x2, and this is according to the expected
precision order.

We repeated the Test 1 using two different val-
ues of the Sub-optimal “Anticipation factor” β.
The expected effects of increasing the oscillation
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Fig. 3. The sliding variable s1 (left) and its deriva-
tive s2 (right) in Test 1 (µ = 0.01)
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frequency and, at the same time, reducing its
amplitude is apparent from the analysis Fig. 5.
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Fig. 5. The sliding variable s1 during Test 1 with
different values of β.

6. CONCLUSIONS

Stability and periodic limit cycles of nonlinear
control systems with with dynamic actuators and
the Suboptimal sliding-mode control (2-SMC) al-
gorithm have been investigated. Sufficient condi-
tions were given guaranteeing that the oscillations
converge to a small vicinity of the second order
sliding mode domain. It has been shown that a
sensible way to infer indications about the pe-
riodic limit cycles existence is to make a local
linearization followed by proper DF-like analysis.
On the basis of qualitative considerations it is
argued, and checked by simulations, that increas-
ing the anticipating factor of the generalized sub-
optimal algorithm near to the unit value one can
reduce the magnitude, and increase the frequency,
of the steady-state periodic limit cycle. It must be
noted that the larger the value of β the slower the
reaching transient, hence the on-line adaptation
of β needs to be investigated.
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