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Abstract: Adaptive fuzzy control has been a topic of active research over the last decade.
However, most efforts have been directed toward one goal: achieving asymptotic stability
and tracking. Little attention has been paid to the accuracy of the identified fuzzy models
and to their transparency and interpretability whereas these should be the key aspects
motivating the use of fuzzy models in adaptive control. The main contribution of this
paper is to present an adaptive fuzzy controller with composite adaptive laws based
on both tracking and prediction error. Compared to other adaptive fuzzy controllers,
the proposed controller achieves smoother parameter adaptation, better accuracy and
improved performance. It overcomes some of the drawbacks of similar schemes described
in the literature on adaptive fuzzy control. The limitations of the proposed approach are
also discussed.Copyright c© 2005 IFAC
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1. INTRODUCTION

In the last decade, there has been an increasing interest
in adaptive fuzzy control (AFC) for input-affine non-
linear dynamic systems. This interest has been moti-
vated by the demands for high control performance
in situations in which an accurate model of the con-
trolled plant is not available, or when the plant is time-
varying. Fuzzy systems have the potential to play an
important role in adaptive control, mainly thanks to
their universal function approximationproperty and
their amenability to (linguistic) interpretation of the
input-output relationships. However, so far, research
in AFC has been mainly focused on the following two
fundamental requirements:

– stabilityof the closed-loop system (all the signals
in closed-loop must be bounded),

– asymptotic convergenceof the tracking error to
zero or to a neighborhood of zero.

Another desirable feature, though not always explic-
itly stated, is the convergence of the adapted parame-
ters to some optimal values (for a time-invariant pro-
cess).

The most common stable AFC schemes are based
on feedback linearization(Wang, 1993; Wang, 1996).
They apply to input-affine models in the controllable
canonical form and mostly employ singleton fuzzy
systems to approximate the unknown system (indirect
schemes) or the unknown control law (direct schemes).



The antecedent parameters (membership functions)
are usually fixed and the consequent parameters are
adapted, based on the tracking error, by means of sta-
ble adaptive laws derived through Lyapunov synthesis.

The design of such adaptive fuzzy controllers must
inherently consider therobustnessissue since any
finite dimensional fuzzy approximator unavoidably
introduces anapproximation error. Such an error is
usually handled as a disturbance acting on the system
by means of standard modifications:

– An additional nonlinear damping term, usually in a
sliding mode framework, (Su and Stepanenko, 1994;
Hanet al., 2001; Fishle and Schroder, 1999; Spooner
and Passino, 1996; Chenet al., 1996; Tonget al.,
2000; Chang, 2000).

– A modified adaptive lawsuch as projection (Wang,
1993; Wang, 1996), dead-zones (Koo, 2001),σ−modi-
fication,ε−modification (Skrjancet al., 2002).

Another important design issue is the interpretability
of fuzzy systems. In the fuzzy modeling literature, it
has been recognized that fuzzy systems are nottrans-
parentandinterpretableby default, contrary to what is
often stated as an implicit advantage of these systems
(Setneset al., 1998a; Setneset al., 1998b; Jin, 2000;
Babǔska, 2002). Nonetheless, in the literature on AFC,
the relevance of the identified fuzzy systems in terms
of accuracy and interpretability is usually disregarded
and the benefits of fuzzy logic are thus only partially
exploited. We argue that using fuzzy systems instead
of a black-box technique is advantageous not only
because fuzzy systems can provide a good guess for
the initial system model (by the inclusion of prior
qualitative knowledge), but also to gather more insight
about the unknown systems dynamics and/or control
law during or at the end of adaptation.

Adaptive controllers withcomposite adaptive laws,
based on two sources of information (tracking and
prediction errors) can potentially be beneficial with
respect to both the aforementioned fundamental de-
sign issues. In the context of classical adaptive control
(Slotine and Li, 1991; Duarte and Narendra, 1989),
it has been shown for linear plants that a significant
improvement in the control performance and in the
robustness can be achieved, essentially as a conse-
quence of a smoother and quicker adaptation process.
In the AFC literature (Yin and Lee, 1995; Hojati and
Gazor, 2002), it has been also claimed that composite
adaptation can provide better performance and im-
proved parameter convergence (although under the as-
sumption that the approximation error is sufficiently
small).

The main contribution of this paper is to introduce
a novel indirect model reference adaptive controller
with a composite adaptive law, combining the pa-
rameter estimation scheme described in (Wang, 1995)
and the MRAC described in (Wang, 1996). The pro-
posed scheme (i) assures theglobal stability of the

closed-loop system, (ii) provides improved control
performance compared to adaptive controllers with
standard adaptive laws driven only by the tracking
error and (iii) addresses some of the drawbacks of
the controllers described in (Yin and Lee, 1995; Ho-
jati and Gazor, 2002). Contrary to the controllers in
the aforementioned references, it does not require the
knowledge of thenth order derivative of the output
and it provides a smoother parameter adaptation with
reduced oscillations.

The remainder of this paper is structured as follows.
Section 2 gives background on indirect model refer-
ence adaptive fuzzy control. In Section 3, the com-
posite adaptation idea is discussed in the context of
the references (Yin and Lee, 1995; Hojati and Gazor,
2002). In Section 4, the proposed composite adaptive
controller is described and its advantages and limita-
tions are discussed. Section 5 presents a simulation
example and Section 6 concludes the paper.

2. INDIRECT MODEL REFERENCE AFC

In this section, the basic elements of indirect model
reference AFC schemes are introduced. First, the con-
troller structure is described; then the standard adap-
tive laws based on tracking error are presented.

2.1 Controller structure

Consider indirect adaptive fuzzy controllers (Wang,
1996) for systems in the controllable canonical form:

x(n) = f(x) + g(x)u (1)

y = x (2)

wherex =
[
x, ẋ, . . . , x(n−1)

]T ∈ Rn is the state
vector. We assume thatg(x) > 0 for all x ∈ X ⊂
Rn. The control goal is to track a desired trajectory
ym while keeping all the signals in the closed-loop
bounded. The tracking errore = ym − y is the
difference between the trajectoryym generated by
a reference modeland the outputy of the system.
Further, introduce the vector of the tracking error and

its n − 1 derivativese =
[
e, ė, . . . , e(n−1)

]T
and

the feedback gain vectork = [kn, . . . , k1]
T . If the

functionsf(x) andg(x) are known, the gainski can
be chosen such that the roots of the polynomialh(s) =
sn +k1s

n−1 + . . .+kn are in the open left-half of the
complex plane. Thefeedback linearizingcontrol law

u∗ =
1

g(x)

[
−f(x) + y(n)

m + kT e
]

(3)

then produces the desired linearerror dynamic:

e(n) + kT e = 0 (4)

or equivalently

ė = Λce (5)



where the matrixΛc ∈ Rn×n is given by

Λc =




0 1 0 . . . 0

0 0 1
.. .

...
...

...
. . .

.. . 0
0 0 . . . 0 1
−kn −kn−1 . . . . . . −k1




. (6)

The ideal control law (3) guarantees thatlimt→∞ e(t) =
0. The basic idea of indirect AFC is to approximate the
unknown functionsf(x) andg(x) in the control law
(3), by using two singleton fuzzy systems:

f̂(x) = θT
f ξf (x) (7)

ĝ(x) = θT
g ξg(x) (8)

whereθf andθg are theconsequentparameters to be
adapted,ξf (x) andξg(x) are thenormalized degrees
of fulfillmentof the (fixed) fuzzy rules. If we replace
the functionsf(x) and g(x) in (3) with their fuzzy
approximations, we have the control law

u =
1

ĝ(x)

[
−f̂(x) + y(n)

m + kT e
]

. (9)

In general, functionsf(x) and g(x) cannot be ex-
actly approximated by the two fuzzy systemsf̂(x) and
ĝ(x). If we introduce theoptimal parameters

θ∗f = arg min
θf

(
sup
x∈X

|f̂(x)− f(x)|
)

θ∗g = arg min
θg

(
sup
x∈X

|ĝ(x)− g(x)|
)

(10)

then theinherent approximation errorcan be defined
as

w = [θ∗f
T
ξf (x)− f(x)] + [θ∗g

T
ξg(x)− g(x)]u (11)

The above definitions for the optimal parameters and
for the approximation error represent the common
choice in the literature on AFC. The use of the op-
eratorsup(∗) is motivated by the subsequent stability
analysis:w acts as a disturbance and its magnitude
critically affects closed-loop stability. Substituting the
control law (9) into (1) and using the definition of the
inherent approximation error (11), after some manip-
ulations, we obtain the error dynamics

ė = Λce + bc

[
φT

f ξf (x) + φT
g ξg(x)u

]
+ bcw (12)

where bc = [0, ..., 0, 1]T and φf = θf − θ∗f is
the difference between the actual parametersθf of
the fuzzy system̂f(x) and the optimal parametersθ∗f
(analogously forφg = θg − θ∗g).

2.2 Standard adaptive laws

The adaptive laws are derived using Lyapunov synthe-
sis with the following Lyapunov function

V =
1
2

eT Pe +
1

2γf
φT

f φf +
1

2γg
φT

g φg (13)

which is the sum of the contributions of the tracking
errore and the parameter errorsφf andφg. Matrices
P ∈ Rn×n and Q ∈ Rn×n are positive-definite
matrices that fulfill the Lyapunov equation

ΛT
c P + PΛc = −Q . (14)

ThisV simultaneously guarantees the boundedness of
the tracking error and the parameter errors. The time-
derivative of V is obtained by differentiating (13),
substituting forė from (12) and using (14)

V̇ =−1
2

eT Qe +
1
γf

φT
f

[
θ̇f + γfesξf (x)

]

+
1
γg

φT
g

[
θ̇g + γgesξg(x)u

]
+ es w (15)

whereγf andγg are thelearning rates, es = eT pn

andpn is the last column ofP. If the parametersθf

andθg are adapted according to the following laws

θ̇f =−γf esξf (x) (16)

θ̇g =−γg esξg(x)u (17)

the terms in the brackets in (15) are zero andV̇
becomes

V̇ = −1
2

eT Qe + es w . (18)

If the second term in (18) due to the inherent ap-
proximation errorw can be neglected or somehow
neutralized, the derivative of Lyapunov function is
negative-semi-definite thus assuring the boundedness
of the tracking error and the parameter errors.

Remark.The adaptive law (17) must be modified for
preventingĝ(x) from being zero (e.g. by a projection
operator).

3. COMPOSITE ADAPTATION

The basic motivation for the design ofcomposite
adaptive lawsis that a faster and smoother parameter
adaptation can be achieved using two sources of infor-
mation, namely the tracking and the prediction errors
(see (Slotine and Li, 1991) for low-pass filter inter-
pretation of composite adaptive laws). The improved
adaptation, in turn, leads to a faster reduction of the
tracking error.

A smoother parameter adaptation has the advantage
that high-frequency unmodeled dynamics are not ex-
cited and this results in a more robust control scheme.
In the context of AFC, the smoothness of parameter
update is a highly desirable feature also in view of the
transparency of the identified fuzzy models. Widely
oscillating singletons, in fact, may significantly reduce



the chances of a clear linguistic interpretation of the
fuzzy rules.

However, the combination of two sources of infor-
mation in the adaptive laws is not necessary benefi-
cial under all circumstances: its effectiveness relies on
the adaptation ability of the individual methods and
on how these methods interact. Recently, (Hojati and
Gazor, 2002) proposed the adaptive laws

θ̇f =−γf [γε + es] ξf (x) (19)

θ̇g =−γg [γε + es] u ξg(x) (20)

whereε ≡ x̂(n) − x(n) is the prediction error, and
γf , γg, γ are the learning rates. The estimated state
x̂ is provided by aserial-parallelestimation model of
the plant in which the firstn − 1 component of the
estimated state are given by˙̂xi = xi+1 and thenth

component (the only one actually estimated) is given
by

x̂(n) = f̂(x) + ĝ(x)u . (21)

Clearly, the evaluation of the prediction error requires
the knowledge ofx(n). Hence, the assumption that the
full state is measurable does not suffice, unlessx(n) is
determined by direct differentiation. The requirement
that the full state is available is quite restrictive in
itself, but the requirement that also the derivative of
the state is a physically measurable quantity is gen-
erally not practical. Thus, in the subsequent section,
novel adaptive laws are proposed, which rely on the
knowledge of the state but not of its derivative.

By using equations (1), (12) and (21), the prediction
errorε can be written in the form

ε =
[
φT

f ξf (x) + φT
g ξg(x)u

]
+ w

= e(n) + kT e . (22)

From Eq. (22), it can be seen that the prediction errorε
is the sum of two contributions. The first terme(n) can
have significant variations even if the tracking error is
small (especially for a high-order system). The sec-
ond termkT e (defining a stable manifold) is similar
to es and hence its effect is somehow equivalent to
an increment in the learning rate. Moreover, Eq. (22)
also shows that the modelling error is directly injected
in the adaptive laws by the prediction error without
any filtering. We can then expect that the composite
adaptation scheme does not generally assure a smooth
parameter convergence, contrary to the general re-
marks in (Hojati and Gazor, 2002). In this reference,
the closed-loop stability analysis and the justification
of the improved performance rely on the assumption
of negligible unmodelled dynamics. However, this as-
sumption is contradicted if the non-smooth parameter
adaptation excites unmodeled dynamics.

It is also useful to remark that there are earlier research
contributions (Yin and Lee, 1995) that lead to similar

results for a different class of systems (nth order linear
systems with scheduled parameters) and a different
error model (the prediction error with regards to the
estimated control input). In fact, it can be shown that a
relation between the prediction error and the tracking
error similar to Eq. (22) (except for a multiplicative
factor which is the estimate of a model parameter)
can be obtained, after straightforward manipulations
of the equations in (Yin and Lee, 1995). Hence, our
previous remarks about (Hojati and Gazor, 2002) can
be extended also to this case.

4. PROPOSED ADAPTIVE LAWS

The basic idea for deriving the new composite adap-
tive laws is (i) to define theprediction erroras ε ≡
x̂(n−1) − x(n−1) thus avoiding the use ofx(n) and
(ii) to estimate the state with a slightly different serial-
parallel estimation model (Wang, 1995). The firstn−1
state variables are again measured and not estimated
whereas Eq. (21) is replaced by

x̂(n) = −αε + f̂(x) + ĝ(x)u (23)

the parameterα being a user-defined positive constant.
Subtracting (1) and (23), after some manipulations, we
have

ε̇ + αε =
[
φT

f ξf (x) + φT
g ξg(x)u

]
+ w

= e(n) + kT e . (24)

It can be seen that the prediction errorε is, in this
case, the output of a first-order stablelow-pass filter
(with breaking frequencyα), whose input is a linear
combination of the tracking errore and its derivatives
(or alternatively the sum of the two terms in the square
brackets depending on the parameter errors and of the
approximation errorw). The smoothing action of such
a filter entails mainly two advantages: faster tracking
error convergence and smoother parameter adaptation.
A smooth adaptation is a necessary condition (al-
though not sufficient) for fuzzy rules interpretability.
Such condition is obviously critical if the antecedent
parameter are also adapted, but it is highly desirable
even in the case of fixed antecedents.

The composite adaptive laws are determined by Lya-
punov synthesis, following the same steps described
for standard adaptation, but with a different Lyapunov
function

V =
1
2

eT Pe +
1
2

ε2 +
1

2γf
φT

f φf +
1

2γg
φT

g φg .(25)

The time-derivative ofV is obtained by differentiating
(25), substituting foṙe from (24) and forε̇ from (12)
and finally using (14)

V̇ =−1
2

eT Qe +
1
γf

φT
f

[
θ̇f + γf (es + ε)ξf (x)

]



+
1
γg

φT
g

[
θ̇g + γg(es + ε)ξg(x)u

]

−1
2

αε2 + (es + ε)w . (26)

With adaptive laws of the same form as (19)-(20), but
with γ = 1 and with the new definition ofε, we end
up with

V̇ = −1
2

eT Qe− 1
2

αε2 + (es + ε) w . (27)

If the disturbance term in (27) due tow can be ne-
glected (as in the considered simulation example) or
its effects compensated by a standard robust modi-
fication, the closed-loop stability is guaranteed. For
example, a sliding-mode-like compensation term can
be conveniently used, if upper bounds on the approxi-
mation errors and a lower bound ong(x) are available
(Fishle and Schroder, 1999).

Remark 1.The proposed adaptive controller relies
on a serial-parallel estimation model and thus the
knowledge of the full state vector is still required.
Moreover, the system model is needed in canonical
form.

Remark 2.The assumption that the inherent approxi-
mation errorw can be easily made arbitrarily small, by
simply increasing the number of basis functions, with-
out any drawback other than increased computational
costs, in general is not fully acceptable. In fact,w as
expressed by (11) also depends on the control input
(9) and this can exhibit very high peaks thus making
w not negligible.

5. SIMULATION EXAMPLE

Consider a polytopic system represented by a sin-
gleton fuzzy system which linearly interpolates two
first-order transfer functions with static gains and time
constants, given respectively byK1 = 3, K2 = 1
andτ1 = 1, τ2 = 2 (Babǔska and Oosterom, 2003).
The fuzzy system has two symmetric triangular mem-
bership functions in the domain[1, 10] and it can be
recast in normal form (1)-(2) withn = 1, by choosing

f(x) = − x

τ(x)
, g(x) =

K(x)
τ(x)

(28)

whereK(x) and τ(x) are the scheduled static gain
and time-constant respectively. The simplicity of the
chosen example allows a transparent illustration of
the issues discussed in the previous sections. The
reference modelis a first-order linear system with a
time constantτm = 1/5 and a static gainKm =
1. The reference signalrm is a repeating sequence
with values in the range[1, 10]. The feedback gain
has been set tok = 5. Fuzzy approximators with4
rules have been considered and no additional robust
modifications have been used. The parameterα has

been set to5, the learning ratesγf , γg have been set
equal to10 andγ = 1.

We have compared AFC schemes with (i) standard
adaptive laws (Std), (ii) with the adaptive laws de-
scribed in (Hojati and Gazor, 2002) (Hoj02) and
with the proposed composite adaptation (CompAd).
In Fig. 1 it is reported the tracking error for the
three schemes. It can be seen that both the composite
schemes definitely improve the performance of the
standard scheme. The performance of the compos-
ite schemes are almost comparable: the controller of
(Hojati and Gazor, 2002) slightly outperforms the pro-
posed controller but this is substantially due to the fact
that the former uses alsox(n). In Fig. 2 it is presented
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Fig. 1. Tracking error: (i) Std, (ii) Hoj02, (iii) CompAd

the temporal evolution of the singletons off̂(x) for
the three control schemes (similar results hold for
ĝ(x)). It is evident that the proposed control scheme
offers a better trade-off between convergence speed
and smoothness of the parameter adaptation. Finally,
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Fig. 2. Estimated singletons for̂f(x): (i) Std, (ii)
Hoj02, (iii) CompAd

for testing the accuracy of the identified models, the
temporal evolution off̂(x) has been reported (see
Fig. 3). The proposed composite adaptation clearly of-
fers a more accurate instantaneous estimate, compared
to the standard scheme and to the controller in (Hojati
and Gazor, 2002).
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Fig. 3. Estimatedf̂(x): true value (solid), Std (dash-
dot), Hoj02 (dashed), CompAd (dotted)

6. CONCLUSIONS

In this paper, a novel indirect model reference adap-
tive fuzzy controller with composite adaptive laws
has been presented. It has been shown that such a
controller can enhance the performance of standard
adaptive controllers while preserving the closed-loop
stability. Furthermore, it offers some advantages with
respect to other similar controllers with composite
adaptive laws, namely, it does not require the knowl-
edge ofx(n) and leads to a smoother parameter adap-
tation. The latter feature positively affects the inter-
pretability of the identified fuzzy systems and possibly
the robustness of the control scheme with regards to
unmodeled dynamics. The proposed scheme should
be tested on high-order systems and on experimental
benchmarks in order to fully assess its performance.
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