

JAVA-BASED INTEGRATING SIMULATOR FOR BLAST FURNACE

Masanobu Koga*, Masatoshi Ogawa**, Harutoshi Ogai**, Masahiro Ito***
Kenko Uchida**** and Shinroku Matsuzaki***

*Department of Control Engineering and Science
Kyushu Institute of Technology,

680-4 Kawatsu, Iizuka City, Fukuoka, 820-8502, Japan
 koga@ces.kyutech.ac.jp

 **Waseda University
2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan

***NIPPON STEEL CORPORATION,
20-1Shintomi, Futtsu City, Chiba, 293-8511, Japan

****Waseda University,
3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

Abstract: The method of integrating many partial simulators for a complicated
system in the consideration of interaction is proposed. Java Native Interface is used
to integrate the simulators programmed in different languages. Remote Method
Invocation is used to integrate the simulators in different computer environment. By
applying the method to the partial simulators on the blast furnace, java-based
integrating simulator for the blast furnace is constructed in order to support the
operation of operator. Developing the simulator by the method can save considerable
labour and decrease time consumption greatly than redeveloping. Furthermore, the
visualization system comparing both the simulation results and the actual
measurement data is reported. Copyright © 2005 IFAC

Keywords: Simulators, Compatibility, Distributed simulation, Process simulators,
Steel industry, Object oriented programming

1. INTRODUCTION

Recently, rationalization and enlargement of
production facilities in various industrial processes
are performed. The blast furnace process in steel
industry is upsized to ensure a stable supply of a large
amount of low-cost hot metal. The blast furnace
processes is complicated, because three phase of gas,
liquid and solid in container interact together.
Furthermore, the amount of using the cheap fuel
increases, because the fuel of the high quality is
insufficient. Thus, the trouble in facilities and
operation increases. Therefore, the development of

system that supports the operation of operator by
predicting the blast furnace operation is demanded.
On the other hand, a system of object to be controlled
is complicated, the improvement in performance and
safety of the system is required, and the demand that
simulates the entire system is increasing. Formerly,
only a part of system for large scale system was
modelled and the partial simulation was performed
because of restrictions of computer performance. If
the entire system simulation is performed by
integrating the existing partial simulators, there will
be a merit which can save labour and time
considerably more than redeveloping the simulator.
On the contrary, since their partial simulators had

been developed using different programming
languages and computer environment, their
compatibility were weak.
The examples of the partial simulators are shown in
Fig.1.

In this research, the method of integrating two or
more partial simulators in consideration of the
interaction of the simulators for a complicated system
is proposed. As the example, this method is applied
to two partial simulators of both Rabit model (burden
distribution model) and Bright model (internal
model) in blast furnace process. Accordingly, an
java-based integrating simulator for blast furnace is
constructed in order to support the operation of
operator. In addition, the simulation results are shown
as visual information by a visualization system. The
visualization system provides visual information to
compare the simulation results with an actual
measurement data. The comparison of both
simulation results and measurement data during one-
month by the visualization system is shown.

Windows

C

partial
simulators 1

Solaris

Fortran

partial
simulators 2

Linux

MaTx

partial
simulators 3

Windows

Java

partial
simulators 4

Fig.1. The examples of the partial simulators

Client (GUI)

Windows or
Linux

Fortran Java

Fortran Java

RMI

JNI

JNI RMI
Windows or
Linux

Rabit model

Bright model

Java
Integrator

Existing simulator Distributed object

Fig.2. Integration of Bright and Rabit by JNI & RMI

Load

Stub

Shear library

Native code

JVM

Return value
Argument

Stub

Native code Compile

Fig.3. The conception of JNI

2. INTEGRATED METHOD OF SIMULATORS

Remote Method Invocation (RMI) and Java Native
Interface (JNI) to integrate the two or more partial
simulators in proposed method are used. RMI is used
to integrate those partial simulators executed in
different computer environment. JNI is used to
integrate those simulators programmed in different
programming languages. The conception of
integration of partial simulator by these methods is
shown in Fig.2.

2.1 Java Native Interface (JNI)

JNI is a structure to execute native code, C, C++, or
Fortran code from Java code. JNI is described in
(Gordon, 1998). JNI can execute the following in
native code.

- An object is generated.
- A class variable is accessed.
- An instance variable is accessed.
- An exception is generated or caught.
- A class is loaded.

For using JNI, native code and stub (a few lines
consist of native code) which intercedes native code
are compiled. Consequently, a share library is made.
The share library is SO file (Share library) on the
UNIX platform or DLL file on the Windows platform.
The function of native code (C code) is called
through the Stub. Moreover, the execution results are
returned to a Java program through the Stub. The
conception of JNI is shown in Fig.3. JNI can execute
Fortran code from Java by calling Fortran subroutine
from C function.

Next, the procedure to access Fortran and C code
from Java by using JNI in the following is shown.

(1) Export from Fortran and making a share library.

The export subroutine names of Fortran code to be
used from Java by using JNI are declared. Next, the
labelled Common block variables of Fortran code is
declared to be used from Java code. Moreover, the
Fortran code is compiled to make a share library.

(2) Use Fortran code from C code.

A C function to call the subroutine in Fortran code
from C is made. In addition, The C function is
defined in the form that can be called from Java.
Some C structures that correspond to the labelled
Fortran Common blocks in header file of C are
defined. The extern of the variables referring to the
memory domain of Fortran is declared. Therefore C
program can access the Common block variables of
Fortran by accessing the C structure member.

JNI

Common/label/

Bright.for BrightFCB.javaBrightFCB.c

Function to
transform C to

Fortran

Function to
transform Fortran

to C

Calculation

Fig.4. Access method to Common Block

Fig.5. Outline of the procedure to create Java
program which accesses Fortran code by Jni4FCB

 (3) Use C and Fortran code from Java code.

The native method for the function of C that will be
used from Java is declared in Java code. Moreover,
share library which contains the C code in static
block is loaded. By compiling the Java code, class
file are created.

A C header file containing information on C function
from Java class file by using javah commands is
created. C code which contains function implemented
by function prototype described in the header file is
developed. A share library to load from java
integrated both the share library which is created by
compiling the C code and the share library which is
created from Fortran code is made. In Fig.4, the
conception for accessing the Common Block
variables of Fortran from Java is shown.

Java program access the variables of Fortran
Common Block through the C structure
corresponding to the Java class. The tool to enable
Java program to access Fortran is developed in the
present work, is called Jni4FCB (JNI for Fortran
Common Block).

2.2 Jni4FCB (JNI for Fortran Common Block)

Jni4FCB is a useful support tool that is developed in
the present work. By using the Jni4FCB, Java
program can access a Common Block variable of
Fortran. Furthermore, the Jni4FCB generates
automatically the interface programs to access the
variable. If Common Block variables are declared,
almost interface programs to access them from Java
are created. The procedure to make Java program

which accesses Fortran code by Jni4FCB is shown in
Fig.5.

2.3 Remote Method Invocation (RMI)

RMI provides the environment to use distributed
objects in java. RMI is described in (Nakayama,
2000; Cay and Gary, 2002). The feature of RMI is
shown in the following.

- It uses the objects which are arranged at terminals
on network.

- It exchanges data by calling a method among the
terminals through the distributed objects on
network.

The process flow of RMI is shown in Fig.6 and the
following.

1. The server generates a distributed object.
2. The server registers the distributed object to name

server.
3. The client queries the distributed object to name

server, gets reference of the distributed object.
4. The client calls a method of the distributed object.

2.4 Distributed computing environment for Rabit &
Bright

The process flow of distributed simulation
environment by using RMI and JNI is shown in Fig.7.

communicationcommunication

Name Sever

SeverClient

4.Call

3. Query

2.Register

1.Genarate

Fig.6. Process flow in RMI

Java

Main method

(RMI)

Server for Bright Calculation Client (GUI) Server for Rabit Calculation

Java
Method Call
function of C

Fortran
Rabit
Subroutine

C
RabitNative
function

Java
Method Call
function of C

Fortran
Bright
Subroutine

C
BrightNative
function

(JNI)
C function

Calculation result

Fortran Code

Calculation result

Calculation result

(RMI)
(JNI)

C function

Calculation result

Fortran Code

Calculation result

Calculation result

Fig.7.The process flow of distributed environment by
RMI and JNI

Iron Ore

Cokes

Gas Flow

Iron

Dropping
Molten

Iron

Lumpy Zone

Hearth

Tuyere

Vertical Sonde

Profile Meter

Layer Thickness Meter

Shaft Sonde

Dropping
Zone

Raceway

Throat

Shaft

Belly

Hearth

Bosh

Cohesive Zone

Tap hole

Belly Sonde

Fig.8. Outline of blast furnace process

Burden distribution sub-model

Gas flow sub-model

Solid flow sub-model

Chemical reaction sub-model

Heat transfer sub-model

Estimation of cohesive zone shape

Does cohesive zone shape
converge?

Stop

Yes

No

-Layer thickness ratio (Lo/Lc) distribution
-Voidage and mean particle diameter

distributions

-Gas mass flow rate distribution
-Pressure distribution

-Solid descent velocity distribution

-Total reduction degree
-Step wised reduction degree
-Gas composition distribution
-reaction heat distribution

-Gas and solid temperature distributions

-Cohesive zone shrinkage distribution
-Cohesive zone shape estimation

Fig.9. Configuration of two-dimensional
mathematical model of blast furnace (BRIGHT
model)

3. BLAST FURNACE PROCESS AND MODEL

3.1 Outline of Blast Furnace Process

A blast furnace is a moving-layer type counter-flow
reaction vessel. Iron ore and coke, both in gains, are
charged from its top one after the other so as to form
a in through blast injection nozzles (tuyeres) at its
lower portion and the hot air makes the coke burning
to generate high-temperature reduction gas; then iron
oxide in the iron ore is reduced and melted by the
high-temperature reduction gas into molten pig iron.
This reaction vessel is a vertical and cylindrical
device of five sections, namely a throat, a shaft, a
belly, bosh and a hearth, from top to bottom. The
shaft and the bosh are of a truncated cone shape. (See
Fig.8)

3.2 Configuration of the Blast Furnace Model

The two-dimensional mathematical model of the blast
furnace (BRIGHT model) consists of the following

sub-models: the burden distribution model, gas flow
model, solid flow model, chemical reaction model,
heat transfer model and cohesive zone shape
judgment model. The sub-models are described in
(Sugiyama, 1983; Sugiyama and Sugata, 1987a;
Sugiyama and Sugata, 1987b). Composition of two-
dimensional mathematical model of the blast furnace
(NBRIGHT model) is introduced in (Naito and
Nishimura, 2000).

Given a set of operating conditions, the procedure
illustrated in Fig.9 is repeated to predict the shape of
the cohesive zone and know the converged values of
reduction degree distribution and temperature
distribution. The calculation results are decided to be
converged when the average value of the change in
the shape of the cohesive zone fell within 0.5m.

4. BLAST FURNACE INTEGRATING
SIMULATOR

4.1. Application to Blast Furnace Sub-Model Rabit

Rabit is a sub-model calculating burden distribution
of a blast furnace. When Jni4FCB is applied to the
Rabit model, common block used in Rabit is declared
in Fortran program, Grdtrn.for. In the Grdtrn.for,
there is 26 Common Blocks, and 155 variables are
declared. Consequently, RabitFCB.java,
RabitSkerton.java, RabitFCB.c, and RabitFCB.h are
generated automatically from Grdtrn.for. A class
diagram and sequence diagram about a class
generated by Jni4FCB are shown in Fig.10.

4.2 Application to Blast Furnace Sub-Model Bright

Bright, is a sub-model calculating the reaction, the
solid, the gas, the liquid flow and the heat transfer
inside the furnace. When Jni4FCB is applied to the
Bright model, common block used in Bright is
declared in Fortran program, SBRIGHT.for.
Consequently, BrightFCB.java, BrightSkelton.java,
BrightFCB.c and BrightFCB.h are generated
automatically. A sequence diagram about a class
generated by Jni4FCB is shown in Fig.11.

:RabitNative

read()

:Fortran:RabitFCB:Rabit :RabitUtil

readFile()

setFCB

getFCB()

write()

rabitdp1_()Rabitdp1()

writeExcelData()

writeGraphData()

Fig.10. Generated sequence diagram (Rabit)

:BrightNative :Fortran:BrightFCB:Bright :BrightUtil

write()

read()

sbright_()sbright()

writeOutData()

writePlotData()

Fig.11. Generated sequence diagram (Bright)

Fortran

Bright
Subroutine

C

BrightNative
function

Java

Main method

C

RabitNative
function

Fortran

Rabit
Subroutine

JNI

JNI
return value

Fortran Code

argument Fortran Code

return value

return value
return valueargument

Fig.12. The process flow of the integrating simulator

4.3 The process flow of the integrating simulator

The process flow of the simulator integrated for Rabit
and Bright by using JNI is shown in Fig.12. Thus,
developing the simulator by the proposed method can
save considerable labour and decrease time
consumption more than redeveloping. Moreover, the
value calculated by Rabit in memory without using
file can be sent to Bright.

4.4 Online observation tool for simulation data

An online observation tool to observe data during the
execution of simulation confirms the progress of the
simulation. The tool is developed by integrating the
sub routine which obtains the data of a Fortran
program in the procedure of calculation. Moreover,
the code which obtains the data by using the
multithread of Java is described independently apart
from calculation code. Therefore, it has the feature of
obtaining Fortran data in parallel from the Java code
during the calculation process of Fortran.

5. BLAST FURNACE INTEGRATING
VISUALIZATION SYSTEM

It is difficult that the operator comprehend a large
amount of data obtained from the blast furnace
immediately. Thus, visualization technology to

provide comprehensibly the large amount of data is
demanded. Therefore, the blast furnace integrating
visualization system to provide comprehensibly
information for operator is described.

5.1 Configuration of the Blast Furnace Integrating
Visualization System

The visualization system consists of the database
system 1), the visualizing software 2) and the
integrating simulator.

1) The database system stores the calculation data
and the measurement data for a long period. The
calculation data is got by the blast furnace integrating
simulator. The measurement data is collected by
process computer.

2) The visualizing software creates the visual
information on both the calculation data and the
measurement data. The data is converted to visual
information on personal computer. The software can
compare measurement data with calculation data of
the time in Fig.13.

The database system, the process computer and the
personal computer are connected to network. The
system analyzes a data by on-line. In addition, offline
analysis is possible by the data from the database
system extracted.

 5.2 Visualization of both Simulation Results and
Measurement Data

The visualization system provides visual information
on both the calculation data and the measurement
data. The system shows graphics to compare the
measurement data with the calculation data.
Moreover, analysis time series data by animation.
(See Fig.14)

DatabaseDatabase Measurement DataMeasurement Data

Blast Furnace
Operation Data

Blast Furnace
Operation Data

Blast Furnace Integrating
Java-based Simulator

Blast Furnace Integrating
Java-based Simulator

Blast Furnace Integrating
Visualization System

Blast Furnace Integrating
Visualization System

Calculated DataCalculated Data

Process ComputerProcess Computer

Fig.13. Outline of visualization system configuration

Shaft pressure

Date: 2003/01/01 1:00

Embedding temperature

Calculation data

Gas pressure
Solid temperature

Measurement data

Calculation data and
measurement data

Fig.14. Image panel of visualization system

Height

Calculation data

Measurement data

Pressure

Fig.15. The example of comparison result of both the
simulation results and real measurement data
(2003/1/11/1:00)

The left-hand side graphics in Fig.14 provides visual
information on the calculated data by the form of the
blast furnace. In addition, the graphics shows the
calculation data on 2-dimensional planes of both
height direction and circumference direction of a
blast furnace. For example, the visual information in
Fig.14 shows solid temperature and gas pressure, by
different colours and isograms.

The two right-hand side graphics in Fig.14 provides
the spatial distribution characteristic of the
measurement data. In addition, the graphics shows
the measurement data on 2-dimensional planes of
both height direction and the circumference direction
of a blast furnace, also measurement data of each
measurement sensor is arranged on 2-dimensional
plane by corresponding with 3-dimensonal position
information on the sensor exactly.

The central graphics in Fig.14 shows comparison of
both the calculation data with the measurement data
in certain time. Y-axis represents height position of
blast furnace. X-axis represents temperature or
pressure in this time.

5.3 Visualization Results of Using both Simulation
Results and Measurement Data

The distribution of gas pressure of the calculation
data is compared with that of shaft pressure of the
measurement data by using the central graphics in
Fig.14. The comparison is done by updating every 24
hours of one-month data. The example of comparison
result of both the simulation results and real
measurement data is shown in Fig.15. The results of
comparison are summarized. Two distributions are
mostly in good agreement in almost all days.
Consequently, the visualization system can predict
and evaluate the future actual distribution from the
calculation data. Furthermore, if there is a situation
that the two distributions are not in agreement, it can
evaluate ideal operation was not performed.

6. CONCLUSION

In this paper, the useful method of creating a large-
scale total simulator by integrating the sub-models
made in the past has been proposed. The java-based
integrating simulator for blast furnace has been
developed for the blast furnace by using JNI and RMI.
RMI has been used to integrate the two or more
partial simulators in different computer environment.
In addition, JNI has been used to integrate those
simulators programmed in different programming
languages. Developing the simulator by the proposed
method was able to save considerable labour and time
more than redeveloping. The comparison result of
both the simulation results and real measurement data
by the visualization system has been reported. the
visualization system can predict and evaluate the
future actual distribution from the calculation data.
Thus, the blast furnace operation by using both the
java-based integrating simulator for blast furnace and
the visualization system can be supported. In other
word, their systems can support control of the blast
furnace.

REFERRANCES

Sugiyama, T. (1983). Nisiyama Memorial

Technically Lecture Series, ISIJ, 94, 137-173
Sugiyama, T. and Sugata, M. (1987a). Nippon Steel

Technical Report, 35, 34-42.
Sugiyama, T. and Sugata, M. (1987b). Seitetsu

Kenkyu. 325, 34
Naito, M. and Nishimura, T. (2000). Asia Steel

International Conference 2000. Vol.B (Iron
making), pp.268-276

Nakayama, S. (2000). Java Distributed Object
initiation, GIHODO, Inc

Cay, S.H. and Gary, C. (2002). Core Java2 Vol.2,
Chap.11 ASCII, Inc

Gordon, R. (1998). JNI Java Native Interface
Programming, Pearson Education, Inc

