A GENERIC PASSIVITY BASED CONTROL FOR MULTICELLULAR SERIAL CONVERTERS
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Abstract : Multicellular converters appeared for a few years in order to palliate some
drawbacks of the classical structures. Such structures allow to reduce the voltage
throughout the switches and the number of discrete values of the voltage in the load is
directly related to the number of commutation cells. In opposing view, the control of a
multicellular converter is more complex. In this paper a generic controller for a
multicellular serial converter is developed, based on a generalization of Passivity Based
Control (PBC) fitted to bond graph formalism. The generic state equations are deduced
from the original bond graph model using the notion of commutation cells. The whole
approach is presented in a formal way and the performances of the controller realised will

be tested on an example. Copyright © 2005 I[FAC
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1. INTRODUCTION

Applications in power systems frequently use DC-DC
converters. Usually, basic architectures like boost,
buck or Cuk converters are elaborated. Nevertheless,
for several years, a new class of DC-DC converters,
called multicellular converters, appeared in order to
palliate some drawbacks of the basic structures
recalled above (Chiasson, et al., 2003), (Schibli, et
al., 1998). DC-DC multicellular converters allow to
reduce the voltage throughout the switches (in
general IGBT or MOSFET transistors) and the
number of discrete values of the voltage in the load
being directly related to the number of commutation
cells, a better approximation of the desired wave
form can be obtained. In opposing view, the control
of such a converter is more complex. The paper
focuses on the multicellular serial converter, the aim
being to determine a control strategy independently
of the number of cells.

The approach uses bond graph formalism and the
notion of commutation cell in to determine a generic
state equation. Then a control strategy based on
passivity is elaborated.

The paper is organized as follows. Section 2 provides
some recalls about bond graph modelling of the
continuous part of switching systems with ideal
switches and the important notion of commutation
cells. In section 3, the principles of PBC theory fitted
to bond graph formalism are exposed and the
different stages leading to the controller recalled
(Ortega, 1998), (Ortega, et al., 2002). Section 4, is
devoted to determine the generic state equation of the
multicellular serial converter and its associated
controller synthesized with PBC method. Finally, an
example is presented illustrating the previous results.

2. BOND GRAPH MODELLING AND PASSIVITY
BASED CONTROL



2.1. Bond graph formalism

Created by H.M. Paynter, the bond graph formalism
allows to model continuous systems and by
extension, the continuous part of hybrid dynamical
systems. Based on the transfer of energy which is
figured by bonds and using the analogies between the
various fields of the physic, this formalism models,
with a unique approach, engineering components of
is , electricity, hydraulics,....(Karnopp, et al., 1990).
Consequently, any physical system with switching
components can be modelled by the generic bond

graph of figure 1.
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Fig. 1. Structure of a general bond graph

Beside the standard fields for sources, storage and
dissipative elements, it includes a particular field for
ideal switches (Sw). These extra elements either
behave like flow or effort sources according to their
state (Cormerais, 1998). The topology of the system
is represented by the junction structure depicted on
figure 1.

For any acceptable mode (or configuration of the
switches), causality can be assigned so as to
maximise the number of storage elements in integral
causality and define a solvable input-output pattern.
Figure 2 represents the block diagram deduced from
the causal bond graph in a mode where no derivative
causality is present.

In the following, for the sake of simplicity (even if it
is not necessary for the proposed approach to work),
it will be assumed that whatever the mode, no
derivative causality is present in the system.
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Fig. 2. block diagram deduced from the bond graph
in one mode

The state vector X gathers the energy variables
associated with the storage elements. 7, is made of

the power variables imposed by the switches in the
chosen mode; T, is its conjugate. The outputs of the

junction structure can be related to its inputs using a

so-called standard implicit form (Buisson, et al,
2002) :
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Relation (1) is deduced from one particular mode,
characterized by 7,=0, but it remains formally true

in any other mode. The S, matrices are skew
symmetric.

2.2 The notion of commutation cell

In the case where switching commutate by pairs, the
notion of commutation cell can be used allowing the
determination of a new causal bond graph,
topologically simpler and with fixed causality in any
available mode (Buisson, et al., 2001).

The principle of the method is first to determine the
commutations cells, then, for each of them, to
determine the generic input/output relation in any
available mode.

The Boolean control inputs of the switches in the
original model become variable parameters in the
input/output relations of the commutation cells.

The main advantage of such a transformation is that it
leads to a unique generic expression of the implicit
standard form (cf. relation (2)) which depends on the
Boolean inputs as formal parameters. Indeed,
matrices S; possibly depend on the control Booleans,
the latter being denoted by vector [ in the following.
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The generic state equation can be easily deduced
from (2) by introducing the constitutive relations on
the resistive and storage elements.

D =LD Z=FX

H=L(I-S,L)"

where L, F' are symmetric definite positive, and H
definite positive

We have the following expression for the state
equation :

X =[S, =S, HS}, |F X +[ S, + S, HS,s U (4)

3)

with H a definite positive matrix such that :
H=L(I-S,L)" Q)

Let consider an output Y of the system made of linear
combinations of the junction structure output
variables. We have :

Y =CX,+DX, + MU (6)



Furthermore, if the state variables are continuous at
commutation time, the equivalent average model can
be directly determined.

Definition of an elementary commutation cell :
Considering the available modes for the system, an
elementary commutation cell is a set of causal paths
of type 1, connex in their set (A causal path 1 is a
switching causal path i.e. a causal path between two
switches whose causality changes at least one time
considering all the available modes and two causal
paths are connex if and only if they have at least one
common bond).

The input/output bonds of the commutation cell are
the bonds which are adjacent to the junctions of the
commutation cell but do not belong to it. Their
causality does not depend upon the mode. The
effort/flow variables associated to these bonds define
the input and output vectors S, and S, of the

commutation cell, as depicted in Figure.2. The
Switches block corresponds to the switches belonging
to the switching causal paths of the commutation cell
(Buisson, et al., 2001).

3. A BOND GRAPH BASED FORMULATION OF
PASSIVITY BASED CONTROL

PBC is known as an efficient continuous technique
for the regulation of switching physical systems that
requires the knowledge of an average model. The
state equations deduced from bond graph models
leading easily to a Port Controlled Hamiltonian
(PCH) formulation that is this form which has been
adopted in the following. Under this assumption,
equations (4) and (5), which fundamentally define a
state representation for the exact switching system
whose control variables are Boolean, can also be
interpreted as its average model provided that the
same variables are considered as continuous in the set
[0,1].

The matrix representation for the state average model
of a switching system in standard PCH formulation
has the following expression (Ortega et al., 2002):

P[RS G )

X the state vector of the average model
p© the control variable

J the skew-symmetric interconnection matrix
R, the symmetric dissipation matrix

H, the energy stored in the system

G the power input matrix

H, and matrices J,R,G potentially depend on the
control variable p .

Since S|, is a skew symmetric matrix, it can be

considered as an interconnection term from a PCH
point of view. In return, H, and consequently

S\, HS/;, are not symmetric in the general case
(except when S5, =0). Therefore it is necessary to

separate the latter term into two parts, namely a skew
symmetric one /H, , and a symmetric one H_ , in

order to identify them respectively with an
interconnection term and with a dissipation one.
Then, the state equation can be written as (Morvan, et
al., 2004):

X =[(8,=SH,S5)-SsHSL|FX+BU  (8)

Identifying (11) and (13), we get:
J(p):Sn _S13Ha51T3 R (p):SBHvSlZ;

a
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The stage of the control synthesis :

- Starting from this PCH formulation of the model,

the control objective will be to make the observation

variable defined by (6) follow a prescribed reference:

Y=Y, (10)
-Let X be the error vector with
X=X-X (11)

- Using this error vector instead of the original state
vector, the average model can be rewritten as:

X-(J-R)FX=GU-[X,~(J-R,)FX,] (12)
- In PBC method a damping injection is performed by
adding some dissipation on the error vector, by
means of a matrix denoted by R, (R, >0). Thus

equation (12) becomes:

X—(J-(R,+R))FX= )
GU-| X, ~(J-R,)F X —RFX|

Then, the right hand side of this first order ordinary
differential equation has to be null in order to ensure
an asymptotic cancellation of the error.

- Finally, the PBC strategy leads to the following
system :

X, -[J(p)-R,(p)|FX.-RF(X-X,)=BU (14)

Y=Y (15)
These two equations define the controller dynamics
under an implicit form (the variables are the control
p and X_). Knowing that X_ is a function of the

control variable, this system can be explained as an
explicit differential equation system in terms of p .

4. THE GENERIC STATE EQUATIONS OF THE
MULTICELLULAR SERIAL CONVERTER

4.1 Introduction
Let consider the generic electric scheme of the

multilevel serial converter that can be used for the
control of DC-motors. From an electrotechnical point



of view this converter is constituted of three type of
cells such as depicted on the figure 3 : one source
cell, k elementary cells, one load cell. Since, in
normal conditions, the switches commutate by pairs
(T1 with T2, T1,i with T2,i and so on) the notion of
commutation cell can be used to determine an
equivalent bond graph model of the system in which
switches are not modeled by sources any longer, but
rather by modulated transformers and/or gyrators.
The Boolean control inputs of the original model
become the coefficients of those new elements.

/)

Fig. 3. The serial multilevel converter

The objective is to control the voltage in the
capacitor and the current in the load.

4.2 The determination of the generic state equation
using commutation cells

Considering the available modes for the system, an
elementary commutation cell is a set of switching
causal paths (a switching causal path is a causal path
between two switches whose causality changes at
least one time considering all the available modes)
connex in their set. Two causal paths are connex if
and only if they have at least one common bond.

The input/output bonds of the commutation cell are
the bonds which are adjacent to the junctions of the
commutation cell but do not belong to it. Their
causality does not depend upon the mode. The
effort/flow variables associated to these bonds define
the input and output vectors S, and S,, of the

out

commutation cell.

One time the commutation cells determined, a general
input/output relation can be determined for each of
them depending of a Boolean parameter. A causal
bond graph for the multicellular serial converter is
represented on the figure below. It that mode the even
switches are closed and the odd switches are opened.
The commutation cells being isolated, it is easy to
determine the generic input/output relations available
whatever the state of the switching of the
corresponding commutation cell. Finally, the
following expressions are obtained (the components
(effort/flow) of input/output vectors corresponding to
the commutation cells are deduced from the causal
bond graph of figure 4):
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Fig. 4. A causal bond graph of the multicellular serial
converter

Input-output relation of the source commutation cell :
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Input-output relation of the 7 commutation cell :
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Input-output relation of the load commutation cell :
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Fig. 5. The causal bond graph with the commutation
cells blocks

An equivalent representation of the bond graph of
figure 4 can be given by the structure represented
figure 5. One time the input/output relations of the
commutation cells determined (cf. equations (16) to



(18)), we have to aggregate them in order to deduce
the global input/output relations (cf. relation (2))
allowing the determination of the state equation by
inserting the constitutive laws.

e For the source commutation cell, we have :

fi=(=14p) foi =P, fs (19)
fz,l _ £ l_pi _(l_pi)J(ﬁLk\J 20
(/[31\] II_II( _Pi ,0,- fs,k ( )
Jax =P.Js (21)

fiu==(1=p.) f; and f; = f,

i;ﬁlg —m—ﬂqu‘“ _U_Mq -
p p

i=1 _,0,- pi

(22)-(23)

we finally obtain :

fi=(-1+p,+p) f; (25)

e For the k-1 elementary commutation cells, with
i=L2,..,k-1:

fl,i =—p f4,i - (1 —P; )fs; (26)
Since (cf. figure 4) :

f2‘i+1 _ f4,i
{ﬁﬁj‘(aj @7

From (20) and (24), it can be deduced that :

1=p ~(1=p., )j[ p. j (28)
=(- —(1-p;

fi=lop p’))[ i Pis -(1-p.) 5
Thus, finally :

fi= (pi+1 —Pi )f3 (29)
e Forthe ¥ elementary commutation cell :

fl,k ==p f4,k _(l_pk)fs,k (30)
So:

fa=(l=p.=p.) f; (31)
e For the load commutation cell :
From a general point of view,

k
Q=)0 0,40 fi+0 e+t e+ e, (32)

i=1
Since §), is a skew symmetric matrix, only two
coefficients @, and @, are unknown (the others being

deduced from relation (25), (29) and (31)). From
figure (5) and relation (18), we have :

e =p. ¢, _(l_pc)es,k - (33)

using (17), it remains that :
Cak Pr S(1=p, P, P
= e, + e
(65”‘} (pk_J Y g’;(l_pj P\ Pl b
+ Il—[ 1_pj pj (1_px ps)(elj
j=k 1_pf pj _ps ps e,

(34)

Since :

L (1=p. ) 1-
055

=k l_pj p/ 1_:01 %
From (33) and (34) and (35), it can be deduced that :

= p, (36)
o, =-1 (37
At least :

fi=1 (38)

Relations (25), (29), (31), (36), (37) and (38) allow to
determine the S, matrices and thus the implicit

standard form (cf. relation (2)),we finally obtain that :

z'=(f fion i &) (39)
X" = (‘11 q11 Qi1 D Ps ) (40)
D, =(e,) and U =(e,) (41)-(42)
0 0 0 0 p,+p -1
0 0 0 Pr =P
S“ _ : : . . .
0 0 0 0 Py~ Pr
0 0 - 0 0 1-p, = p.
l=-p=p, pP—p C PP PP 0
S, =(0 0 -1)", 8,=(0 0 p) (43)-(45)

Matrices S,; and S;; are null scalars. As mentioned

in §2.2., a generic state equation, available for all
valid modes, can be deduced. For the present case, we
obtained as state equation (deduced from (8)):

0 0 0 0 ptp-l
L
. 0 0 0 0 Pph
4 L G
Gy, : : B : : : 1, .
.: = 0 0 0 0 P~ Pi- Lot 0 E
LN L v 0
p 0 0 0 0 1=pi=p. || p,
L P
1-p=P P=P  Pa—P P*P-l R
Cl CLl CIJ(*I CIJ( L
(46)

4.3 The Generic Passivity Based Controller For A
multicellular Serial converter

In order to determine the passivity based controller,
we just have to apply relations (14) and (15) on this
particular application. The objective being to control
the voltage in the capacitors and the current in the
load, the output equation variables are represented by
the Z vector. Since X, does not depend on p, the
controller will be a static state feeback (cf.relation
(47)). This equation defines a system of k+2
equations with & +2 unknowns variables (the control
variables).
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5. APARTICULAR CASE : THE 3 LEVEL
MULTICELLULAR SERIAL CONVERTER

From the results of the previous section, the equation
of the controller for this 3 level multicellular serial is:

Ps 1 . €1 fe | @
p|l=———| E-e. —e,. —fi.||B
Pe o e. ~E+e,. fi

(49)
oa=-¢ (el _elc)+f3c
B=-¢ (eu € ) —fie
y=-& (fs _fsc)_elc te,. +R f;,

A simulation with Matlab-Simulink has been realized
using a PWM at 500Hz with the following damping
parameters :

£ =37500,¢&, =& =0.475

and physical parameters :

C,=C,=lmF,L =0075H ,R=20Q ,E =90V

Fig. 6. Trajectory in the output space

The initial state is the null state the control objective
issothat: ¥ =(30 60 Z)T . The control objective is

achieved in less than 10 ms.

5. CONCLUSION

In this article Passivity Based Control has been
successfully achieved on a generic multicellular serial
converter. The methodology is based on bond graph
formalism and the notion of commutation cells that
allows the generalization whatever the number of
cells. Furthermore, simulation results show that PBC
is an efficient method to control non linear system
with switching components. At least, such an
approach can be applied on other multicellular
structures (for example the parallel structure).
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