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Abstract: The problem of dynamic feedback equivalence of nonlinear control
systems on time scales is studied. Time scale is a model of time. Two most
important cases are the real line (continuous time) and the set of integers (discrete
time). Control systems on time scales include continuous-time and discrete-time
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result says that two systems defined on a time scale are dynamically feedback
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of continuous-time and discrete-time versions. Copyright c©2005 IFAC
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1. INTRODUCTION

The concept of dynamic feedback equivalence was
first introduced and investigated by Jakubczyk
(1992 and 1993) for continuous-time systems. This
concept allowed for a simple and elegant defini-
tion of dynamic feedback linearization, which was
earlier studied by many authors, as for example
Marino (1992) and Fliess et al. (1992 and 1993)
See also Pomet (1995) for more references on
dynamic linearization. Jakubczyk has shown that
two nonlinear continuous-time control systems are
dynamically feedback equivalent if and only if
their differential algebras are isomorphic. The dif-
ferential algebra of a continuous-time system is a
certain algebra of real functions together with a
differential operator associated with the dynamics
of the system.

1 This work has been supported by KBN under Bialystok
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Jakubczyk’s result was transferred to the discrete-
time case by Bartosiewicz et al. (1994). In that
new setting dynamic transformations depended
on future states and controls and the difference
operator associated with the discrete-time system
appeared instead of the differential operator. The
corresponding theorem stated that two discrete-
time systems are dynamically feedback equivalent
if and only if their difference algebras are isomor-
phic.

Calculus on time scales, developed by Hilger
(1988), unifies differential calculus on the real
line and calculus of finite differences. There is,
in fact, whole spectrum of different time scales
which serve as models of time; continuous time
and discrete time are just two most important
cases. Dynamical systems on time scales were
studied by Bohner and Peterson (2001). Basics
of theory of linear control systems were devel-
oped by Bartosiewicz and Paw luszewicz (2004a
and 2004b). There were other attempts to unify
discrete and continuous in control theory. Let us



mention Monaco and Normand-Cyro (1995) and
Goodwin et al. (2001). Time scales, however, be-
sides unification allow to consider time that is
partly continuous and partly discrete. This could
be used to model certain phenomena in biology,
where one can observe different stages of life of
some species.

In this paper we study dynamic feedback equiva-
lence of nonlinear control systems on time scales.
We give a characterization of this property which
unifies continuous-time and discrete-time cases.
We introduce the delta operator associated with
a system on time scale. In general, it is neither
differential nor difference operator. It is shown
that two systems on time scales are dynamically
feedback equivalent if and only if their delta al-
gebras are isomorphic. We consider only homo-
geneous time scales for which time-invariant sys-
tems may be defined. Nonhomogeneous case will
require some modifications. This will be studied
in future papers.

Dynamic output equivalence for nonlinear discrete-
time systems was studied by Bartosiewicz and
Paw luszewicz (1998) and Paw luszewicz and Bar-
tosiewicz (1999). The difference universe of a non-
linear system with output was used instead of the
difference algebra to characterize this property.

2. CALCULUS ON TIME SCALES

A time scale T is an arbitrary nonempty closed
subset of the set R of real numbers. It serves as
a model of time. The standard cases comprise
T = R, T = ZZ and T = hZZ for h > 0. An-
other interesting time scale is Pa,b =

⋃∞
k=0[k(a +

b), k(a + b) + a]. Here time is partly continuous
and partly discrete. Bohner and Peterson (2001)
use this time scale to describe evolution of certain
physical and biological systems (e.g. RLC circuit
and population of cicada). To see more possibil-
ities, imagine water dripping from a faucet. This
discrete-time phenomenon often changes its na-
ture to continuous-time as water starts to flow
continuously at some moment. The time scale here
would be a sequence of points (finite or infinite?)
followed by a half-line.

We assume that T is a topological space with the
relative topology induced from R. For t ∈ T we
define

• the forward jump operator σ : T→T by
σ(t) := inf{s ∈ T : s > t};

• the backward jump operator ρ : T→T by
ρ(t) := sup{s ∈ T : s < t};

• the graininess function µ : T→[0,∞) by
µ(t) := σ(t)− t.

If σ(t) > t, we say that t is right-scattered, while
if ρ(t) < t we say that t is left-scattered. Points

that are right- and left-scattered at the same time
are called isolated. If t < sup T and σ(t) = t, then
t is called right-dense; if t > inf T and ρ(t) = t
then t is called left-dense. Points that are right-
and left-dense at the same time are called dense.

Finally we define the set

Tk :=

{
T \ (ρ(sup T), sup T] if sup T <∞
T if sup T = ∞

Example 2.1.

• If T = R then for any t ∈ R, σ(t) = t = ρ(t);
the graininess function µ(t) ≡ 0.

• If T = ZZ then for every t ∈ ZZ, σ(t) = t + 1,
ρ(t) = t−1; the graininess function µ(t) ≡ 1.

Definition 2.2. Let f : T→R and t ∈ Tk. Delta
derivative of f at t, denoted by f4(t), is the real
number (provided it exists) with the property that
given any ε there is a neighborhood U = (t−δ, t+
δ) ∩ T (for some δ > 0) such that

|(f(σ(t))− f(s))− f4(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . Moreover, we say that f is delta
differentiable on Tk provided f4(t) exists for all
t ∈ Tk.

We shall often drop the word “delta” and talk just
only about derivatives and differentiability, if this
does not lead to confusion.

In general case forward jump operator σ is not
delta differentiable.

Assume that f, g : T→R are delta-differentiable
at t ∈ Tk. Then:

(1) (f + g)4(t) = f4(t) + g4(t);
(2) (af)4(t) = af4(t) for any constant a;
(3) (fg)4(t) = f4(t)g(t) + f(σ(t))g4(t) =

f(t)g4(t) + f4(t)g(σ(t));
(4) if g(t)g(σ(t)) 6= 0 then

( f
g )4(t) = f4(t)g(t)−f(t)g4(t)

g(t)g(σ(t)) ;
(5) in general (f ◦ g)4 6= (f4 ◦ g)g4.

For proofs of these and other facts presented in
this section see e.g. (Bohner and Peterson, 2001).

Remark 1.

• If T = R, then f : R→R is delta differentiable
at t ∈ R iff

f4(t) = lim
s→t

f(t)− f(s)
t− s

= f ′(t).

i.e. iff f is differentiable in the ordinary sense
at t.

• If T = ZZ, then f : ZZ→R is always delta
differentiable at every t ∈ ZZ with

f4(t) = f(t+ 1)− f(t).



Thus delta derivative is then the usual for-
ward difference operator.

Example 2.3. The delta derivative of t2 is t+σ(t).
This means that the second delta derivative of t2

may not exists.

The delta-derivative of 1
t is −1

tσ(t) .

A function f : T→R is called regulated provided
its right-sided limits exist (finite) at all right-dense
points at T and its left-sided limits exist (finite)
at all left-dense points in T. A function f : T→R
is called rd-continuous provided it is continuous
at right-dense points in T and its left-sided limits
exist (finite) at left-dense points in T. It can be
shown that
f is continuous ⇒ f is rd-continuous ⇒ f is
regulated
and that σ is rd-continuous.

The set of functions f : T→R that are n times
delta differentiable and whose all derivatives are
rd-continuous will be called of the Cn rd-class.
Similarly C∞ will denote the class of all functions
having derivatives of arbitrary order.

A continuous function f : T→R is called pre-
differentiable with (the region of differentiation)
D, provided D ⊂ Tk, Tk \ D is countable and
contains no right-scattered elements of T, and f is
differentiable at each t ∈ D. It can be proved that
if f is regulated then there exists a function F that
is pre-differentiable with region of differentiation
D such that

F4(t) = f(t)

for all t ∈ D. Any such function is called pre-
antiderivative of f . Then indefinite integral of f is
defined by ∫

f(t)4t = F (t) + C

where C is an arbitrary constant. Cauchy integral
is defined by

s∫
r

f(t)4t = F (s)− F (r) for all r, s ∈ Tk

A function F : T→R is called an antiderivative
of f : T→R provided F4(t) = f(t) holds for all
t ∈ Tk.

It can be shown that:

•
b∫

a

f(t)g4(t)4t =

(fg)(b)− (fg)(a)−
b∫

a

f4(t)g(σ(t))4t;

• if f is rd-continuous and t ∈ Tk, then
σ(t)∫
t

f(τ)4(τ) = µ(t)f(t);

• if f(t) ≥ 0 for all a ≤ t < b, then
b∫

a

f(τ)4(τ) ≥ 0.

Remark 2. It can be shown that every rd-continuous
function has an antiderivative. Moreover, if f(t) ≥

0 for all a ≤ t < b and
b∫

a

f(τ)4τ = 0 then f ≡ 0.

Example 2.4.

• If T = R, then
b∫

a

f(τ)4τ =
b∫

a

f(τ)dτ , where

the integral on the right is the usual Riemann
integral.

• If T = ZZ, then
b∫

a

f(τ)4τ =
b−1∑
t=a

f(t) for a < b.

• If T = hZZ, h > 0, then
b∫

a

f(τ)4τ =

b
h−1∑
t= a

h

f(th)h for a < b.

Remark 3. An antiderivative of 0 is 1, an an-
tiderivative of 1 is t, but it is not possible to
find a closed formula of an antiderivative of t:
antiderivative of t2

2 is t+σ(t)
2 = t+ µ(t)

2 .

Example 2.5. If T = ZZ and a 6= 1, then
∫
at4t =

at

a−1 + C, since ( at

a−1 )4 = at+1−at

a−1 = at.

3. SYSTEMS AND ALGEBRAS

From now on we shall assume that the time scale
T is homogeneous, i.e. t+ T := {t+ s, s ∈ T} = T
for every t ∈ T, and that 0 ∈ T. Although this
assumption is not necessary, it will allow us for
studying time-invariant systems.

Let us consider the following control system Σ
defined on a (homogeneous) time scale T

x4(t) = f(x(t), u(t)), (1)

where t ∈ T, x(t) ∈ Rn, u(t) ∈ Rm and f is a map
from Rn×Rm into Rn. We shall assume that f is
of class C∞ and that u may be delta-differentiated
arbitrarily many times at every t. This guarantees
existence and uniqueness of local solutions when
we specify control u and an initial condition for x
(see Bohner and Peterson, 2001).

By a trajectory of Σ we mean any pair (x, u) of
functions defined on a subset of T that satisfy (1).
The behavior of Σ, denoted by B(Σ), is the set of
all its trajectories.

Observe that if the pair (x, u) is a trajectory of
Σ and s ∈ T then the shifted pair (x̄, ū), where
x̄(t) = x(t − s) and ū(t) = u(t − s), is also a
trajectory of Σ. This means that our system is



time-invariant and we may study only trajectories
starting at time equal 0. Another possibility would
be to give up homegeneity of the time scale and
to consider only local version with trajectories
starting always at time equal 0.

Let J(m) denote the space of all infinite sequences
U = (u(0), u(1), . . .), where u(k) ∈ Rm. We think
of components of U as independent variables, but
if some control u is chosen, the sequence U will
often be interpreted as the infinite jet of u at time
0.

Let T be a map Rn × J(m)→J(n) defined by

T (x0, U) := X = (x(0), x(1), . . .),

where (X,U) is the infinite jet at t = 0 of a
trajectory (x, u) of Σ that satisfies the initial
condition x(0) = x0. One can show that such X
is unique which means that T is well defined. We
shall also need the projection map
PJ(m) : Rn × J(m)→J(m), PJ(m)(x,U) = U .

Following Jakubczyk (1992) and Bartosiewicz et
al. (1994) we shall assume the following conditions
about the system:

Condition A. For every x, y ∈ Rn there is at
most one u that satisfies the equation

y = f(x, u). (2)

Condition B. For any x and u the rank of the
matrix

∂f

∂u
(x, u)

is full (i.e. equal m).

Condition C. The map Rn × Rm→Rn × Rn :
(x, u) 7→ (x, f(x, u)) is proper, i.e. the inverse
image of a compact set in Rn × Rn is a compact
set in Rn × Rm.

Let us consider two systems

Σ : x4(t) = f(x(t), u(t))

and
Σ̃ : x̃4(t) = f̃(x̃(t), ũ(t))

with x(t) ∈ Rn, x̃(t) ∈ Rñ, u(t), ũ(t) ∈ Rm,
defined on the same time scale T.

Consider dynamic feedback transformations of
one system into the other and vice versa

x(t) = φ(x̃(t), . . . , x̃(r)(t),

u(t) = ψ(x̃(t), . . . , x̃(r)(t), ũ(t), . . . , ũ(r)(t))

x̃(t) = φ̃(x(t), . . . , x(r)(t),

ũ(t) = ψ̃(x(t), . . . , x(r)(t), u(t), . . . , u(r)(t))

These transformations depend on states, controls
and their delta derivatives up to some finite order
r. We say that two systems Σ and Σ̃ are dynami-
cally feedback equivalent if there are dynamic feed-
back transformations that transform the behavior

of one system onto the behavior of the second
system and vice versa, and these transformations
are mutually inverse on the behaviors.

Let A(n,m) denote the algebra of all C∞ func-
tions

ϕ : Rn × J(m)→R
depending only on a finite number of elements
in U ∈ J(m). Let us now consider a system
Σ, described by (1). Define the operator δΣ :
A(n,m)→A(n,m) associated with Σ by

(δΣϕ)(x,U) :=∫ 1

0

∂ϕ

∂x
(x+ hµ(0)f(x, u0), U)dh · f(x, u0)+

∞∑
i=0

∫ 1

0

∂ϕ

∂ui
(x, U + hµ(0)U1))dh · ui+1.

(3)

Remark 3.1. The delta operator has the follow-
ing interpretation. Let U(·) be the infinite jet of
control u and let x(·) be the solution of (1) corre-
sponding to u and the initial condition x(0) = x0.
Then the delta derivative at t = 0 of ϕ(x(t), U(t))
is equal to (δΣϕ)(x0, U(0)).

The algebra A(n,m) together with the opera-
tor δΣ is called the delta algebra of system Σ
and denoted by AΣ. A homomorphism of delta
algebras AΣ and AΣ̃ is a homomorphism τ :
A(n,m)→A(ñ,m) of algebras that satisfies the
condition δΣ̃ ◦ τ = τ ◦ δΣ. An isomorphism of
the delta algebras AΣ and AΣ̃ is a homomorphism
that is a bijective map.

4. THE MAIN RESULT

The main result of this paper says the following

Theorem 4.1. Systems Σ and Σ̃ are dynamically
feedback equivalent iff their delta algebras AΣ and
AΣ̃ are isomorphic.

The proof of the above theorem rests on several
propositions and lemmas stated below and to
some extent follows the ideas of Jakubczyk (1992
and 1993) and Bartosiewicz et al. (1994).

Let η = (η1, η2), where η1 = (η1, . . . , ηn),
η2 = (ηn+1, . . . , ηn+m) and ηs ∈ A(ñ,m), s =
1, 2, . . . , n+m.

Proposition 4. If two systems Σ and Σ̃ are dynam-
ically feedback equivalent via dynamic feedback
transformations and η1 and η2 are defined by
η1 = φ◦ T̃ , η2 = ψ ◦ (T̃ , P̃J(m)), then δΣ̃η

1 = f ◦η.

A similar fact holds for η̃1 = φ̃ ◦ T and η̃2 = ψ̃ ◦
(T, P ), where P = PJ(m).



Let us define maps

η̂ : Rñ × J(m)→Rn × J(m),
ˆ̃η : Rn × J(m)→Rñ × J(m)

by η̂ = (η1, η2, (δj

Σ̃
η2)j=1,2,...) and

ˆ̃η = (η̃1, η̃2, (δj
Ση̃

2)j=1,2,...).
Consider the pullbacks
η̂∗(ϕ) = ϕ ◦ η̂, η̂∗ : A(n,m)→A(ñ,m) and
ˆ̃η∗(ϕ̃) = ϕ̃ ◦ ˆ̃η, ˆ̃η∗ : A(ñ,m)→A(n,m).

Proposition 5. If the assumptions of Proposition 4
are satisfied then the map η̂∗ is an isomorphism
of delta algebras AΣ and AΣ̃ and (η̂∗)−1 = ˆ̃η.

Let τ : AΣ→AΣ̃ be a homomorphism of delta
algebras. Let xi : Rn × J(m)→R ,
u

(k)
j : Rn × J(m)→R be the coordinate functions

xi(x,U) = xi, i = 1, . . . , n, (4)

u
(k)
j (x,U) = u

(k)
j ,

j = 1, . . . ,m, k = 0, 1, . . .
(5)

Lemma 4.2. For any homomorphism

τ : A(n,m)→A(ñ,m)

of delta algebras there exists a unique map η such
that τ = η̂∗. Then τ(xi) = ηi , i = 1, . . . , n and
τ(u(0)

j ) = ηn+j , j = 1, . . . ,m.

In a similar way we can define the map

η̃ = (η̃1, . . . , η̃ñ+m), η̃s ∈ A(n,m), s = 1, . . . , ñ+m

such that η̃i = τ̃(xi), i = 1, . . . , ñ, η̃ñ+j =
τ̃(uj), j = 1, . . . ,m , where τ̃ : AΣ̃→AΣ. This
map also satisfies the last lemma.

Sketch of proof of Theorem 4.1
“⇒” Assume that systems Σ and Σ̃ are dynam-
ically feedback equivalent. Then Proposition 5
gives the required isomorphism of difference al-
gebras.
“⇐” Assume that τ is an isomorphism between
difference algebras AΣ and AΣ̃. Let τ(xi) =
ηi, i = 1, . . . , n, τ(u(0)

j ) = ηj+n, j = 1, . . . ,m
and ηs ∈ A(ñ,m) s = 1, . . . , n + m . Take
η1 = (η1, . . . , ηn), η2 = (ηn+1, . . . , ηn+m) and η =
(η1, η2). From Lemma 4.2 it follows that τ = η̂∗.
We are going to construct maps φ, ψ, φ̃ and ψ̃. Let
φ = (φ1, . . . , φn) and ψ = (ψ1, . . . , ψm).

First we assume that (X̃, Ũ) is the jet of a trajec-
tory of Σ̃ starting at 0 and we construct φ, ψ on
jets of trajectories, only. Define

φi(X̃) := (τxi)(T̃−1(X̃)), i = 1, . . . , n, (6)

and

ψj(X̃, Ũ) := (τu(0)
j )(T̃−1(X̃)), j = 1, . . . ,m.

(7)

One can show that (X,U) defined by X = Φ(X̃)
and U = Ψ(X̃, Ũ) is the jet of a trajectory of Σ
starting at 0.

To finish the proof it is enough to extend the maps
φ, ψ, φ̃ and ψ̃ to arbitrary (X̃, Ũ) ∈ J(ñ) × J(m)
and (X,U) ∈ J(n) × J(m). This can be done
similarly as in (Jakubczyk, 1993).

5. CONCLUSION

The paper contains a characterization of dynamic
feedback equivalence of nonlinear control systems
defined on homogeneous time scales. Namely, two
systems are dynamically feedback equivalent if
and only if their delta algebras are isomorphic.
This theorem is a generalization of earlier results
stated for continuous-time systems and discrete-
time systems. It contains these results as par-
ticular cases. If the time scale is the real line,
then the delta algebra of the system becomes the
differential algebra of the continuous-time system.
On the other hand, if the time scale is the set
of integer numbers, then the delta algebra of the
system is related to the difference algebra of the
discrete-time system.

Dynamic feedback equivalence is close to the idea
of dynamic feedback linearization. A nonlinear
control system is dynamically feedback linearizable
if it is dynamically feedback equivalent to a linear
controllable system. The methods used for study-
ing dynamic feedback linearization for continuous-
time systems and for discrete-time systems may
now be generalized to systems defined on homo-
geneous time scales.
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