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Abstract: This paper addresses the design of gradient based search algorithms for
multivariable system estimation. In particular, the work here considers so-called ‘full
parametrization’ approaches, and establishes that the recently developed ‘Data Driven
Local Coordinate’ (DDLC) methods can be seen as a special case within a broader class
of techniques that are designed to deal with rank-deficient Jacobians. This informs the
design of a new algorithm that, via a strategy of dynamic Jacobian rank determination, is
illustrated to offer enhanced performanGapyright©2005 IFAC
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1. INTRODUCTION More recently, the use of these fully parametrized
structures has been investigated in the context of gra-

In the field of dynamic system identification, the so- dient based search for ML/PE estimates (McKeleey
called Maximum Likelihood (ML) principle and itsre-  al., 2004, McKelvey and Helmersson, 1999; Bergboer
lations, such as Prediction Error (PE) techniques, playet al, 2002; Verdultet al, 2002; Lee and Poolla,
akey role. Despite the advantages of ML/PE methods,1999). An essential point of this work is to recognise
their practical deployment is not always straightfor- that a full parametrization is an over-parametrization,
ward. This is largely due to the non-convex optimisa- but that a minimal parametrization which is (locally)
tion problems that are often implied. Typically, these linearly related to the full parametrization can be sim-
are solved via a gradient-based search strategy such agly derived.
a Newton type method or one of its derivatives (Ljung,

1999; T.®derstdm and P.Stoica, 1989; Dennis and .von | ocal Co-ordinates(DDLC). Their employ-

Schnabel, 1983). ment reduces computational requirements, and also
The success of this sort of approach depends on thdusually) avoids rank deficiency of the prediction error
chosen system parametrization. Selecting the latterJacobian. This simplifies the computation of search di-
can be difficult, particularly in the multivariable case rections. These features render DDLC-based gradient
where the cost contours resulting from natural canoni- search as a very effective means for finding ML/PE
cal state-space parametrizations imply poor numericalestimates of multivariable systems, and indeed it has
conditioning during gradient-based search (Deistler, become the default method for multi-variable system
2000; McKelvey, 1998). estimation implemented in the widely used Matlab

System Identification Toolbox (Ljung, 2004).
Indeed, the possibility of avoiding these parametrization-y et X (Lung )

based difficulties is one of the key reasons for the This paper is also directed at the development of gra-
recent intense interest in State Space Subspace basetlent based search methods for ML/PE estimation of
System Identification (4S1D) methods (van Overschee multivariable systems. Full parametrizations are also
and Moor, 1996; Larimore, 1990; Verhaegen, 1994). employed here, but instead of employing a DDLC-
With these techniques, every element of every matrix based local re-parametrization to avoid Jacobian rank-
in the state space model is estimated, which this papeideficiencies, alternative “robust” strategies are pro-
terms a fully parametrizetmodel structure. posed for computing search directions.

These local representations have been dubBeda’



These robust methods for computing search directionsmogel structure (1), the ML estimafeis given as an
effectively involve discarding elements of the Jaco- element satisfying

bian matrix that lie in its own kernel. A first main . B B

result of this paper is that if this discarding is imple- 0e{0eR™ : |EO) <I|E@®), VoeR"} (6)
mented whereby a certain fixed dimensional subspace . . L
of the Jacobian is eliminated in the computation of a I the aforementioned Gaussian assumption is vio-

search direction, then this ensuing directiondisnti-  |ated, then the criterion (6) will no longer yield a
cal to that obtained via DDLC methods. Maximum-Likelihood solution. However, it will still

specify a minimum prediction error norm estimate that
While this may be of independent interest in terms of will, asymptotically in observed data length, possess
providing insight into the search mechanism inherent statistical properties that are closely related to those of
to DDLC techniques, its main significance in relation a Maximum-Likelihood solution.
to this paper is that it establishes that DDLC methods
are simply a particular choice within a range of search
direction alternatives that are designed to be robust to
Jacobian rank.

Balancing these attractive featurésdefined by (6)
cannot be specified in closed form due to the nonlinear
dependence oF'(#) on 6. In recognition of this, the
previous work (McKelveyet al, 2004; McKelvey

As such, this paper proposes and then examines and Helmersson, 1999; Bergbaatral, 2002; Verdult
strategy of employinglynamicJacobian rank alloca- et al, 2002; Lee and Poolla, 1999) has focused on
tion as part of search direction computation. this problem of finding minima of| E(6)||, and has
explored a gradient search approach. This paper is
also directed at studying these methods, and seeks to

propose, analyse and empirically substantiate effective
2. PROBLEM SETTING variants of them.

This paper considers the problem of system estima-
tion using the following innovations-form state-space
model structure: 3. GRADIENT-SEARCH BASED METHODS

A B K : :
{xtyjl] = [C D} {iﬂ + [ 7 } v (1)  Gradient search strategies have long been employed
in a v%/||_de vari%t 9§)f _I§r3]/stem |dehnt(|jf|cat|on app |ca-I
Hereu, € R™ is the observed inpuy, € R? isthe  tons (Ljung, 1999). These methods are common
observed outputy, € R? is a zero mean i.i.d. stochas- motivated (Dennis and Schnabel, 1983, Chap. 10))

i 2
tic process that models measurement corruptions, and®y a1 argument that the quadratic nature| () |
the stater; € R". suggests the use of a linear approximation/{p)

) . ) about a current guegs of a minimiser according to
In order to compute estimates, this paper will employ SE(8)
a full parametrizationof the system matrices in (1). ~ / _ g A
Speci?ically, this work will address the estimationofa =@ = E(0k) + E(6x)(0 = 6x),  E'(0r) 90 |o—,
parameter vectat € R™¢ given as ] ) ) ] ) )
in which case the ensuing approximation

0T £ [vec{A}T ,vec{B}T ,vec{C}T ,vec{D}T ,vec{K}T]. . . ,
[vect Ay vec(Z}" vec{CY"  vee{D}" veo(K} | Ml E@)| = minl BG) + B 000 -0 @
Here, the veg-} operator is one which forms a ) ) o ]
vector from a matrix by stacking its columns on top by virtue of being affine ing, does have a solution
of one another. Via this, and the innovations form of which can be found in closed form. However, this
the structure (1), the steady-state mean square optimagolution is only unique if the Jacobiali’(6},) is of
one-step-ahead predictgy,_, (¢) associated with a  fyll column rank.
?SO(C‘L?an; rzi\g19e§t)r|zed by can be simply expressed The Levenberg—Marquardt and Gauss—Newton ap-
' proaches ((Dennis and Schnabel, 1983, Chap. 10),
Nocedal and Wright, 1999, Chap. 10) and (Fletcher,
3 987, Chap. 6)), are undoubtedly the most famous gra-
~ o @) dient based iterative search methods used in solving
Yeji—-1(0) = Cyp—1 + Due. problem (6), and both use the linear approximation
, ) ) ) given in (7). Indeed, both methods involve the cal-
Therefore, with the assumption thiat; } is Gaussian  culation of ‘a search directiop and also (eg. in the
distributed asv; ~ N(0,0%1,), 0> € RT, and ‘damped’ Gauss-Newton case) a step lengttsuch
neglecting constant terms which are immaterial to that thek+1'stiteratef; . ; in the search fof is found
the estimation process, the associated log likelihoodfrom the previous iteraté, by
function for the data is given as

':Et+1|t = (A- KO);t\tfl + (B — KD)ut + Ky,

Or+1 = 0k + ap. 9

_ N2 L 2
L) = =5 logo™ = ZIEOI. @ n particular, the search directignfor both methods
- . , is obtained from
Here the prediction error vectd#(6) is defined as (deA C R B @) - B0
pe{dcACR": k) — E' (0

T T 7 n
B(0) 2 [y = 91,0(0),93 — a1 (0), -y — Unyn_1(0)] < |E(0x) — E'(0x)dl|, vd € R™},

in (4 i Rhtice In the Levenberg-M dt methody d
and the norm used in (4) is the Euclidean one. Notice In thé Levenberg-Marquardt method) (assume
that, according to (4) there is an essential decouplinghere to be a sphere) is chosen in an adaptive manner
between the estimation of and the elements of the ~according to how well the local approximation pre-
parameter vectaf defined in (2). Namely, under the dicts the actual algorithm performance.

(10)



When a ‘damped’ Gauss-Newton technique is used
instead, the search region is takenfas= R"¢, and

a second stage is introduced to compute a step lengt
a > 0 such thal| E(0;, + ap)|| < [|E(60k)]l-

In both cases the search direction defined by (10) is
any vectorp which satisfies

[E/(61)"E'(61) + M| p = —E'(6,) " E(6), A=>0 (11)

whereX € R is taken as zero in the Gauss—Newton
method, and is any positive value that ensures that
p € Ain the Levenberg—Marquardt case.

4. DATA DRIVEN LOCAL CO-ORDINATES
(DDLC)

The full parametrization (2) is an over-parametrization
in that the set of systems represented by (1) is a
manifold of dimensionn, — n? n(m + 2p) +

mp. This implies, since the Jacobidtf (6;) hasng
columns, that the Jacobian is rank deficient, with a
kernel of dimension of (at least)?. Therefore, the
search direction (11) in the damped Gauss—Newton
case ofA = 0 is not uniquely defined.

In reaction to this, several authors have proposed
the use of a certaimy — n? dimensional minimal
parametrization that is related to the full parametriza-
tion (2) via an affine transformation, and which
has been dubbed ‘Data Driven Local Co-ordinates’
(DDLC) (McKelvey et al, 2004; McKelvey and
Helmersson, 1999; Bergboet al., 2002; Verdultet

al., 2002; Lee and Poolla, 1999).

In this work, the key idea has been to identify the set
of systems parametrized By € R"™¢ that are input-
output equivalent. This can be conveniently described
by a mappingSy(T") : R"* — R™ that depends on
an arbitrary invertible matrif" € R™*™ according to

T-*AT
T 'B
CcT

D

T K

So(T) = (12)

This mapping is clearly nonlinear with respectfo
However, sinceS,(T) is differentiable onM, =2
{T ¢ R"™™ : def(T) > 0} (Lee and Poolla,
1999), a linear approximation applgin locally for a
perturbatiolAT aroundl” = I,, may be derived as

So(In+AT) =~ So(In)+Sy(In) vec{AT} = 0+ Q vec{AT}

where
AT@I, —I,®A
BT eI
8Sy(T n
Q2 s5p(1) = 220l _ el
vec{T} |p_g, Bipscn?
KT eI,

This implies that a parameter space update in the
search directiop £ Qvec{AT?} for any AT will
locally yield a system with equivalent input-output
properties, and hence, an unchanged valugp)||.
Therefore, it seems reasonable to restrict search direc
tions to be orthogonal to the columns@f

In recognition of this, the works (McKelvey and
Helmersson, 1997; McKelvey and Helmersson, 1999;

Lee and Poolla, 1999; Bergbaoetral., 2002; Verduliet
al., 2002) have sungested the use of a local co-ordinate
tructure, termed DDLC, that is minimal in the sense

that distinct points in parameter space correspond to

non input-output equivalent systems. More specifi-

cally, a vectors € R is used to parametrize this

local co-ordinate system according to
0(8) =0+ Pg

where the columns aP are chosen by (for e_xamﬁle)
a singular value decomposition ¢f, and satisfy the
requirements

(14

PTPp=1, PTQ=0,

Here Z(Q) £ {z : = = Qyforsomey} is the
column space of) and similarly forP.

Z(P) & #(Q) = R™. (15)

Thus, according to the local parameterisation (24),
can only move in directions that are a linear com-
bination of the columns of, i.e. in directionsPp.
Hence, we may treat as a function of3 and obtain
the following problem related to (8)

min [|E(@5) + £/ (61) P (16)

As explored by (McKelvey and Helmersson, 1997;
McKelvey and Helmersson, 1999; Bergboet al,
2002), the benefit of solving (16) is thatypically has
dimensionn? less than that of and it seems reason-
able to expect that the computational load is therefore
diminished. In order to understand the properties of
this DDLC approach, note that according to the local

parametrization (14), the prediction error veciof-)
can be restated as a function @ty defining a new

function Ey : Rro—n* _ RNP according to

E¢(B) £ E(0(B)) = E(0 + Pp), a7)

where the subscript denotes tlfatand consequently
P, are fixed. Furthermore, the Jacobiarnffis given
(via application of the chain-rule) as

A 0Ey (/8)
= 5

where we use the identity th#ty (0) = E(0). There-
fore, using this relationship, a Levenberg-Marquardt
or Gauss-Newton method, in accordance with the pre-
vious discussion, may be used to solve (6) by comput-
ing a search directiop as

E}(0) = E'(§)P.

B=0

(18)

q€{deA CR" : ||E(6x) — Ej, (0)d]| 19)

< |Ex) — Ep, (0)d]|, ¥d € R"#},
whereng = rank(P). This in turn is satisfied by any
g which solves

(B, (0T By, (0) + M| ¢ = —Ej, (0)" E(0k). (20)

With this in mind, DDLC based estimation methods
proceed, at iteratiort, as follows: 1. Compute the
matrix P from (15); 2. Solve (20) fog; 3. Use this
solution to updaté;, according to

9k+1 =0 + aPq. (21)

5. RAPPROCHEMENT BETWEEN FULL AND
DDLC PARAMETRIZED SEARCH
Computing a search directigrvia the solution of (11)
or an update directiog via solution of (20) is (rel-
atively) straightforward in the Levenberg—Marquardt



situation, since\ > 0 ensures positive definiteness of implies thatz € Z(P). Sincez was arbitrary then
the left hand side co-efficient matrix in (11) and (20), % (V1) € Z(P) which implies that, < r,,.

hence the uniqueness of eitheor q. .
a heorq Using the above argument, any column W6f can

However, when a Gauss—Newton search strategy isbe expressed as a linear combination of the columns

employed in whichh = 0, then this same coefficient of P, hence the expressiolfy, = PR. Further-
matrix may well be rank deficient in the case of poor more, sinceP’P = I and VIV, = I thenl =
input excitation. It will certainly be rank deficient in VIvi = RTPTPR = RTR. Moreover, since
the situation where the search directipipertaining  pTy, — pTpPR — RthenV, = PR = PPTV,.
to a fully parametrized search direction is sought. O

The need to deal with this sort of rank deficiency This result allows us to express the DDLC based
is well recognised in the general theory of gradient search direction in terms of the SVD (22) as follows.
based optimisation. In particular, it is routinely han-

dled by the employment of a pseudo-inverse (Golub | emma 5.2.The search directioq given by

and Loan, 1989, Section 5.5.3) of the possibly rank

deficient co-efficient matrix. The ensuing scheme is g=—PTVi(8? + X\I)"1S1UT E(6). (28)
denoted as a robust Gauss—Newton strategy to signify | )

that rank deficient and full-rank cases are handled si- Satisfies equation (20) for all > 0.

multaneously (Nocedal and Wright, 1999, Chap. 10).

The most common implementation of robust Gauss- Proof: According to equations (18) and (22), and
Newton methods employ a singular-value-decompositiging the properties that” P = [ andVVv? = I
(SVD%1 of the Jacobian matrix since this allows a \ve can express (20) as

straightforward and computationally robust means to

compute the pseudo-inverse. To provide further detail PTV(S? + \)VT Pg = —PTViSiUTE@).  (29)
on this point, define the SVD df’(f) as !

Substituting forg using (28) and exploiting the iden-

— U5V tities thatR"R = I, R = PTPR = PTV; and
Vi = PR = PPTV, we get

vT

E'(0) = USVT = [Uy, Us] [51 g} v

g g

(22)
Concentratin% for a moment of the full parametriza-
tion approach, then using this SVD we can obtain
a solution to (1'\1/? for any value oh > 0 (i.e.
a

both Levenberg-Marquardt and Gauss-Newton meth- x PTVi (82 + AI)~1S1 UL E(6),
ods) according to

PTV(S2 + A)VTPq=—-PTV(S2 + XI)VTP

=—-PTvi5,UF E(6).
p=—-Vi(S8? + A5 UL E(0). (23)
This follows since, from equations (11) and (22)s =
required to satisfy (recall that” VvV = VvV’ = 1) These results now deliver the main technical result of
V(S? + ADVTp = —Vi5,UT E(0). (4  this paper.
Hence, the search directigngiven in (23) can be  Corollary 5.1. Let Q be given by (13) and a corre-
validated by direct substitution into (24). sponding matrixP satisfy the equations in (15). Let

E’(9) be expressed by its SVD as in (22) anddeind

q be given by (23) and (28) respectively. Then the full
parameterisation and DDLC parameterisation search
directions coincide. That is = Pq.

Moving to the DDLC case, we will require the follow-
ing Lemma that establishes a connection betwBen
andV;.

Lemmab5.1.Let @ be given by (13) and a corre-
sponding matrixP satisfy the equations in (15). Let Proof: From Lemma 5.1 we know thadf; = PR =
E’() be expressed by its SVD as in (22) and let PPTV;. Therefore,Pq may be expressed as
r, = rankP) andr, = rankVi). Thenr, < rp,
— H Tp XTy i
g\TdRVl: . al:ézvfo; ?}rgjgvzr?atnx}% € R with Pg= —PPTVA(S2 + A1) $1UT E(9),
=V (S2+ A)"1SUTE®) =p.

Proof: Since So(7T") parametrizes a system that is
input-output equivalent to that parametrizeddohen

(]

The significance of this result is that, since it estab-

_ E(S_g(f‘r)) - ?(9)' (29) lishes thatp = Pgq, the search update (9) 6f,, =
Therefore, differentiating with respect t6' at the g, + ap using a fully parametrized model, and the
pointT" = I,, provides (recall the definition (13)) search update (21) implied by a (locally minimal)
E'(0)Sy(I,) = E'()Q =0 (26) DDLC parametrization o1 = 6k + aPgq are
and hence, via the singular value decomposition (22)|dent|cal.
and the fact that/; Sy is full-rank As a consequence, gradient search employing a DDLC
nsivIiQ=0 = VIQ=o. 7) parametrization can be viewed as being a special case

) of gradient search using a full parametrization where
Hence, for anyz € Z(V1) it follows that z € any ensuing rank deficiency in the Jacobiah is
N (QT) = {z : QTx = 0}, which from equation (15) accommodated via a pseudo-inverse.



6. AN EXTENDED GAUSS-NEWTON
APPROACH

(5) Initialise the step length = 1 and perform the following
(@) If V(0 + ap) < VN (6k) then goto step 6;
(b) Otherwise, update: — 0.5 and goto (a);

(6) If a = 1then updatey «— min{10~7,0.25v};

The arguments of the previous section depended on (7) If a < ami, then updatey — max{S; (1), 2v};

the singular value decomposition (22) of the predic-
tion error vector JacobiaR’” where it is assumed that
S is a diagonal matrix with strictly positive entries.

The preceding sections have considered the DDLC
approach where, according to Theorem 5.1, it is recog-

nised thatS can have no more thawy — n? non-zero
entries. However, if the input excitation is poor, for
example, then even in case of employing DDLE,
may have less tham —n? non-zero entries, and hence
some sort of on-line determination of the effective
non-zero singular values il is necessary.

This will involve a thresholding procedure, and in de-
termining how this should be decided, it is important
to recognise that if columns df; are retained which

(8) Setfy+1 = 0y + ap and updatés — k + 1;

(9) Check termination conditions (for examplel.E (6y)/d0|| <
tolerance) and stop if satisfied. Otherwise return to step 1 and
repeat.

Empirical study of the performance of this algorithm
relative to existing approaches together with an anal-
ysis of computational requirements now form the re-
mainder of this paper.

7. EMPIRICAL STUDY

Although this paper is primarily concerned with pro-
viding multivariable estimates, we begin with a SISO
example to emphasise that Algorithm 1 provides a

correspond to singular values which are positive, but giqend even in simple situations where it might oth-
very small, then this entails a consideration of search gyise be thought unnecessary.

directions which may well have negligible effect on
the cost function.

Motivated by this, and the results of the preceding sec-

tion which have established that DDLC-based gradi-

ent search corresponds to a particular (fixed) choice of ¥t = G(Qut + v, Gla) =

More_sRecifically, we begin by considering a scenario
in which data is generated by simulation of the follow-
ing SISO third order system

_ 1.6¢° +3.5¢ + 2q + 0.003

. . . : q3 + 1.1¢%2 + 0.7¢ — 0.05
singular value truncation, the remainder of this paper (32

proposes and profiles an extended approach whereby'he performance of Algorithm 1 with regard to esti-
the truncation point is chosen on-line and adaptively. mating this system is first evaluated via Monte—Carlo

In particular, with the notation that the diagonal entries
of S; are denoted as a sequergs, - - - , i}, this pa-

per proposes to adaptively truncate them by restricting

the singular value spread./u, (for somer < k) to
some small value; more precisely, given some small
value~ then choose such thaiu, < 7.

Moreover, this paper proposes thabe changed on-
line according to the size of the previous step length
« according to the following reasoning. & = 1

on the previous iteration, then the algorithm is likely
to be close to a local minima so the singular value
spready is decreased. Vice-versa,df < 0.5° (cor-
responding to five bisections of the step length) then
is increased.

The intuition underlying this approach is that it
is worth focusing attention on directions in which
||[E(0)]] is sufficiently sensitive to changesénand it

is worth ignoring overly flat “valley” directions. The

precise details of how this paper proposes these ideas

be implemented are encapsulated in the following al-
gorithm definition.

Algorithm 1. Robust Gauss—Newton based searctGiven an
initial guessfy, initialise amin = 0.5%, v = 10~%, and iterate
the following steps starting with = 0.

(1) Determine the prediction error vector Jacobit(6y,);
(2) Compute the singular value decomposition
E'(0) =USVT =U1 81V (30)
(3) Find the indexr of the smallest singular value that satisfies
S1(r) > vS1(1).
(4) LetU,, V. be the firstr columns ofU; andV; respectively
and letS,. be a diagonal matrix formed from the the first
entries of diagS;). Compute a search directipras

p=—-V,.STIUTE(6y). (31)

analysis which involves 500 runs over different data
and noise realisations. In each ridsh= 500 samples

of the input signal and measurement noise were gen-
erated according to; ~ N(0,1), vy ~ N(0,0.01),

and then500 samples ofy; were found according to
(32). Four algorithms for finding estimates of (32) via
the state-space model structure (1) were then imple-
mented:

(1) Algorithm 1 as discussed above (denoted by
rGN);

(2) Robust Gauss-Newton back-stepping algorithm
(denoted rGN,-4) with a fixed singular-value
tolerance ofy 10~% (this is equivalent to
Algorithm 1 but with Steps 6 and 7 removed);

(3) Robust Gauss-Newton back-stepping algorithm
(denoted rGN,--) with a fixed singular-value
tolerance ofy = 10~ 7;

(4) DDLC based gradient search (denoted PEM) as
implemented via Matlab’s System Identification
Toolbox Version 6.0 (SIT6pem.m routine.

Within this set of simulations signified by S1, the
initialisation of , was performed both by initial de-
ployment of an N4SID subspace estimation algorithm
(S1a) and by simply using a random value (S1b).
This latter case is included in order to study robust-
ness to initial value and robustness against capture
in local minima. All methods were run for one hun-
dred iterations, unless they terminated earlier due to
|[dE(6y)/d8] < 10~

Table 1 then profiles the performance of the various
algorithms mentioned above by showing the number
of failures for each of them, where a failure is defined
to be a situation in which

N
IE@)2 > 1.3 foe®

t=1

(33)



Clearly, for the case of simulation S1b, Algorithm 1 TGN | 1GN,, 1 | TGN,y 7 | PEM

is significantly more robust than the DDLC method Sia| 0 0 0 0
where Jacobian subspace dimension is fixed, or when Sib | 34 43 169 435

it is made adaptive in a fixed manner whereby a Sza| 0 0 0 2
constant small tolerance is used to determine when g;g g 107 186 ‘19
singular values are essentially equal to zero. 3613 3 a1 62

In order to further examine these issues, but on a gj@ 102 102 321 f124
broader class of problems, the above Monte—Carlo - 5 5 To7 3
scenario was repeated, but this time with a different Table 1.Number of failures for different algorithms

randomly chosef'rd order SISO system on each run.
This trial is labelled as S2 (a and b to denote N4SID-
based and random initialisations). Failures were again
judged according to the criterion (33) and are pre-
sented in Table 1.

(columns) under different conditions (rows).

This again illustrates, now for a much wider range
of SISO systems, that with good initialisation, Algo-
rithm 1 and DDLC based gradient search offer equiv-
alent performance, while for poor initialisation, Algo-
rithm 1 offers enhanced performance.

Prediction Error Cost

Progressing now to the multivariable case of input,
output and state dimensions increasednto= 2,

P 2 and n 8, and all other parameters as
in the previous SISO case, the results, denoted ad-19- 1. Average prediction error cost for rGN, rGN-,,

S3, with epithets a and b according to N4SID and rGNy o~ and PEM algorithms for simulation S5.

random initialisation are presented in Table 1. This 8. CONCLUSION

provides clear evidence that the conclusions, in terms

of enhanced robustness of Algorithm 1, that arose In this paper it is shown, under mild conditions, that
from the previous SISO study, apply (it seems with when using a full-parameterisation method, the strat-
greater emphasis) in the multivariable case which hasegy of data-driven-local-coordinates (DDLC) is iden-

80 90

been the main impetus for this paper.

Given this evidence, it seemed worthwhile to pursue
it further by increasing input, output and state dimen-
sions tom = 3, p = 3 andn = 18 and denoting
the results as S4 (a and b for N4SID and random
initialisation). These results comprise the final entries
of Table 1.

In particular, we note that consideration of the row
labelled S4a in Table 1 indicates that, for a higher

tical to a more widely known strategy in the optimisa-
tion literature of using Jacobian pseudo-inverses. The
utility of this observation is that it informs the devel-
opment of a new algorithm developed here that uses
a strategy of dynamic Jacobian rank determination,
which, via empirical analysis, is illustrated to offer
enhanced performance.
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