A MODEL FOR THE RECONFIGURATION OF MANUFACTURING SYSTEMS

Florent Frizon de Lamotte, Pascal Berruet and Jean-Luc Philippe

LESTER Laboratory - CNRS FRE2734
University of South Brittany
Lorient, France
lamotte@iuplo.univ-ubs.fr

Abstract: This paper proposes a state of the art about reconfigurable systems and
underlines existing links in system reconfiguration in the domains of electronics, mobile
robotics and manufacturing systems. Then a model for describing reconfigurable systems
is introduced. In this model, described using MOF class diagrams, the architecture of the
system and its configuration are separated. This model will then be usable by a
reconfiguration manager. Copyright © 2005 IFAC

Keywords: Reconfiguration, Manufacturing Systems, Electronic Systems, Recovery,

Adaptation, Model

1. INTRODUCTION

Systems are traditionally designed to keep the same
structure and behavior all along their lifespan. In
case of failures, changes in objective or in
environment, they may need external intervention to
continue working.

In reconfigurable systems, choices concerning the
organization of its elements can be delayed until
exploitation and can be modified dynamically or not.
This extends the application field of the system. Such
systems have been studied in several domains as:
electronics (Auguin, et al., 2003), communications
(Mitchell, et al., 1998), control (Wills, et al., 2001;
Cotting and Burken, 2001), manufacturing
(Combacau, et al., 2000) or robotics (Kotay and Rus,
1999; Kamimura, et al., 2001). Even if they target
different applications, these systems share common
concepts.

Implementation of the controllers in a reconfigurable
manufacturing system is done on an electronic
system. This electronic infrastructure can, in turn, be
reconfigurable. Similarities can also be noted in the
design methods used in manufacturing and
electronics. One aspect of the design may be the

reconfiguration. A common model would be
profitable to handle the same concepts concerning
reconfiguration in both kind of system, and thus, to
take into account the specificities from the electronic
system.

The objective of this paper is, through some
examples, to find shared features of reconfigurable
systems. These features are presented in section 2.
Section 3, focuses more particularly on the use of
reconfigurable electronics in reconfigurable
manufacturing systems for which we introduce a
common representation in section 4, this
representation is illustrated with an example.

2. RECONFIGURABLE SYSTEMS

Some examples of reconfigurable system are
presented in order to underline the common concepts
they share and the characteristics of each kind of
system (objective of reconfiguration, reconfiguration
process).

2.1 Definitions and examples

A configuration corresponds to the way the
components of a complex system are parameterized

and connected together. This configuration responds
both to external requirements (user request, quality,
environment) and internal requirements
(productivity). Reconfigurable systems have the
ability to go from one configuration to another along
their exploitation. This evolution can be triggered by
different causes such as a change in the objectives of
the system, a lack of performance or a fault on one of
its parts. These systems have been used in different
application fields such as manufacturing, control,
electronics, telecommunications or informatics and
often share the same principles. The five following
examples represent some aspects of the
reconfiguration in these fields. They show how vast
is the reconfiguration domain and which similarities
there are between them.

The first example of reconfigurable system is an
aircraft flight control system (Cotting and Burken,
2001) that has been developed at the NASA for the
X-33 craft. This plane’ trajectory is given by its
height control surfaces which are redundant. A
controller has been designed to accommodate the
failure of one of them and to redistribute the control
effort among the remaining surfaces. To do so, a
reconfigurable mixer has been used. It takes the
orders from the roll pitch and yaw command and
calculates the positions of the surfaces. In case of a
failure on one of these, the mixer is reconfigured.
Here, the reconfiguration is triggered by a failure on
the controlled system. It consists in the modification
of the parameters of the controller. The decision is
centralized.

The DJINN multimedia-programming framework
(Mitchell, ef al., 1998) from the Distributed Systems
Laboratory at the University of London is an
example of reconfigurable system in the domain of
multimedia communications. The aim is to guaranty
quality of service (QoS) in communications through
a distributed network of computers or mobile
devices. In this network, nodes may be added or
deleted dynamically triggering a reconfiguration. A
configuration is expressed with paths between
components. Reconfiguration of this system is done
in two phases. A “setup” phase where the new
components are created and an “integration” phase
where they are started and connected to the system.
Depending on the resources offered, the transition
between the two configurations is more or less
smooth (it depends on if the two configurations can
“live” together in the system or not). The
reconfiguration consists in the adding or removing of
components and the modification of the connection
between them. The decision of the reconfiguration
and its control are centralized.

Another example, from the world of distributed
computing is taken from the simulation of virtual
worlds as used by the American army. In these
systems, reconfiguration may be needed if a
computer is disconnected from the network or if it

cannot support the charge anymore (think about a
computer that controls a bridge where two groups of
people are heading). The Bullpen project (Welch and
Purtilo, 1997) offers a reconfiguration component for
simulators. In this component, three entities have
been identified: the Scout detects events of interest in
the system and informs the Coach which makes the
decisions while the Scoreboard keeps a copy of the
application state. The decision is centralized, but the
system can handle multiple events at the same time
(a thread is launched for each problem).

In manufacturing systems, Belabbas and Berruet
(2004) propose an on-line reconfiguration method.
This method is applied on a workshop constituted of
five working areas. Each area can perform two
distinct functions on products; some functions can be
performed in multiple areas. In the initial
configuration three working areas are operating.
When a failure occurs on one of these areas, another
configuration has to be found using the remaining
ones in order to resume the operations. The objective
for the reconfiguration is to finish the logical
operating sequence (Toguyeni, et al., 2003) after the
occurrence of a fault in the system.

Last example is taken from electronic design.
Auguin, et al. (2003) present tools for designing
reconfigurable computing systems. In these systems,
functions may either be in hardware of software.
Hardware functions can be loaded in a RPU
(Reconfigurable Processor Unit). A genetic algorithm
is used off-line to find the best use of hardware and
software functions. The goal of reconfiguration is to
optimize the use of available resources. It is triggered
when a needed hardware function is not loaded in the
RPU.

These five examples come from rather different
domains and show different aspects of
reconfiguration. Reconfiguration is a way to react to
event from inside or outside the system. It may also
be a mean for optimizing the system. Configurations
may be determined on-line or off-line. All the
examples feature a transition phase between
configurations. Objectives for the reconfiguration are
studied in section 2.2. The determination of a new
configuration and the transition between the old and
the new configuration are part of the reconfiguration
process, presented in section 2.3.

2.2 Objectives of reconfiguration

The objective of a reconfigurable system can be a
safety one (Berruet, et al., 2003) in which case quick
decision has to be taken. This kind of response often
takes place as a recovery procedure from a failure on
the controlled process. This is the case for example in
(Cotting and Burken, 2001) where the mixer has to
be reconfigured quickly in response to the failure of a
controlled surface.

Another objective supported by reconfiguration is to
follow system requirements. These requirements
may either be external (user requests, QoS, quality,
environmental changes) or internal (productivity,
consumption). This was the case in (Belabbas and
Berruet, 2004; Mitchell, et al.,, 1998; Welch and
Purtilo, 1997) where reconfiguration enabled the
system to continue its function and achieve its
objective maybe under degraded performances. Such
reconfiguration can be done after a recovery
procedure where some components of the old
configuration may not work as expected anymore. It
can also be the result of a continuous audit on the
performances of the system.

Reconfiguration can also be used to optimize the
system as in (Auguin, et al., 2003) where functions
have to be hardware ones to achieve speed objectives
but surface (size) constraints may be very high. As
some functions may not be used at the same time, it
is possible to load them on-demand through a
reconfiguration.

2.3 The reconfiguration process

A characteristic of a reconfigurable system is the
way it goes from a configuration to another. This is
called the reconfiguration process. This process may
be handled by an entity called the reconfiguration
controller and can be broken up into two phases: the
decision of the new state and its application.

The decision of the reconfiguration is the first step in
the process and has been studied by Toguyeni, et al.
(2003) and Belabbas and Berruet (2004). It has to
determine which configurations meet the
requirements for the resumption of the system. These
configurations can either be determined off-line or
on-line. One configuration among them is chosen to
replace the current one. Along with the performances
of the new configuration, levels of reconfiguration
help choosing a new configuration as it characterizes
the impact of the reconfiguration phase: the time it
spends, the energy it consumes, the loss of partly
processed products.

Then, the system goes to the new configuration.
Reconfiguration can be performed as the system is
working, through intermediate configurations,
putting the products on their new way. It can also be
performed after a shut down the system and an
emptying of it. In manufacturing systems, working
mode management (Kamach, et al., 2003) is
responsible for the coordination of the machines
during the reconfiguration. Working mode
management insures that the state of the whole
system remains safe and coherent. Similar techniques
are also used in other type of systems.

3. RECONFIGURABLE SYSTEMS IN
MANUFACTURING AND THE ROLE OF
ELECTRONICS

This section emphasizes the particularities of
manufacturing systems concerning the use of
electronics and shows that the same concepts may be
found in both systems concerning reconfiguration.

3.1 Granularity in manufacturing systems

Manufacturing systems can generally be described
from multiple levels of granularity. Fractal
manufacturing systems (Ryu, et al., 2003) takes into
account this granularity by using a multi-level
representation. Reconfiguration is done in the same
way at each hierarchical level through self-
organization of agents.

Inter
Resource
Level

Resource Level

Resource Control Level
(electronics)

Fig. 1. Granularity levels in manufacturing systems

The decomposition of a manufacturing system
presented on fig. 1 leads to the electronic system
controlling it. This system may also be a
reconfigurable one. Sharing the same concepts and
models for reconfiguration between electronics and
manufacturing would lead to a better mastery of the
reconfiguration of the whole system.

3.2 Shared concepts between electronic and
manufacturing reconfigurable systems

Both electronic and manufacturing systems perform
operations on products. In manufacturing systems,
products are the processed part whereas in electronic
systems they are data. These products are transferred
between the stationary components of the system,
also called resources. Resources correspond to
machines in manufacturing systems and to processors
in electronics. Transport components transfer
products between stationary components through the
ports of these components. A conveyor in
manufacturing or a bus in electronics plays a
transport component role. A function is an action that
can be made on a product. Functions are defined at
the system level. In an electronic system, they are
referred as tasks. An operation implements a
function on a component.

Major differences come from the scale at witch the
operations are made in each kind of system. The rate
at which data is processed in an electronic system is

much faster than the one for the parts in
manufacturing systems and manufacturing systems
are much bigger than electronic systems. This
induces that data processing and transfer in
electronic systems goes as fast or faster than control
while in manufacturing systems, parts generally go
much slower than control that may be transferred
through electronics.

Having a common model capable of representing
both manufacturing and electronic reconfigurable
system configuration would enable the use of the
same model throughout the whole system. One such
model is currently developed accordingly and is
presented in the next section.

4. A MODEL FOR REPRESENTING
CONFIGURATIONS

To represent and manipulate the concepts from
reconfigurable systems, a model has been developed.
This model has been inspired by the works made on
configuration language in the domain of distributed
computing (Kramer, 1990). The concepts used in the
model are described by meta-models using Meta
Object Facility (MOF) (OMG, 2002) class diagrams,
which are close to UML class diagrams. Meta-
models show the relations between different aspects
of a configuration. A manufacturing system example
depicts how the model is represented using a textual
syntax.

4.1 Represented aspects

The model should represent the relations between its
components and the products processed at one level
of granularity. This model does not cover the details
on the functions being used.

Logical
Configuration

Physical
Configuration

— Operations —

Logical
Architecture

Physical
Architecture

\
Fig. 2. Organization of the model

As illustrated on Fig. 2, a reconfigurable system may
be broken up according to two axes. Horizontal axis
concerns the separation between the architecture of
the system and its configuration. The architecture
consists of all the components (functions, or
resources) constituting the system and their potential
connections. It is presented in section 4.2. These
components are parameterized and inter-connected
through the configuration presented in section 4.3.

Vertical axis separates the logical subsystem from
the physical one. The logical subsystem consists in
the functions of the system and their associations to
form logical operating sequences (Toguyeni, et al.,
2003). The physical subsystem consists in the
resources and the transport between these resources.
The physical subsystem provides the structure on
which the logical subsystem is executed. Both the
logical and the physical subsystems can be
configured.

4.2 The logical and physical aspects of an
architecture

The architecture, as described on Fig. 3, should
represent all the potentialities of the system. It is
broken-up into two parts: the logical architecture and
the physical architecture.

0.*
| Product H‘ FunctionSequence |
0.*
‘ 1.* |, {ordered}
0.* -
| LogicalArchitecture & Function
' i
0.*
Architecture H PotentialOperation |
! !

A| PhysicalArchitecture 00;"| Component ‘
| T
” TransportComponent ‘ ” StationaryComponent ‘
0.*
0.* 0.* from 0.*
L' Connection ’—] Port ‘

0.* to

Fig. 3. MOF class diagram for the architecture

The logical architecture is constituted by functions
that can be performed on the system. These functions
are put together to form function sequences. These
sequences are then applied on products.

Physical architecture contains the physical
components of the system. These components can
either be stationary components that perform
stationary operations or transport components which
function is to transfer a product from one stationary
component to another through ports. Ports are
interfaces belonging to stationary components on
which products can be put or taken. The possibility
of transport between two components is represented
with an entity named connection. A transport
component has the ability to realize connections. To
realize a connection, it has to take a product from the
source port of the connection and put it on the
destination port.

Logical architecture is mapped onto physical
architecture through potential operations, which link
a function with a component.

Fig. 4 introduces a manufacturing example. Its
architecture is described on Fig. 5 using a textual
representation. This architecture is configured in the

next subsection. The logical architecture consists in
the F1, F2 and F3 functions plus a generic transport
function: FT. The physical architecture is constituted
by four stationary components: IN, OUT, M1 and
M2. There are also two transport components: Cv
and R and six connections. Potential operations O[1-
4] link the logical and physical architectures.

Fig. 4. Informal description of the example

logical architecture {
function F1;
function F2;
function F3;
function FT; -- transport function
}
physical architecture {
stationary IN { port p : out; }
stationary OUT { port p : in; }
stationary Ml { port p : inout; }
stationary M2 { port p : inout; }
transport R realizes INM1, INM2, M1M2,
M2M1, M1OUT, M20UT;
transport CV realizes RIR2;

connection INM1 (IN.p, Ml.p);
connection INM2 (IN.p, M2.p);
connection MIM2 (Ml.p, M2.p);
connection M2M1 (M2.p, Ml.p);
connection M1OUT (Ml.p, OUT.p
connection M20UT (M2.p, OUT.p
}
operation 01 (F1, M1);
operation 02 (F2, M1);
operation 03 (F1l, M2);
operation 04 (F3, M2);

)i
)i

Fig. 5. Example of architecture

Next subsection presents how this architecture can be
configured by instantiating the functions, the
connections and the potential operations in the
configuration.

4.3 Configuration of the architecture

The architecture, as presented at section 4.2, is split
into physical and logical parts. As seen on fig. 6,
configuration is also broken up according to the
same two aspects.

The logical configuration is constituted by functions
instances. While functions are defined as actions that
can be made on products, a function instance realizes
this function on the product. It is performed on a
component through an operation.

Physical configuration is constituted by the
components taken from the logical architecture and
connectors. Connectors may, at first, be seen as

instances of connections. They express the relation
between the transport components used to transfer
the product from its departure to its destination, the
stationary components through which the product
may have to go (these components act as controllers)
and the connections used by the transport
components to do the transfer.

| Functioninstance > >] ParameterizedFunction ‘

‘&f N ko'

| LogicalConfiguration I‘ 0. FunctionSequence ‘

N

4
’l Configuration I&O—‘{ OperationSequence |

{ordered)j 0.*

I TransferOperation | ”

— | PhysicalConfiguration
0.* vV
Component PotentialOperation

T 0.*

TransportComponent | StationaryComponent

0..‘¢ traneporters 0.* /Ncontrolers
0.* 0*
~ Connector }%M
E path

Fig. 6. MOF class diagram for a configuration

Operation ‘

H StationaryOperation ‘

Connection

The correspondence between physical and logical
configuration is done through operations. There are
two types of operations. Transfer operations link a
function instance to a connector. Stationary
operations are the realization of a potential operation
linked with a function instance. Operations are linked
together to form operation sequences that realize a
function sequence defined in the logical architecture.

configuration Configl {
logical configuration {
instance IF1 of F1;
instance IF2 of F2;
instance IF3 of F3;
instance TINM1 of FT;
instance TM1M2 of FT;
instance TM20UT of FT;
}
physical configuration{
connector Cl { transfer INM1l using R; }
connector C2 { transfer MIM2 using Cv;
connector C3 { transfer M20OUT using R; }
}
transfer operation TOl : TINM1 using Cl;
transfer operation TO2 : TMIM2 using C2;
transfer operation TO3 : TM2M3 using C3;
stationary operation SO1 IF1l using Ol;
stationary operation S02 IF2 using 02;
stationary operation SO3 IF3 using 04;
operation sequence 0S1 realize P1_S1 :
TOl, SOl, SO2, TO2, SO3, TO3;

}
Fig. 7. Example of configuration

Fig. 7 features an example of configuration for the
architecture presented on fig. 5. Under this
configuration, the system performs the F1, F2 and F3
functions successively. These three functions have
been instantiated under the names IF1, IF2, IF3.
Three other functions have been instantiated for

transfer operations between components: TINMI,
TM1M2, TM2OUT. Functions F1 and F2 are
executed on R1 through operations SO1 and SO2. F3
is executed on R2 through SO3. Connectors have
been created for using Cv to transport products
between IN and M1, M1 and M2, M2 and OUT.
Three transfer operations use these connectors.

5. CONCLUSION

In this paper, the concept of reconfigurable systems,
which had been studied in different fields of
research, has been generalized. A model has been
introduced to represent concepts shared both by
electronic and manufacturing reconfigurable
systems. Using this model, the same high-level
representation may be used to represent
reconfigurable electronic and manufacturing
systems. As manufacturing systems generally
embeds electronic systems for communication and
control, same model may be used for representing
different levels of a reconfigurable plant. This model
may also help in sharing mechanisms, strategies and
tools between electronics and manufacturing.

Concerning the model, it will evolve to support
hierarchic configurations where a configuration may
be decomposed in sub-configurations. This will
enable local reconfiguration that will not have
consequences on the remainder of the system. Other
representations for the model, using graphical
diagrams showing different views on the system are
also being studied.

REFERENCES

Auguin, M., K. Ben Chehida, J.P. Diguet, X.
Fornani, A.M. Fouilliart, C. Gamrat, P. Kajfasz
and Y. Le Moullec (2003). Partitioning and
CoDesign tools & methodology for
Reconfigurable Computing: The EPICURE
philosophy. In: The Third International
Workshop on Systems, Architectures, Modeling
Simulation SAMOS03.

Belabbas, A. and P. Berruet (2004). FMS
Reconfiguration Based on Petri nets Models.
In: IEEE Int. Conference on System Man and
Cybernetics SMC2004.

Berruet, P., T. Coudert and J.L. Philippe (2003).
Integration of Dependability Aspects in
Transitic Systems. In: IMACS-IEEE Int.
Conference on Computational Engineering In
Systems Applications CESA2003.

Combacau, M., P. Berruet, E. Zamai, P.
Charbonnaud, A. Khatab (2000). Monitoring

and Supervision of Manufacturing Systems. In:
IFAC MCPL2000, pp. 348-353.

Cotting, C. and J.J. Burken (2001). Reconfigurable
Control Design for the Full X-33 Flight
Envelope. In: AIAA Guidance, Navigation and
Control Conference.

Kamach, O., L. Pietrac, E. Niel (2003). Multi-model
approach for discrete event systems
application to operating mode management. In:
IMACS-IEEE Int. Conference on
Computational Engineering In Systems
Applications CESA2003.

Kamimura, A., S. Murata, E. Yoshida, H. Kurokawa,
K. Tomita and S. Kokaji (2001). Self-
Reconfigurable Modular Robot. In: IEEE/RSJ
Int. Conference on Intelligent Robots and
Systems IROS2001, pp. 606-612.

Kotay, K. and D. Rus (1999). Locomotion Versatility
through Self-reconfiguration. In: Robotics and
Autonomous Systems, Vol. 26-2,3, pp. 217-232.
Elsevier.

Kramer, J. (1990). Configuration Programming — a
framework for the development of distributable
systems. In: Proceedings of the IEEE Int.
Conference on Computer Systems and Software
Engineering CompEuro90.

Mitchell, S., H. Naguib, G. Coulouris and T.
Kindberg (1998). Dynamically Reconfiguring
Multimedia Components: A Model-based
Approach. In: 8th ACM SIGOPS European
Workshop.

Object Management Group (2002). OMG Meta
Object Facility (MOF) Specification.
http://www.omg.org

Toguyeni, A.K.A., P. Berruet, E. Craye (2003).
Models and Algorithms for Failure Diagnosis
and Recovery in FMSs. In: Int. J. of Flexible
Manufacturing Systems, Vol. 15-1, pp 57-85.
Kluwer.

Welch, D.J. and J.M. Purtilo (1997). Domain-Driven
Reconfiguration in Collaborative Virtual
Environments. In: Univ. of Maryland CS
technical reports. CS-TR-3772.

Wills L., S. Kannan, S. Sander, Mu. Guler, B. Heck,
J.V.R. Prassad, D. Schrage and G.
Vachtsevanos (2001). An Open Platform For
Reconfigurable Control. In: IEEE Control
Systems Magazine. Vol. 21, pp. 49-64.

