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Abstract: The problem of adaptive minimization of globally unknown functions under 
constraints on the independent variable is considered in a stochastic framework. The main 
contribution of this paper consists in the extension of the CAM algorithm to vector 
problems. By resorting to the ODE analysis for analyzing stochastic algorithms and 
singular perturbation methods, it is shown that the only possible convergence points in the 
vector case are the constrained local minima. Simulations for dimension 2 problems 
illustrate this result. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
There are engineering optimization problems in 
which the global form of both the cost function and 
the constraints are unknown. In these extremum 
seeking problems, when the independent variable is 
settled to a specific value, the corresponding value of 
the function can be read and the decision whether the 
constraints are or are not being violated can be made. 
Although these extremum seeking methods have 
already been the subject of early literature in 
Adaptive Systems – see (Ariyur, 2003) for a review – 
they are receiving increasing interest in recent 
literature. (Zhang and Guay, 2003; Guay, et al., 
2003; Peterson and Stefanopoulou, 2004). 
 
This kind of problems are solved in (Wellstead and 
Scotson, 1990; Bozin and Zarrop, 1991) by using a 
self-tuning extremum seeker in which the cost 

function is locally approximated by a quadratic 
function and no constraints are assumed in the 
independent variable. The contribution of this work 
consists in the extension of the above algorithm by 
incorporating constraints and the use of vector 
independent variables. As will be explained, this is 
achieved by solving the equation expressing the 
Kuhn-Tucker complementary condition using a 
stochastic approximation scheme.  
The paper is organized as follows: First the problem 
to solve is formulated. Then, an algorithm, hereafter 
referred to as the CAM algorithm (Constrained 
Adaptive Minimization) is given for solving the 
problem. By using the ODE method for analyzing 
stochastic algorithms (Ljung, 1977), together with 
singular perturbation techniques for ordinary 
differential equations (Kokotovic, et al., 1986), the 
CAM algorithm is analyzed, characterizing its 
possible points of convergence as the constrained 
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minima. Finally, several simulation examples are 
presented. 

2. PROBLEM FORMULATION 
 
Let y(⋅) be a differentiable function of ℜ2 in ℜ. 
Consider the following problem 
 

Problem 1  Find  such that [ T
xx ∗∗∗ = 21x ] ( )∗xy  is 

minimum, subject to the set of constraints 

 ( ) 0xg ≤∗  (1) 

where g∈ℜn and 0 is the null vector. � 
 
According to the Kuhn-Tucker theorem, Problem 2 is 
equivalent to the following 
 
Problem 2 Define the Lagrangean function 

  (2) ( ) ( ) ( )xgρxρx Ty£ +=
∆

,

Find the x* minimizing £(x,ρ*), in which ρ* is a 
vector of Lagrange multipliers, satisfying the Kuhn-
Tucker complementary condition; 

 ( ) 0xgρ =× ∗
•

∗  (3) 

where  is the term-by-term multiplication. � 
•
×

 
Hereafter, the following assumption is supposed to 
hold: 
 
H0. The global form of functions y(⋅) and g(⋅) is 
unknown and may be possibly time varying. 
However, for each x, y(x) and g(x) may be observed, 
possibly corrupted by observation noise. � 
 
 

3. THE CAM ALGORITHM 
 
The algorithm that solves Problem 2 must 
accomplish two tasks: the adjustment of the Lagrange 
multipliers ρ in order to fulfill the Kuhn-Tucker 
complementary condition (3) and, once ρ is settled, 
to adjust x(t). 
 
 
3.1 Adjustment of the Lagrange multiplier 
 
Following the development in (Lemos, 1992), ρ is 
adjusted according to a gradient minimization 
scheme: 

  (4) ( ) ( ) ( ) ( ) ( )( )ttttt xgρρρ
•
×−−+−= 111 εγ

where ε is a vanishing small parameter and ( ){ }tγ  is a 
sequence of positive gains satisfying: 
 

i.  ( ) ∞=∑
∞

=1t
tγ

ii.  ( ) ∞<∃ ∑
∞

=1
:

t

p tp γ

iii. ( ){ }tγ  is a decreasing sequence 

iv. ( ) ( ) ∞<
−

−∞→ 1
11suplim

ttt γγ
 

 
Remark 1: These are technical assumptions needed to 
perform a convergence analysis using the ODE 
method for analyzing stochastic algorithms (Ljung, 
1977). In particular i) is needed to ensure that any 
point of the space can be attained. While ii) implies 
that γ should tend to zero, in practice this may not be 
a good option. Indeed, if the constraints or the cost 
function are slowly time-varying, the objective is to 
track a moving minimum, and convergence to a 
constant point is undesirable. � 
 
 
3.2 Adaptive optimization 
 
H1. It is assumed that, close to x*, the Lagrangean 
function £(x,ρ*) may be approximated by a quadratic 
function: 

 ( ) ( )( ) ( )[ ] ( )[ ] ( )tett£t£tL
T

+−−+== ∗∗∗
∆

xxAxxρx ,  (5) 

in the sequel it will be assumed  to be 

symmetric, which does not affect the problem 
generality. A, £

⎥
⎦

⎤
⎢
⎣

⎡
=

2212

1211

aa
aa

A

* and x* are unknown parameters, 
which depend on the value of ρ; e  is a residue. 
 
Define the increments: 

  (6) ( ) ( ) ( )1−−=∆
∆

tLtLtL

  (7) ( ) ( ) ( ) 2,1;1 =−−=∆
∆

itxtxtx iii

  (8) ( ) ( ) ( ) 2,1;1222 =−−=∆
∆

itxtxtx iii

  (9) [ ]( ) ( ) ( ) ( ) ( )11 212121 −⋅−−⋅=∆
∆

txtxtxtxtxx

Then equation (5) may be written as 

  (10) ( ) [ ]

( )
( )
( )
( )

[ ]( )

( )te

txx
tx
tx
tx
tx

tL +

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
∆
∆
∆
∆

=∆

21

2
2

2
1

2

1

51 θθ L

where 

  (11) ∗∗ −−= 2121111 22 xaxaθ

  (12) ∗∗ −−= 1122222 22 xaxaθ
  (13) 125224113 2aaa === θθθ

and ( ) ( ) ( 1−−=
∆

tetete ) is assumed to be an uncorrelated 
zero mean stochastic sequence such that all moments 
exist. 
 
Defining 



  (14) [ 51 θθ L=∗θ ]
 (15) ( ) ( ) ( ) ( ) ( ) [ ]( )[ ]Ttxxtxtxtxtxt 21

2
2

2
121 ∆∆∆∆∆=φ

(10) yields 

  (16) ( ) ( ) ( )tettL +=∆ ∗φθ

which constitutes a linear regression model in which 
θ* is the vector of coefficients to estimate and ϕ is the 
data vector. 
 
The vector θ* may be estimated using a recursive 
least-squares algorithm, and the value of x that 
minimizes L(x) is given by: 
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3.3 The CAM algorithm 
 
Combining both the above procedures results in the 
following Constrained Adaptive Minimization 
(CAM) algorithm: 
 
1. Apply x(t) to the system and measure y(t) and 

 ( )( )txg
 
2. Adjust the Lagrange multiplier vector according 

to equation (4). 
 
3. Using equation (2) build the Lagrangean 

function associated with the current Lagrange 
multiplier vector and the current value y(t). 

 
4. Compute the increments (6-9). 
 
5. Using a RLS algorithm update the estimates of θ 

in the model (16). 
 
6. Update the estimates according to 

 ( )t
x
x

η+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
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−
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 (18) 

7. Increment the time and go back to step 1. 
 
 

4. ODE ANALYSIS 
 
The CAM algorithm is now analyzed using the ODE 
method for analyzing stochastic algorithms (Ljung, 
1977) and singular perturbation theory for ordinary 
differential equations (Kokotovic, et al., 1986).  
 
The algorithm is associated with the following set of 
differential equations: 

 ( ) ( ) ( )( ) ( ) ( ρθfθxgρρ ,1−
•

=×= R
td
tdtt

td
td ε )  (19) 

where 

 ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]{ }θφφρθfφφ ttLtEttER TT −∆==
∆∆

, (20) 

Define the functions ( )ρθG ,  and  ( )ρθH ,

  (21) ( ) ( ) ( ) ( )( tR xgρρθHρθfρθG
•∆

−
∆

×== ,,, 1 )

Making use of (25-26) and changing the time scale 
by tετ = , equations (21-22) may then be written in 
the standard form for singular perturbation analysis: 

 ( ) ( ) ( ) ( )ρθGθρθHρ ,, ==
τ
τε

τ
τ

d
d

d
d  (22) 

According to the ODE theory exposed in (Ljung, 
1977), the only possible convergence points of the 
CAM algorithm are the equilibrium points of (27-
28), such that the Jacobian matrix  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

θ
G

ρ
G

θ
H

ρ
H

J  (23) 

has all its eigenvalues in the left complex half-plane. 
 
H2. The disturbance signal η in (18) ensures the 
persistent excitation requirement, i.e. ( ) ( )[ ]ττ TE φφ  is 
full rank. � 
 
H3. The function ( )∗ρθG ,  has isolated real roots � 
 
Proof of H3: If assumption H1 holds (which implies 
that equation (16) is valid together with assumption 
H2, then: 

 ( ) ( ) ( ) ( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ]( ) ( ) ( )[ ]{ }teEEE

LER
TT

T

τττττ

ττττ

φθθφφφφ

θφφρθG

+−

=−∆=
−

−

1

1,  (24) 

which yields: 

( ) ( ) ( )[ ] ( ) ( )[ ]( ) θθ0θθφφφφ0ρθG =⇒=−⇒= − ττττ TT EE 1,
  (25)  � 

The equilibrium points of (27-28) are characterized 
by one of the following conditions: 
 
A-equilibria 

  (26) ( ) 00θ0ρ == ,f

B-equilibria 

 ( ) ( ) 0ρθρρ0xg === ∗∗ ,  thusand f  (27) 
 
4.1 Analysis of the A-equilibria 
 
If (32-33) holds the constrained minimum equals the 
unconstrained minimum. The constrained minimum 



is therefore interior to the region defined by the set of 
constraints (1) 
 
Provided the persistent excitation requirement holds, 

as 0
θ
H

=
∂
∂ , the Jacobian matrix (23) becomes lower 

triangular and its eigenvalues are the ones of 

( )[ ]Dxg
ρ
H

=
∂
∂  and I

θ
G

−=
∂
∂ , where I is the diagonal 

unit matrix and  is a diagonal matrix whose 
elements are the g

( )[ ]Dxg

i(x). As ρi=0 which implies 
gi(x)<0, all the Jacobian eigenvalues have negative 
real parts.  
 
Thus the only possible convergence points are 
solutions of Problem 1. 
 
 
4.2 Analysis of the B-equilibria 
 
If (34-35) holds the constrained minimum is different 
from the unconstrained minimum, being located on 
the boundary of the region defined by (1). In this case 

θ
H

∂
∂  is no longer null. Thus, the Jacobian matrix is 

not lower triangular, and the analysis from the 
previous section does not hold. 
 
Making use of the singular perturbation theory 
(Kokotovic, et al., 1986), assuming that the parameter 
ε in (4) is vanishing small (22) may be seen as the 
slow and fast subsystems, respectively. 
 
Assume that H3 holds and consider the boundary 
layer correction  θθθ −=

~   whose dynamics is 

 ( ∗= ρθGθ ,1
~

ετd
d )

H4.

 (28) 

 Assume that ( ) 0θ =τ
~  is an equilibrium point of 

(28), asymptotically stable, uniformly in ρ*, and that 
( ) ( )00 θθ −  belongs to its domain of attraction.  � 

 
Proof of H4: It follows from 

 ( ) ( )( ) ( )[ ]{ } θθθθφφθ ~1~11
~

11

εεετ
−=−=+−= −− RRtettER

d
d T   

  (29)  � 

H5. The eigenvalues of 
θ
G

∂
∂ , calculated for ε=0, 

have strictly negative real part. � 
 
Proof of H5: Observe that 

 ( ) ( ) ( ) ( )[{ θφφ
θ

ρθf
θθ

G τττ TLERR −∆
∂
∂

=
∂
∂

=
∂
∂ −∗− 11 , ]} 

  (30) 
From (5) ε=0 ⇒ ( ) ( ) ( )teL T +=∆ θφ ττ , yielding 

 ( ) ( ){ } Iθ
θ

θφφ
θθ

G
−=

∂
∂

−=
∂
∂

−=
∂
∂ − ~~1 ττ TER  (31) 

  � 
 
Since these assumptions hold, Tikhonov’s theorem 
(Kokotovic, et al., 1986) allows to conclude the 
following proposition: 
 
Proposition 1: 
 
As seen in (Kokotovic, et al., 1986), if assumptions 
H4 and H5 hold, then 

 ( ) ( ) ( ) ( )εε OttO ++=+= ∗ θθθρρ
~  (32) 

hold for all t≥0 and, further, there is t1≥0 such that 
the approximation  

 ( ) (εOt += θθ )  (33) 

holds for t≥t1>0. � 
 
Proposition 1 states that the only possible 
convergence points of the CAM algorithm are the 
constrained minima of the optimization problem 1. 
 
 

5. SIMULATION RESULTS 
 
The ODE analysis characterizes the possible 
convergence points of the CAM algorithm. Yet, it 
does not prove that the algorithm will actually 
converge. 
In order to exhibit the algorithm convergence 
features, a number of simulations are presented. 
 
 
5.1 Example 1 
 
In this example Problem 1 is considered, in which 

 ( ) ( ) ( )00 xxxxx −−= Ty  (34) 

with [ ]T8.06.0=0x , and constraints 

 

( )
( )
( )
( )
( ) 0        3-

0       2
0         1-
0           
03

25

24

13
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3/
21

1

≤=
≤−=
≤=
≤−=
≤−=

xg
xg

xg
xg

exg x

x
x
x
x
x

 (35) 

The identification is performed using RLS with 
exponential forgetting factor. 
Figures 1 and 2 present the evolution of the optimum 
estimate towards the feasibility region. The 
constrained minimum is on the frontier of the region. 
Thus while the Lagrange multipliers related the in 
active constraints go to zero ( , those related to 
active constraints converge to the optimum  
(figure 3). 

)0→iρ
∗→ ρρ j
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Fig. 1. Adaptive optimum search from example 1. 

The gray area is the feasibility region. 
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Fig. 2. Adaptive optimum search from example 1. 
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Fig. 3. Evolution of the Lagrange multipliers in 

example 1. 
 
5.2 Example 2: fermentation process 
 
This example considers the problem of optimizing 
agitation and aeration in a given fermentation 
process. The objective function is total electric power 
consumed for agitation, compression and 
refrigeration. The major constraint considered is to 
ensure that the dissolved oxygen concentration is 
above the critical value. This problem may be solved 
analytically when the process is well characterized 
(Alves and Vasconcelos, 1996). However, many 
process parameters have to be computed 
experimentally. This same problem may be tackled 
adaptively by the CAM algorithm whenever a rough 
feasibility area is known. 
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Fig. 4. Adaptive optimum search from example 2. 

The feasibility region lies inside the bold line. 
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Fig. 5. Adaptive optimum search from example 2. 
 
Simulation tests were performed using the model 
from (Alves and Vasconcelos, 1996) together with 
the CAM algorithm where: 
 

y: electric power 
g1: dissolved oxygen concentration 
g2 and g3: air-flow rate constraints 
g4 and g5: agitator rotation speed 

 
Results are presented in Figures 4 and 5. 
 
Experiments using the updating scheme from 
equation (18) have shown that with this scheme 
assumption H1 and equation (16) would not hold. 
Thus in the experiment presented the updating 
scheme (18) was replaced by the following gradient 
scheme: 
 

 ( ) ( )

x

xxx

∂
∂
∂
∂

−=+
L

L

tt δ1  (36) 

 
Comparing the results presented with those from 
(Alves and Vasconcelos, 1996) it is apparent that the 
algorithm converges towards the constrained 
minimum. 
 



It should be noticed that in the example, appart from 
the constraints, no a-priori knowledge of the process 
was given to the algorithm. 
 
5.3 Example 3: multiple local minima 
 
The ODE analysis presented states that the 
convergence points are local minima from the 
constrained optimization problem. Thus, it is 
interesting to see what occurs when more than one 
minimum exists. 
 
In this example the function to be minimized is given 
by: 

 ( ) 2
2
1

4
121

2
2

2
121 2224

2
99 xxxxxxxxxy −+−++−+=x  

  (37) 
and it is subject to the constraint 

 ( ) ( ) 025.24 2
2

2
1 ≤+−= xxg x  (38) 

Figure 6 presents the algorithm evolution when it 
starts from the initial point x(0)=[-1.9  7.95]T. It 
converges towards a local minimum, located at 

, with a value of the objective 
function of 19.6. 

[ T51.42−=∗x ]

 
In figure 7 the algorithm is started from a different 
initial point, x(0)=[0.198  6.95]T.  
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Fig. 6. Adaptive optimum search for Example 3. 

The algorithm converges to a local minimum. 
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Fig. 7. Adaptive optimum search for Example 3. 

The algorithm converges to a local minimum. 
 

In this case it converges to another local minimum 
located at x*=[2.14  4.51]T, which corresponds to a 
value of the objective function of 1.21 (the absolute 
constrained minimum). 
 
The minimum to which the algorithm converges 
depends on the initial point x(0), and in which 
domain of attraction it lies. 
 
 

6. CONCLUSION 
 
The problem of adaptive minimization of globally 
unknown functions under constraints on the 
independent variable was addressed in a stochastic 
framework. The CAM algorithm for vector problems 
was proposed. By resorting to the ODE analysis for 
analyzing stochastic algorithms and singular 
perturbation methods, it was shown that the only 
possible convergence points are the constrained local 
minima. A number of simulation results in 2 
dimension were presented to illustrate this result. 
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