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Abstract: We present a receding horizon control algorithm for compensation of
backlash at the input of a stable linear system under control rate constraints. The
problem is first posed as a receding horizon optimal control problem by modelling
backlash as a piecewise affine system with a state space partition consisting of
three regions. This optimal control problem involves solving, at each step, 3N

quadratic programmes, where N is the optimisation horizon. As an alternative
to solving the quadratic programmes, we propose a strategy based on a recently
devised suboptimal receding horizon control algorithm which utilises a singular
value decomposition of the Hessian of the quadratic programme. This alternative
strategy leads, at the cost of some performance degradation, to much smaller
computational load since a feasible rather than optimal solution has to be obtained
at each step. Copyright c©2005 IFAC.
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1. INTRODUCTION

Backlash is a common nonlinearity that limits
control performance in many industrial applica-
tions, notably mechanical and hydraulic systems.
According to the survey paper Nordin and Gut-
man (2002), few control innovations aimed at
this problem have been presented since the early
strategies based on describing function analysis
(Gelb and Vander Velde, 1968). A novel scheme
was introduced in Tao and Kokotović (1993) based
on adaptive inversion of the backlash nonlinearity.
Other nonlinear techniques such as dynamic inver-
sion using neural networks and backstepping have
since been proposed (Selmic and Lewis, 2001).

More recently, the idea of using the receding hori-
zon optimal control [RHOptC] (or model predic-
tive control) framework for backlash compensa-
tion under actuator magnitude constraints has
been suggested in Zabiri and Samyudia (2004).
The RHOptC controller proposed by Zabiri and
Samyudia (2004) incorporates an inverse model
of the backlash function and logic variables are
introduced which permit the use of mixed-integer
quadratic programming for the computations.
The resulting system falls into the general class
of mixed logical dynamical [MLD] systems intro-
duced by Bemporad and Morari (1999).



MLD systems have been shown to be equivalent to
piecewise affine [PWA] systems in Bemporad et al.
(2000). RHOptC of PWA systems is a subject of
current research and several algorithms have been
proposed in recent literature (Mayne and Raković,
2003; Borrelli et al., 2003; Grieder et al., 2004).
A key issue in controlling these systems is the
inherent computational complexity of controller
synthesis and analysis (Grieder et al., 2004).

In this paper we consider backlash compensation
under the receding horizon control [RHC] frame-
work. By modelling the backlash nonlinearity as
a PWA system with three regions, we first pose a
RHOptC problem with horizon N , which involves,
in the worst case scenario, the solution of 3N

quadratic programmes [QP] (Mayne and Raković,
2003). To circumvent the complexity issue, we
approximate the QP solutions using the principal
directions of the Hessians as provided by singular
value decompositions [SVD]. Then, the controller
is implemented in RHC fashion following the al-
gorithm of Rojas et al. (2003).

The remainder of the paper proceeds as follows. In
Section 2 we formulate the RHOptC problem for
backlash compensation under rate constraints. In
Section 3 we describe the SVD-based strategy and
associated suboptimal RHC for the same problem.
We also prove stability of the closed loop system.
In Section 4 we provide simulation results and
finally conclusions are given in Section 5.

2. THE RECEDING HORIZON OPTIMAL
CONTROL PROBLEM

We consider the following model of a linear
discrete-time system with a backlash nonlinearity
at the input:

ξk+1 = Aξk + Bvk, ξk ∈ R
n, vk ∈ R, (1)

vk = B(vk−1, uk), uk ∈ R. (2)

The backlash nonlinearity is given by

B(vk−1, uk) =










m(uk−`) if m(uk−`) ≤ vk−1,

vk−1 if vk−1+m` ≤ muk ≤ vk−1+mr,

m(uk−r) if m(uk−r) ≥ vk−1,

(3)

where m > 0, r > 0 and ` < 0. Figure 1 shows
its characteristic. We assume that the eigenvalues
of A in (1) are inside the unit circle.

The backlash function (3) can be represented as a
PWA system with state zk = vk−1 and dynamics
given by

zk+1 = Aizk + Biuk + Gi, (4)

vk = Cizk + Diuk + Ei, (5)

if (uk, zk) ∈ Ri , {(u, z) : Liu+Jiz ≤ Wi},
(6)
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Fig. 1. Backlash characteristic.

for i = 1, 2, 3, where

A1 = 0, B1 = m, G1 = −m`,

L1 = m, J1 = −1, W1 = m`,

A2 = 1, B2 = 0, G2 = 0,

L2 = m[1 − 1]t, J2 = [−1 1]t, W2 = m[r − `]t,

A3 = 0, B3 = m, G3 = −mr,

L3 = −m, J3 = 1, W1 = −mr,

and Ci = Ai, Di = Bi, Ei = Gi for i = 1, 2, 3.

We now define xk ,
[

zk ξk

]t

∈ R
n+1, and

combine (1) and (4)–(6) into a single nonlinear
(PWA) equation xk+1 = f(xk, uk). As the base
for the RHOptC design, we pose, at time k and for
the current state xk = x and the previous input
uk−1 = u, the following fixed-horizon optimisation
problem:

V opt

N (x, u) , min VN (xj , uj), (7)

subject to:

xj+1 = f(xj , uj) for j = 0, . . . , N − 1, (8)

x0 = x, (9)

|uj − uj−1| ≤ ∆ for j = 0, . . . , N − 1, (10)

u−1 = u, (11)

[1 0 . . . 0]xN = 0, (12)

where

VN (xj , uj) , xt

NPxN +

N−1
∑

j=0

(xt

jQxj + ut

jRuj),

(13)

P =

[

0 0
0 P̄

]

, P̄ = AtP̄A + Q. (14)

Problem (7)–(14) is the minimisation of the
quadratic objective function (13)–(14) for the
PWA system (8) under rate constraints 1 (10) and
a terminal state constraint (12). Its solution can
be found by solving 3N QPs, which correspond

1 Magnitude constraints can also be included.



to all the possibilities (uj , zj) ∈ Ri for i = 1, 2, 3
and j = 0, 1, . . . , N − 1. Some simplifications are
possible in certain cases. For example, if the rate
limit ∆ > 0 is greater than the backlash “dead-
zone” r−`, then we can impose the condition that
(uj , zj) /∈ R2 for j = 0, 1, . . . , N − 1, resulting
in only 2N QPs to solve. Also, if we impose the
condition (uN−1, zN−1) /∈ R2, which we assume,
then it is easy to show that the terminal state
constraint (12) takes the form

uN−1 =

{

` if (uN−1, zN−1) ∈ R1,

r if (uN−1, zN−1) ∈ R3.
(15)

Equation (15) can be substituted in (7)–(14) to
obtain QPs having N − 1 decision variables. Let
Nqp ≤ 3N be the number of QPs to solve. Each of
the QPs has the form

min utHu + 2ut(Fx + a) + b, (16)

subject to:

Lu + J

[

u
x

]

≤ W, (17)

where u = [u0, . . . , uN−2]
t ∈ R

N−2, and H,
F , a, b, L, J and W change with each of the
Nqp possibilities. The vector a and the scalar b
are independent of u (but a depends on uN−1

and b on x and uN−1). Note that b does not
affect the minimiser of (16)–(17) but it affects the
optimal value and hence has to be considered in
the evaluation.

Once the Nqp QPs of the form (16)–(17) have
been solved, the optimal solution to problem (7)–
(14) is computed as the minimum of the QPs. Let
the minimiser be uopt = [uopt

0 , . . . , uopt

N−2
]. Then

the RHOptC strategy applies the first element
of this vector, that is, uk = uopt

0 . Time is then
stepped forward and the whole procedure is re-
peated at the next time instant. The configuration
for RHOptC is depicted in Figure 2.
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Fig. 2. Configuration for RHC.

3. THE SVD ALGORITHM FOR BACKLASH
COMPENSATION

Instead of solving the QPs (16)–(17), we will ap-
proximate their solution using an algorithm re-
cently introduced by Rojas et al. (2003). This

algorithm is based on an SVD of the Hessian of the
QP. The singular vectors of the Hessian provide a
set of orthogonal basis vectors spanning the con-
trol space. At each time step, a variable number of
components of the unconstrained optimal control
solution along the singular vectors is selected so
that no constraints are violated.

More precisely, consider the QP (16)–(17). Let

H = V SV t (18)

be the SVD of the Hessian H = Ht > 0. In (18),
V contains the singular vectors of H and S is the
diagonal matrix

S = diag
{

σ1, σ2, . . . , σN−1

}

,

with the singular values of H arranged in decreas-
ing order.

Using the coordinate transformation u = V ũ, the
vector of control moves u in (16) can be expressed
as a linear combination of the singular vectors
of H:

u = V ũ =

N−1
∑

j=1

vjũ(j),

where vj , j = 1, . . . , N − 1, are the columns of V
and ũ(j) are the components of the vector ũ. We
can then express the objective function in (16) as

ũtSũ + 2ũtV t(Fx + a) + b,

whose unconstrained minimum is

ũuc = −S−1V t(Fx + a). (19)

The key idea of the algorithm is to construct a
suboptimal solution usvd

s to the QP problem (16)–
(17) by approximating (19) using the basis vec-
tors starting from the largest singular values and
proceeding downwards until a constraint bound-
ary is reached. Heuristically, this algorithm exam-
ines the components of the input having largest
benefit-to-cost ratio first, as discussed in Goodwin
et al. (2005, p. 258).

The same procedure is repeated for each of the
Nqp QPs of the form (16)–(17) and the vector
usvd

s that achieves the minimum objective func-
tion value is selected as a suboptimal solution to
problem (7)–(14). The procedure is summarised
below.

SVD control vector construction:

(1) For each QP of the form (16)–(17):
(a) Let ū be a feasible interior point for

constraints (17).
(b) Calculate ũuc as in (19).
(c) Increase r from r = 0 to r = N − 2 and,

for each r, increase α ∈ (0, 1] while the
vector 2

2
∑0

j=1
vj ũ

uc(j) , 0.



ur,α , ū+

r
∑

j=1

vjũ
uc(j)+αvr+1ũ

uc(r+1)

satisfies the constraints (17), namely

Lur,α + J

[

u
x

]

≤ W.

(d) For the values of r and α resulting from
step (1c), set

usvd

s = ur,α,

V svd

s = (usvd

s )t[Husvd

s + 2(Fx + a)] + b.

(2) Compute

usvd = arg min
s=1,...,Nqp

{V svd

s },

V svd = min
s=1,...,Nqp

{V svd

s }, (20)

and let 3

U svd = {usvd

k , usvd

k+1, . . . , u
svd

k+N−1} (21)

be the associated control sequence. ◦

The above SVD construction is used in an RHC
algorithm that ensures closed-loop stability pro-
vided the initial state belongs to an admissible

set, defined next.

Definition 1. (Admissible Set ZN). Let ZN be the
set of all initial states ζ = [u xt]t ∈ R

n+2 for
which there exists an admissible control sequence
U svd computed as in (21). ◦

To prove stability, we will use the objective func-
tion (13)–(14) as a Lyapunov function V∗(ζ) as
is standard in RHC (Mayne et al., 2000). An
algorithm with provable stabilising properties can
then be developed as follows. Starting with a
state ζ ∈ ZN , we compute the SVD sequence as
in (21). At the next time step, we check if the
successor state ζ+ belongs to ZN . If ζ+ /∈ ZN ,
we apply the second move of the SVD sequence
U svd obtained in the previous step. If ζ+ ∈ ZN ,
we compute a new SVD sequence U svd+ as in
(21) and check whether applying the first move of
U svd+ would decrease the value of the Lyapunov
function V∗(ζ). If so, we apply the first control
move of U svd+. If not, we apply the second move
of the sequence U svd obtained in the previous step.
At each time step, the value of V∗(ζ) is updated
and the procedure is repeated. The resulting algo-
rithm ensures that the Lyapunov function V∗(ζ)
decreases at each step.

We formalise the above procedure in the following:

SVD Algorithm:

(1) At time k = 0, and given an initial state
ζ0 = [u−1 xt

0]
t ∈ ZN :

3 The last element usvd

k+N−1 is obtained from the equality

constraint (15).

(a) Compute U∗

0 = U svd = {u∗

0, , . . . , u
∗

N−1
}

as in (21) and let V(ζ0) = V svd as
per (20).

(b) Apply as the initial control action the
first element of U∗

0 , that is,

u0 = Ksvd(ζ0) , u∗

0.

(c) Set k = 1, ζ1 = [u0 f(x0, u0)
t]t, and go

to step (2).
(2) At time k:

(a) If ζk /∈ ZN , go to step (3).
(b) If ζk ∈ ZN , compute U svd and V svd as in

(21) and (20).
(c) If V svd > V∗(ζk−1) − xt

k−1
Qxk−1 −

ut

k−1
Ruk−1, go to step (3).

(d) If V svd ≤ V∗(ζk−1) − xt

k−1
Qxk−1 −

ut

k−1
Ruk−1, set

U∗

k = U svd = {u∗

0, u
∗

1, . . . , u
∗

N−1}, (22)

V∗(ζk) = V svd.

(e) Apply as the current control action the
first element of U∗

k , that is,

uk = Ksvd(ζk) , u∗

0. (23)

(f) Set k = k + 1, ζk = [uk f(xk, uk)t]t,
and return to step (2).

(3) (a) Apply as the current control action the
second element of U∗

k−1
in (22), that is,

uk = Ksvd(ζk) , u∗

1. (24)

(b) Update the sequence of control moves
U∗

k by retaining the last N − 1 elements
of the previous U∗

k−1
in (22) and adding

zero as the last element, that is,

U∗

k = {u∗

1, u
∗

2, . . . , u
∗

N−1, 0}. (25)

Let V∗(ζk) be the objective value corre-
sponding to (25) as per (13)–(14).

(c) Set k = k + 1, ζk = [uk f(xk, uk)t]t,
and go to step (2). ◦

The above algorithm ensures that the closed-loop
trajectories converge to the origin, as proved in
the following theorem.

Theorem 2. (Closed-loop Stability). For all initial
states in ZN the origin is an attractive equilibrium
point for the closed-loop system

ζ+ =

[

Ksvd(ζ)
f(x,Ksvd(ζ))

]

. (26)

Proof: We first note that constraint (12) ensures
that the terminal state zN is zero. Hence (see (1)
and (4)–(6)),

xN =

[

0
ξN

]

and f(xN , 0) =

[

0
AξN

]

.

Let U∗ = {u∗

0, u
∗

1, . . . , u
∗

N−1
} be the SVD sequence

used at some step, and let

X ∗ = {x∗

1, x
∗

2, . . . ,

[

0
ξN

]

} (27)



be the corresponding x-state sequence. If, at the
next step, the SVD sequence (25) is used then the
resulting x-state sequence is

X ∗ = {x∗

2, . . . ,

[

0
ξN

]

,

[

0
AξN

]

}. (28)

Now, let ζ = [u xt]t ∈ ZN and let ζ+ given by
(26) be the successor state. If the control sequence
U∗+ is computed as in (22), we have

V∗(ζ+) ≤ V∗(ζ) − xtQx − utRu

by construction. On the other hand, if the control
sequence U∗+ is computed as in (25), we obtain,
using (13)–(14) and the fact that the control
sequences and corresponding state sequences (27),
(28) share common terms:

V∗(ζ+) = V∗(ζ) − xtQx − u∗

0R
tu∗

0

+ ξt

N (AtP̄A + Q − P̄ )ξN

= V∗(ζ) − xtQx − utRu.

Thus, V∗(ζ) decreases along the trajectories of
the closed-loop system (26). Attractivity of the
origin then follows from standard Lyapunov ar-
guments; see, for example, Goodwin et al. (2005,
Theorem 4.3.1). �

4. SIMULATION RESULTS

Consider the linear system (1) with matrices

A =

[

1.70 −0.72
1 0

]

, B =

[

1
0

]

and output yk = [1 0.2]ξk. The parameters of
the backlash function in (3) are m = 1, r = 0.3,
` = −0.3. The rate constraint in (10) is ∆ = 1.
In the objective function (13)–(14) we set N = 5,
Q = I and R = 0.01.

We first designed a RHOptC computed for the
linear system only under rate constraints, that is,
without backlash compensation. Figure 3 shows the
resulting output and input responses when there
is no backlash in the loop. The same controller
was simulated after introducing backlash in the
loop as in Figure 2. The resulting output response
and the signals at the input and output of the
backlash nonlinearity are plotted in Figure 4. We
can see that the presence of backlash introduces
oscillations in the responses.

Secondly, we simulated the closed loop system of
Figure 2 under RHOptC with backlash compen-

sation, as described in Section 2. The resulting
output response and the signals at the input and
output of the backlash nonlinearity are plotted in
Figure 5. We can see that the optimal controller
compensates the backlash oscillation effect while
maintaining the performance close to that without
backlash (Figure 3).
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Fig. 3. Linear system output (top) and input
(bottom) for RHOptC for the linear system
without backlash in the loop.
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Fig. 4. Linear system output (top) and backlash
input and output (bottom) for RHOptC for
the linear system without backlash compen-
sation.
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Fig. 5. Linear system output (top) and backlash
input and output (bottom) for RHOptC with
backlash compensation.



We next simulated the closed loop system of Fig-
ure 2 under the SVD algorithm with backlash

compensation, as described in Section 3. An inte-
rior feasible solution was obtained by making the
constraints tighter and finding a feasible bound-
ary point for this more restrictive problem. The
resulting output response and the signals at the
input and output of the backlash nonlinearity are
plotted in Figure 6. We can see that the SVD
strategy eliminates the oscillation and gives a
slightly slower response than RHOptC.
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SVD strategy with backlash compensation −− Plant output

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

k

Backlash input (dotted) and output (solid)

Fig. 6. Linear system output (top) and backlash
input and output (bottom) for the SVD al-
gorithm with backlash compensation.

Finally, Figure 7 shows a comparison of the output
responses for the three controllers just discussed.
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Fig. 7. Linear system output under the three
different controllers discussed.

5. CONCLUSIONS

We have presented an algorithm for backlash com-
pensation at the input of a stable linear system
under rate constraints. The algorithm is based
on the SVD of the Hessian of the QPs arising
in the receding horizon optimal control problem
for the same system. Simulation examples have

shown that performance degradation is small with
respect to the optimal solution. In addition, the
computational load is smaller since a feasible
rather than optimal solution has to be obtained
at each step.
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