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Abstract: This paper attempts to present state monitoring in bio-actuators of a
time varying human multijoint arm dynamics with uncertainty factors consisting
of measurement noises and modeling error of the rigid body dynamics, where
the uncertainty factors include non-Gaussian noises. First, a general robust filter
system based on a score function approach is given. The proposed filter is designed
to have the one-to-one correspondence between shape parameters and all-order
even moments. Second, design procedure is given. Finally, examples using an
experiment-based human arm model show that the proposed filter has desired
accuracy and robustness. Copyright c©2005 IFAC
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1. INTRODUCTION

Fault detection and diagnosis in bioprocesses be-
came a challenging research topic. One of the
most interesting approaches is of detecting and
diagnosing bio-actuator states. In this paper, the
actuator states are considered as human arm
viscoelasticity. Because life system actuator pa-
rameters are adjusted directly based on physical
change and motor command from central ner-
vous system (CNS), the effective estimation of
the human neuromusculoskeleton system under
normal conditions is a research topic of growing
importance. For example, human arm is derived

1 This research is supported by Grant-in-Aid for Scientific
Research from Japan Society for the Promotion of Science
(Grant No. 16101005). The authors would like to thank the
society for the financial support. The authors also would
like to thank Dr. Hiroaki Gomi at NTT Communication
Science Laboratories very much for his valuable comments
and constructive suggestions.

by the multijoint muscle generated torque, which
is assumed to be a function of angular position,
velocity and motor command of CNS. The change
of the torque is caused by arm viscoelasticity. And
the arm viscoelasticity consists of joint stiffness,
which is regulated by muscle inherent spring-like
properties and neural feedbacks, and viscosity.
Therefore, to estimate joint stiffness and viscos-
ity properties of arm is important in regulating
posture and movement, interacting environments
and representing the interface between the neural
commands and environment.

For the estimation of the actuator state during
voluntary movements, Gomi and Konno (1998)
considered a method using single trial data for
multijoint joint movements, the method was based
on Kalman filter. Because the method does not
require many trials, variability of trials can be
avoided. In most cases, however, uncertainties
arise from arm modeling error and measurement



noises which cannot satisfactorily be presented as
stochastic signals with known distribution. For
these cases, Kalman filter estimate can be de-
graded. That is, the above uncertain factor is
non-Gaussian. Recently, one of the most effec-
tive schemes proposed by Deng et al. (2005) is
based on the nonlinear score function approach
(Niehsen, 2002; Wu and Kundu, 1996) and ro-
bust design (Deng and Gomi, 2003). Compared
with standard Kalman filter, for human arm in-
novations process including the measurements of
torque generated by multijoint muscle, the design
scheme achieves significant improvements with re-
spect to stationary mean square error and rate
of convergence. Meanwhile, the ill-conditioned co-
variance update equation of the estimator and a
derivative of the score function in the covariance
update equation are avoided.

This paper is concerned with designing filter using
all-order even moment by extending the design
scheme given in Deng et al. (2005). That is,
the proposed filter is a general case filter. For
the proposed filter, the selection of the shape
parameter in the filter is discussed. The proposed
filter is applied to an experiment-based human
arm model derived from Gomi and Kawato(1996,
1997).

2. GENERAL ACTUATOR STATE
MONITORING FILTER STRUCTURE

In this paper, the arm viscoelasticity is defined
as an actuator state. Therefore, the problem is to
estimate the viscoelasticity from measured data
of the multijoint muscle generated torques. In this
section, to estimate the viscoelasticity, the human
arm dynamics equation is first introduced. Then,
a general actuator state estimating filter is derived
on the basis of the human arm dynamics model.

2.1 Human Arm Dynamics Model

Two-link rigid human arm dynamics on the hor-
izontal plane can be modeled by the following
equation (Gomi and Kawato, 1997).

(
Z1 + 2Z2cosθ2 Z3 + Z2cosθ2
Z3 + Z2cosθ2 Z3

)
(q)q̈

+

(
−Z2sinθ2(θ̇2

2
+ 2θ̇1θ̇2)

Z2θ̇1
2
sinθ2

)
(q̇, q)

= τin(q̇, q, u) + τext (1)

where, τext = (τs ext, τe ext)T denotes the external
force, the subscripts s and e denote shoulder and
elbow, respectively. τin is the multijoint muscle

generated torque, which is assumed to be a func-
tion of angular position, velocity and motor com-
mand u. q, q̇ and q̈ are angular position, velocity
and acceleration vector, respectively, where

q = (θ1(t), θ2(t))T

τin = (τs, τe)T (2)

θ1(t) is shoulder angle and θ2(t) is elbow angle
shown in Fig.2. Z1, Z2 and Z3 are structural
dependent parameters. For estimating arm vis-
coelasticity, a pseudo-random perturbation that
contains sufficient frequency components is em-
ployed (Gomi and Kawato, 1996,1997). The re-
lated explanation is omitted in this paper.

By using a band-pass filter for the model (1), the
effect from u can be neglected (Gomi and Konno,
1998; Deng and Gomi, 2003). Then, the filtered
torque τf

in, the filtered positions θf
1 (t) and θ

f
2 (t),

and the filtered velocities θ̇f
1 (t) and θ̇

f
2 (t) satisfy

the relation: τf
in = XU +∆+ ζ1, where X is the

regression vector, U is the time-varying parameter
vector to be estimated, where
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U=
(
Rss Rse Dss Dse Res Ree Des Dee

)T(3)
∆ = [∆1,∆2]T consists of the structured uncer-
tainty of the left side of (1). The uncertainty is
from human arm parameter (i.e., Zi)(Deng and
Gomi, 2003).

Following the score function, ∆1 and ∆2 are
assumed to be Gaussian, ζ1 = (ζ̄11, ζ̄22)T is the
non-Ganssian measurement error matrix vector
of τext. The subscripts ss of D and R represent
the shoulder single-joint effect on each coefficient.
Similarly, se and es denote cross-joint effects, and
ee denotes the elbow single-joint effect. Here, the
effect from u can be neglected by applying band-
pass filtering.

The problem considered in this paper is to esti-
mate Dij and Rij in (3) from measured data of
multijoint muscle generated torques τs and τe with
considering the effect of the uncertainty factor
∆ + ζ1.

2.2 The General Actuator State Monitoring Filter

To design the filtering algorithm, we need to
prepare the above model in the discrete time
state-space form as follows.

U(t+ 1) = U(t) + ζ2, t = 1, 2, · · ·
τf
in(t+ 1) = X(t+ 1)U(t) + ∆(t) + ζ1(t)

(4)



where, ζ̃2 is white noise, ∆(t) = C(z−1)ζ2, ζ2 =
(ζ21, · · · , ζ28)T and

C(z−1) =
(
C1(z−1)
C2(z−1)

)
=




nc∑
i=0

C1,iz
−i

nc∑
i=0

C2,iz
−i




Cj,i = (Cj,i1, · · · , Cj,i8), j = 1, 2 (5)

The fundamental problem associated with human
arm system is to estimate viscoelasticity by using
the generated torques τs and τe. For the simplicity
of analysis, it is not unusual that a multidimen-
sional noise exhibits similar dynamic characteris-
tics to a reduced dimensional disturbance. Here,
we consider a matrix disturbance sequence instead
of multi-dimensional C(z−1)ζ2. Then, the design
method can be extended to multiple innovations
process (Deng et al, 2005). Further, we can cal-
culate variance σ2

∆i
(i = 1, 2) of element of the

new matrix disturbance sequence. The calculating
produce is summarized as follows.

Define a scalar ζ̄2 =
∑8

i=1 ζ2i and polynomical
matrix C∗

j (z
−1) =

∑nc

i=0 C
∗
j,iz

−i(j = 1, 2), where
C∗

j,0 = 1. In order to use C∗(z−1)ζ̄2 instead

of C(z−1)ζ2, where C∗(z−1) =
(
C∗

1 (z
−1)

C∗
2 (z

−1)

)
, we

must make mean and variance equal in value of
the two matrices respectively, namely,

E{C∗
j (z

−1)ζ̄2} = E{Cj(z−1)ζ2}, j = 1, 2

E{[C∗
j (z

−1)ζ̄2]2} = E{[Cj(z−1)ζ2]2}
Calculation of the coefficients of C(z−1) is given
as follows. Using

E{ζ̄2}= 0

E{[ζ̄2]2}=
8∑

i=1

Li

Li =E{[ζ2i]2} (6)

we have

E{[C∗
j,iζ̄2]

2}= (C∗
j,i)

2
8∑

k=1

Lk (7)

E{[
8∑

j=1

Cl,ijζ2j ]2}=
8∑

j=1

C2
l,ijLj, l = 1, 2 (8)

Finally,

(C∗
l,i)

2 =

∑8
j=1 C

2
l,ijLj∑8

k=1 Li

, l = 1, 2 (9)

Then, we can calculate variance σ2
∆i
(i = 1, 2) of

element of the new matrix disturbance sequence
by using (9).

In the following, the problem is to design general
estimating filter based on score function approach
(Deng et al., 2005) for the arm model with uncer-
tainty factor. The score function approach along
with generalized Gaussian approximation of prob-
ability density function (pdf) of the innovations
process can be used for state estimation of non-
Gaussian system. The shape parameter of the pdf
controls the shape of the distribution. The pdf of
generalized Gaussian uncertainty factor ∆i(t) +
ζ̄ii(t)(i = 1, 2) with zero mean, variance σ2

i and
shape parameter γi is given by Niehsen (1999)

pi(xi;σi, γi) =
αi(γi)γi

2σiΓ(1/γi)
e−[αi(γi)|xi/σi|]γi

xi ∈ R, i = 1, 2 (10)

αi(γi) =

√
Γ(3/γi)
Γ(1/γi)

(11)

where Γ(·) is the Gamma function. The shape
parameter is determined by the one-to-one corre-
spondence between γi and the fourth-order even
moment φi(γi). In this paper, the all-order case is
considered as follows.

φi(γi) =
E(τ2m

i )
σ2m

i

=
Γ(2m+1

γi
)Γm−1(1/γi)

Γm(3/γi)
,m = 1, 2, · · ·(12)

where

σ2
i = σ

2
∆i

+ σ2
ζ̄ii

(13)

E(τ2m
i ) is a function of σ2

∆i
, γ∆i , σ

2
ζ̄ii

and γζ̄ii
.

Variables σ2
∆i
, γ∆i , σ2

ζ̄ii
and γζ̄ii

are variance
of ∆i, shape parameter of ∆i, variance of ζ̄ii
and shape parameter of ζ̄ii, respectively. The odd
moments vanish, because the pdf is the symmetry.
From Fig.1, the generalized Gaussian pdf decay
rate increases for increasing the shape parameter.

Consider a relation from (12), we assume that

φi(γi) =
l2ie

−l1iγi

σ2m
i

(14)

where the design parameters l0i and l1i can be
obtained by matching (12) in pre-experiment. The
unmatched part will be of uncertainty factor.

Considering the generalized Gaussian pdf, the
score function-based general algorithm is ob-
tained.

Û(t+1)=Û(t)+k(t)


 γ1(

α1(γ1)
σ1

)γ1τγ1−1
1

γ2(
α2(γ2)
σ2

)γ2τγ2−1
2




τi > 0(i = 1, 2), τ1 = τs, τ2 = τe

(15)
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Fig. 1. The relation between moment and shape
parameter

k(t) = (W (t)N(t)W (t)T + L)XT (16)

where N(t) is a diagonal matrix and W (t) is an
upper-triangular matrix with unit entries along
the diagonal. L is positive definite and is the co-
variance matrix of ζ2. Û is an estimate parameter
vector of U .

The main differences between the above filter and
the filter in Niehsen (2002) are : 1) Equation
(15) is multiple innovations process; 2) Using ŪD
factorization algorithm W (t)N(t)W (t)T in (21)
for avoiding ill-conditioned matrix (Thornton and
Bierman, 1978) and the derivative of the score
function; 3) The shape parameter can be obtained
on-line (see (20)). Meanwhile, using the result in
Deng et al.(2005), the proposed algorithm guaran-
tees that all the estimated elements of viscoelas-
ticity are bounded.

3. AN EXAMPLE OF FILTER DESIGN
PROCEDURE AND NUMERICAL

SIMULATIONS

The purpose of this section is to demonstrate the
design procedure of the proposed filter and to
show the effectiveness by simulation.

3.1 Filter Design Procedure for Case of m=3

In the actual estimation, the moment order needs
to be decided. In this paper, m = 3 is selected.
Then, we have

φi(γi) =
E(τ6

i )
σ6

i

=
Γ(7/γi)Γ2(1/γi)

Γ3(3/γi)
(17)

where

E(τ6
i ) = σ

6
∆i
φi(γ∆i) + 15σ4

∆i
φi(γ∆i)σ

2
ζ̄ii

+ 15σ2
∆i
σ4

ζ̄ii
φi(γζ̄ii

) + σ6
ζ̄ii
φi(γζ̄ii

) (18)

φi(γ∆i)=φi(2) = 3 (19)

Note that E(τ6
i ) = l2ie

−l1iγi from (17), (18) and
(19), E(τ6

i ) is solved for each processing time step,
then the shape parameter is given as follows.

γi =− 1
l1i
log(E/l2i) (20)

σ2
∆1

=X(W (t)N(t)W (t)T + L)XT (1, 1) (21)

σ2
∆2

=X(W (t)N(t)W (t)T + L)XT (2, 2) (22)

The arm dynamics model used to generate the
simulated data sets is based on the following
relationships (Gomi and Kawato, 1996; Gomi and
Kawato, 1997).

Rss =Ass|τs m|+Bss (23)

Rse =Ase|τe m|+Bse (24)

Res =Rse (25)

Ree =Aee|τe m|+Bee (26)

Dss =Css|τs m|+ Ess (27)

Dse =Cse|τe m|+ Ese (28)

Des =Dse (29)

Dee =Cee|τe m|+ Eee (30)

where

(
τs m

τe m

)
= I(qd)q̈d +H(q̇d, qd) (31)

τs m and τe m are the desired shoulder and elbow
torques, respectively. qd is the desired angular po-
sition vector. The estimation results are evaluated
by using the following formulations.

ER = (|∆Rss|+ |∆Rse|+ |∆Res|+ |∆Ree|)/4
ED = (|∆Dss|+ |∆Dse|+ |∆Des|+ |∆Dee|)/4
In the simulation, the multijoint muscle generated
torque is obtained as follows.

τin = R(qeq − q)−Dq̇ (32)

where qeq is the equilibrium point.

3.2 Simulation Results

Concerning with the real values of human arm pa-
rameters, the following parameters are considered
based on the result in Gomi and Kawato (1996)
and Gomi and Kawato (1997).

For arm viscoelasticity, we use

Ass = 20, Bss = 20

Ase = 12, Bse = 6

Aee = 28, Bee = 15



Fig. 2. One of the movement descriptions of the
arm model in the simulations

Css = 0.6, Ess = 0.6

Cse = 0.4, Ese = 0.3

Cee = 0.8, Eee = 0.7 (33)

For the two-link rigid arm in (1), the structural
parameters Z1, Z2 and Z3 are unknown, and in
the simulation we select the true values of the
parameters as Z1 = 0.4507, Z2 = 0.1575 and Z3 =
0.1530. The error range is selected as 0.05%. The
cut-off frequencies of the third-order band-pass
filter to generate τf

in, θ
f
i (t) and θ̇

f
i (t) are 2.5[Hz]

and 20[Hz]. Besides the above 0.05% uncertainty
the filtered noise applied in τf

in is

(
0.09 + 0.045 ∗ rand(r1)
0.09 + 0.045 ∗ rand(r2)

)

where, rand(ri) is a function to generate random
noise with the initial value ri.

In order to compare to the existed filters (Gomi
and Konno, 1998; Deng and Gomi, 2003), the
same movements are selected. That is, during
multijoint viscoelasticity measurement, the arm
model was instructed to move from the start
position (x,y)=[-0.2,0.35](m) to the end position
(x,y)=[0.2,0.35](m) directly (Fig. 2). The arm
simulation procedure is described as follows. The
arm keeps unmoving at the start position for 1s,
then it moves with a uniform velocity for 3s and
keeps unmoving at end position for 1s. The whole
simulation time is 5s. External torque produced
randomly are the filtered torque of τs ext = 40 ∗
(rand(r3)−0.5) and τe ext = 30 ∗ (rand(r4)−0.5)
by fourth order Butterworth filter. For shoulder,
the filter cut-off frequency is 4Hz ∼ 16Hz. For
elbow, the filter cut-off frequency is 8Hz ∼ 24Hz,
where rand(r3) and rand(r4) are random signals.
Using the conventional Kalman filter to estimate
viscoelastic parameters for the model with uncer-
tainty, Fig.3 shows the mean error of the estima-
tion of the arm model with 5% uncertainty of Zi

(Deng and Gomi, 2003). Considering the estima-
tion algorithm given in Deng and Gomi(2003),
as the same uncertainty with the above simula-
tion, the simulation result is shown in Fig.4. In
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Fig. 3. Time-variation of mean error of stiffness
and viscosity by using Kalman filter with 5%
uncertainty of Zi
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Fig. 4. Time-variation of mean error of stiffness
and viscosity by using the algorithm in Deng
and Gomi (2003) with 5% uncertainty of Zi

the simulation in Fig.4, the design parameters
are the same with the case in Fig. 3, but the
ŪDŪT term for avoiding ill-conditioned matrix
(Thornton and Bierman, 1978) is added, where
the dimensional partial state innovations variance
is 1.8. Comparing the simulation results in Figs. 3
and 4, the algorithm used in Fig. 4 shows a better
convergent performance after 1 s. It is worthy to
say that the robust estimation scheme in Deng
and Gomi (2003) was considered to reduce the
effect of uncertainty factor by using prior informa-
tion of noises. Namely, for each processing step,
if the upper bound of the uncertainty factor is
known, the algorithm ensures the stability in the
worst uncertainty factor case. Therefore, this is a
conservative design method.

Considering the estimation algorithm given in
Section 3.1, the simulation results are shown in
Figs. 5 and 6, where l11 = 13.188, l12 = 12.176,
l21 = l22 = 1.645e12. Fig. 6 shows the stiffness
ellipses calculated during movement. The ellipses
represent the direction and magnitude of elastic,
resisting forces to unit-length position perturba-
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Fig. 5. Time-variation of mean error of stiffness
and viscosity by using the proposed algorithm
with 5% uncertainty of Zi
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Fig. 6. Stiffness ellipse estimated by using the
proposed algorithm with 5% uncertainty of
Zi

tions in all directions. The long axis of each ellipse
represents maximum force, indicating the great-
est stiffness. The short axis represents minimum
force, indicating the least stiffness (Gomi and
Kawato, 1996). Comparing the simulation results
in Figs. 4 and 5, the proposed algorithm shows a
better performance.

In the following, three simulations with differ-
ent movements are conducted (see Table 1). The
movement descriptions are shown as follows. In
simulation run 2, the arm model was instructed
to move from the start position [0,0.5](m) to the
end position [0,0.2](m) directly. In simulation run
3, the arm model is instructed to move from the
start position [-0.2,0.4465](m) to the end position
[0.2,0.4465](m) as an arc. In simulation run 4,
the arm model is instructed to move from the
start position [-0.2,0.25](m) to the end position
[0.2,0.45](m) directly. Simulation results of the
three filters show that the influence from the mov-
ing directions is not so large. The above simulation
results are omitted for brevity.

Simulation run Movements
1(5% error) [-0.2,0.35] to [0.2,0.35]
2(5% error) [0,0.5] to [0,0.2]
3(5% error) [-0.2,0.4465] to [0.2,0.4465]
4(5% error) [-0.2,0.25] to [0.2,0.45]

Table 1

4. CONCLUSION

This paper focused on introduction of the actu-
ator state monitoring of a human multijoint arm
dynamics. General filter system is given based on
a score function approach. The detailed design
procedure for the case ofm = 3 is shown. Further,
examples using an experiment-based human arm
model show that the proposed filter has desired
accuracy and robustness.
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