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Abstract; In this paper a simple approach is proposed for decentralized control of linear
large-scale systems. Sufficient conditions for diagonal dominance of closed-loop large-
scale systems are derived. Based on these conditions, the interactions between the
subsystems can be considered as external disturbances for each isolated subsystem. Then a
previously proposed approach is used to attenuate disturbances via dynamic output
compensators based on complete parametric eigenstructure assignment. Through
attenuation of the disturbances, the closed-loop poles of the overall system are assigned to
the desirable region, by assigning the eigenstructure of each isolated subsystem
appropriately. An example is given to show the effectiveness of the proposed method.
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1. INTRODUCTION which  will thereby guarantee a closed-loop

Decentralised control with Nyquist-like methods can
be very effective, if one can obtain the required
degree of diagonal dominance fairly easily (Nwokah,
et al., 1993). In (Labibi, et al., 2003), it is shown that
in order to achieve the proper conditions for overall
closed-loop diagonal dominance, the interactions
between the subsystems are taken as external
disturbances for each isolated subsystem. Then it is
tried to attenuate the effect of the disturbances by
solving properly defined local H, problems. In this
paper, the interactions between the subsystems are
taken as external disturbances for each isolated
subsystem like the proposed method in (Labibi, et al.,
2003). But, in order to attenuate the disturbances, the
method proposed in (Duan, et al., 2000) is used. The
proposed methodology can be applied to non-square,
non-minimum phase and open-loop unstable systems,

diagonally dominant system and this is achieved by
using a decentralized controller.

This paper is organized as follows: In section 2, the
problem of finding suitable decentralized controllers
for the subsystems of a linear large-scale system is
presented. In section 3, the eignstructure assignment
methodology proposed in (Duan, et al., 2000). is
examined. In section 4 the new method for
decentralized control of large scale systems is
proposed, and it is shown that by assigning the
closed-loop eigenstructure of each isolated subsystem
appropriately, the interactions between the
subsystems are attenuated, while the closed loop
poles of the system are tried to be assigned to the
desirable region, through proper assignment of
eigenstructiure of the isolated subsystems. In section



5 an example is given to show the effectiveness of
the proposed method.

2. PROBLEM FORMULATION

Consider a large-scale system G(s), with the
following state-space equations
X(t) = Ax(t) + Bu(t)
@

y(t) = Cx(t)
wherexeR", ueR™, yeR', AcR™" BeR™™, and

CeR™, composed of N linear time-invariant

subsystems G; (s) , described by

N
Xi = Aixi +Biiui + 2 AjXj
i1
J#

2
Yi = GiiX;

where
x eR"M u; eR™, y; eRY, A, eR™M B, e R™M

N N N
CiiGRIixni, Zni:n, Zmi:m, and Z|i:|.
i=1 i=1 i=1

It is assumed that all (A;,B;) and (A;,Cyi) are

controllable and are observable respectively and all
N

of Bji’sand C;’s are full rank. The term ¥ A;jx; is
j=t
J#i

associated to the interactions of the other subsystems.

The objective of this paper is to design a local output
feedback dynamic controller

Ui(s) = Ki(s)(Yi(s)—Ri(s)) @)
for each isolated subsystem

B {Xi (t) = Aix; (t) + Byu; (t) @)

Ty = Cix @)

where R; is the i-th reference input vector, such that

the eigenstructure of the subsystem is assigned
appropriately. Therefore, the decentralised controller

K(s) = diag{K;(s)} ()

assigns the overall closed loop poles in the desirable
region, if some sufficient conditions are satisfied.

3. EIGENSTRUCTURE ASSIGNMENT

In this section the method for eigenstructure
assignment proposed in (Duan, et al., 2000) is
investigated.

Consider the isolated i-th subsystem given by
equations (4). Let (A;,B;) be controllable and

(A, Cji) observable and the matrices B; and C;

are full rank. A general output dynamic compensator,
of order p;, for the subsystem can be written in the

following form

i (1) = Kigzi (1) + K1 (ri + i)

B (6)
Ui (0 = Kig2z;i (1) + Kipq (15 +Y5)

where z; € RP is the compensator state vector and
Kiji, §,1=12 are four controller coefficient matrices

of appropriate dimensions. Applying the dynamic
compensator to the i-th subsystem, gives following
closed-loop system

Gi(t) = Augi()+ Mir(t) @

yi(t) =Cgdi(t)
M, = |:_Bii Ki11:| ,
- Kizn

}, and Cg =[C;i 0].

where &;" :[xiT ziT]T ,

| A T BiKigGii - BiiKigy
' Ki21Cii Kig

Since, eigenvalues of a non-defective matrix are less
sensitive to parameter perturbations in the matrix, the
closed loop system matrix, A is assumed to be non-

defective, where its Jordan form is a diagonal matrix.

Subsystem (4) is controllable and observable and the
matrices B; and C;; are full rank, therefore there

hold the following right co-prime factorisations

(s1 = Ai) ' Bji = Ni (5)D; (s) ®)
(sl —AiiT)ilCiiT = Hi(S)Li_l(S) (9)

H,(s) e R™"
and L;(s)eR"™ are all polynomial matrices, and
N;(s) and D;(s), H;(s) and L;(s) are both right co-
prime.

where N;(s) e R Mi>m , Di(s) e R XM, 1

Lemma 3.1 (see (Duan, et al., 2000) for proof). For
the i-th isolated subsystem, let (A;,B;i) be

controllable and  (A;,C;;) be observable, and



Sij» i=L..nj+p; be a group of self-conjugate
complex numbers, then it follows that:

a) matrices Ky j,d=12, T;, and V; e ROWPx(em)
do exist, such that

Aji +B;iKip1Cii B Ki12:| T
= =V,AT,T (10)
Ao { Ki21Cii Ki2o s
T,V =1 (11)
Ai = dlag{S”} J =12,.., nj + P; (12)

hold for a set of self conjugate complex numbers
sij 1=12,..,n + p;, if and only if there were vectors

fijl (S Cm' and gij| S Cl'
satisfying below equations:

j=0L1=12,..nj + p;,

CL: fiy = fie gy =Tije if 55 =5k

j =01 |,k :1,..,ni + Pj

C2: figjNi" (5i)H; (5i)Gior + fizj Qi =5
j,l :1,2,...,ni + P

where & is the Kronecker function.
b) when constraints C1 and C2 are met, the matrix V;
is given by

V.

V= '0} (13)
|:Vil

where

Vio=lNi(Si1)fio1 Ni(si2)fioz - Ni(si(ni+pi))fi0(ni+pi)l

Va=|f faz fil(ni+pi)J

and the matrix T; is given by

T
T, =|_1° 14
1] "
with
Tio =
[Hi(sil)giOl Hi(si2)9i02 - Hi(Si(n,+p,))9i0(n;+p;)

Tu=lons o2 - Gignpy)

the corresponding matrices Ky, are either given by

Kig =Wijo®; , Kiz =Wio¥; — Ki11CjiVio ¥ s
Kior =Wjt®@j , Koo =Wjr'¥j = K;21CjVig'F; (15)

with

Wig =

[Di(sil)fim Di(si2) fio2
» Wit :l_silfill si2 firo

¥ =V ViV )

Tj = (1= ¥Vi)(CiiVio) "
or by

DiCSicn,+0)) it <7,
Sicn,+p0) fin +py)

®; =T (CiVioli) ™,

S : T T
Kii1 =PiZjo Kior =¥i(Zio' —Bii TioKii1)
ST ST T
Kip =®iZyy , Kin =Y¥i(Zii' -Bii TigKi21) (16)
with
Zjo =
[Li (si)Gio1  Li(si2)io2
Zil:[silgin SioGi12
. .
i =TT ) T
i =By Tio(1 -Ty¥;)

Li(si(ni+pi)gi0(”i+pi)]’
Si(ni+p) 9id(n+p;) |
@; = ([T Byi) I,

The parameters f;; and gy

represent the degrees of freedom available in the
compensator design for the i-th isolated subsystem.

j=0L1=12..n; +p;

4. DECENTRALISED CONTROL VIA
DISTURBANCE ATTENUATION

Consider the i-th subsystem given by equations (4).
In general the controller designed for each isolated
subsystem is a dynamic controller. Assuming the i-th
controller K;(s) has the state-space equations given
by (6). It is simple to show that designing dynamic
output feedback controller for the subsystem can be
reduced to designing a static controller for the
augmented subsystem with the state space equations
given by (7).

Applying the designed controller to the i-th system,
the closed-loop subsystem has the following equation

o Ci - 0k(s)-CaRH(s)=CRMiR (17)
Yi(s)=CiRH{(s)+C;PMRi=1,.,N (18)

where

p [0 AL 000 AL O A O

"fo 0. 0 OO0OO O O- 0 O

§T:[§1T Gia & G gNT]Tl and

P= (sl - A



From  equation (17), it is clear if
|CiPHi| <afCq i=1..N, where o<1 is a
positive scalar, then

Yi(s)=Cdi(s) =C,;RMiR; i=1..N (19)
This means that [0 - 0 C4 0 -~ 0] is an
approximation to [0 - 0 C; 0 0]-C,PH;.
The residual of o - 0 c4; 0 - 0] is the matrix
C.iPH;. The relative error in
0 - 0c,; O 0]-C,PH; is the number
C.PH;

" |TCI " d <¢a; (Stewart, 1973).
ci

Therefore by having small values fore; i=1..N
the overall closed loop system is diagonal dominant.

Considering equations (18), it can be seen that
minimizing the term C PH;, minimizes the
interactions between the subsystems. It means, the
states of the other subsystems may be considered as
external disturbance for each isolated subsystem.
Thus, to attenuate the effects of other subsystems on
the i-th output, the following index can be
minimized.

N 2
Ji= '21 Cei(sl — Ay )71Hij|| (20)
j=

J#i 2

where H;; = {A"} :
0

Since the i-th isolated subsystem is stabilized, the
following Lyapunov matrix equation

AiR "'PiA:iT :_HinijT (21)
has a unique solution with respect to R, and that this

solution is also symmetric semi-positive definite.
Further, it follows that the following equation holds:

Cei(sl — Ay )_1Hij "z = CciPiCciT (22)

(Duan, et al. 2000). Using equations (10)-(11), and
(21)

(ViAiVi_l )P+ Pi(ViAiVi_l ) = _HinijT (23)
Assuming
Qi =V 'RV (24)

or
P =ViQV,' (25)

where the matrix Q, is also symmetric semi-positive
definite,

Cei(sl = Ay )71Hij ||z = CciViQiViTCciT (26)

and
AQ+Qi4 = _TiT Hj HijTTi (27)

Considering the structure of c , equation (20) can
be expressed as

2
Cei(sl — Ay )71Hij ||2 = CiiViOQiViOTCiiT (28)

Denoting  Q; = [0 Jin+pn+p) €duation (24) can
then be decomposed as

(sij +Sit )aiji = _tijT HiniITtiI pl=12..m+p  (29)
which gives

T T
-t HyHy 4

(5 55) jl=12..m+p j=1  (30)
ij T Sil

Uy =

An algorithm example to solve a decentralized
control problem is given below:

4.1 Algorithm:

(@) Select p; =0 degree of controller for the i-th

subsystem.

b) For the i-th subsystem, solve for the polynomial
matrices N;(s), Hi(s), Di(s), Li(s), satisfying the
right co-prime factorisation equations (8) and (9).

(c) Solve for the expression of constraint C1, C2 and
the parametric expression for matrix v;, according to

the equations (13).

(d) Solve for the expression of index J; according to
the equations (28), and (30) .

(e) Specify the desired closed-loop eigenvalue
location regions, according to the closed-loop
stability and performance requirements.

(f) Solve the optimization problem

min J;

s.t constraints C1, C2, hold and s; j=1,..,nm +p,

belong to the desired region in left of the complex
plane.



with some numerical optimization algorithm. If ¢,
is small enough, go to step g), otherwise p; = p; +1

and go to step d).
(9) Solve Ky, according to equations (15) or (16).

Remark - In realistic large-scale systems, the
interactions of the subsystems are usually not known.
In this case, conditions and cost functions can
satisfactorily be modified as

Cal .
IcaRl < ||||H°|||| i=1..N (31)
and
2
Ji = j%l Cei(sl — Ay )7191'"2 (32)

where e; is the j-th column of the identity matrix

with appropriate dimensions.

5. An EXAMPLE

Consider a system whose dynamics are described by:

(2 1 1 1 [0 0
3 0 0 2 10
A= ,B= .
-1 0 -2 -3 00
-2 -1 2 -1 0 1
(1 0 00 0 0]
C= D=
0 010 0 0]

(Veillette, et al. 1992). The system is unstable and
highly interacted. Assuming the desirable dynamic
characteristic is a minimum decay ratea =-1. The
system is consisted of two isolated subsystems

-2 1
3 0

A= 2 eyl c =L 0]D, =0
22 — 2 1| 22_1r 22 — p “22 =Y -

a1 1] 4 [
2= o f21T,

interactions of the other subsystems. For this system,
Ici|,=1i=12. Minimizing the appropriately
defined cost functions for the isolated subsystems,
J; =0.0047, J, =0.0469 are achieved. Hence, o,
are small enough and the overall closed loop system

is diagonal dominant. The designed decentralized
controller has the following state space matrices.

Ay —{ }Bll _m Cy=[l 0]Dy=0

0 .
J are associated to the

300873 0 | [1464679 0
S ) 39644 K| 0 —7.4262

1015331 0 [-4204589 0
K71 o 0.0823[ ¥ 0 -1.6864

This controller assigns the closed loop poles of the
overall system at

e ={-1.0083+1.6025j,-1.0083-1.6025j, - 3.8882, -4.3276,
-18.9096 + 4.4808j ,-18.9096 - 4.4808j}

which are close to eigenvalues of the isolated
subsystems given by

el={-19.1298,-17.6827, - 4.2748},
e2={ -3.6072,-1.9846,-1.3726} .

6. CONCLUSION

This paper introduces a new approach for designing a
decentralised controller for large-scale systems.
Sufficient conditions for diagonal dominance of
overall closed loop system are derived. Based on
these conditions, the interactions between the
subsystems can be considered as external
disturbances for each isolated subsystem. Then the
proposed approach in (Duan, et al., 2000 ) is used for
disturbance attenuation via dynamic output
compensators based on complete parametric
eigenstructure assignment. By attenuating the
disturbances, the closed loop poles are assigned to
the desirable region by assigning the eigenstructure
of isolated subsystems appropriately.
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