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Abstract: Robust semi-definite programming problems with rational dependence
on uncertainties are known to have a wide range of applications, in particular in
robust control. It is well-established how to systematically construct relaxations
on the basis of the full block S-procedure. In general such relaxations are expected
to be conservative, but for concrete problem instances they are often observed to
be tight. The main purpose of this paper is to investigated in how far recently
suggested tests for the exactness of such relaxations are indeed numerically
verifiable. Copyright c©2005 IFAC
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1. INTRODUCTION

During the last fifteen years there has been a
tremendous activity to identify control problems
that can be translated into linear semi-definite
programs (SDP’s) which are generically formu-
lated as follows: given a vector c and symmet-
ric matrices F0, F1, . . . , Fn, minimize c′x over all
x ∈ Rn which satisfy

F0 + x1F1 + · · ·+ xnFn ≺ 0,

with ≺ denoting negative definiteness. Most clas-
sical problems such as H2- and H∞-optimal con-
trol have been successfully subsumed to such
formulations (Boyd et al., 1993; El Ghaoui and
Niculescu, 2000).

In robust control the system descriptions are as-
sumed to be affected by either time-invariant,
time-varying parametric or dynamic uncertain-
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ties. Then the data matrices F0(δ), . . . ,Fn(δ) are
functions of some real or complex parameter δ
that is only know to be contained in some set δ,
and the goal is to minimize c′x over all x ∈ Rn

such that

F0(δ) + x1F1(δ) + · · ·+ xnFn(δ) ≺ 0 for all δ ∈ δ.

If Fi(δ), i = 0, 1, . . . , n, depend affinely on δ and
δ is the convex hull of (a moderate number of)
finitely many generators, the problem is easily
reduced to a standard SDP since it suffices to
guarantee the validity of the linear matrix in-
equality (LMI) constraint at the generators of the
convex hull. The situation drastically differs in
case that the dependence is non-linear in δ. If the
dependence is rational without pole at zero - as is
often true in control - one can determine matrices
A, B, C, D, C0, D0 with

[
C0 D0

C D

] [
∆(δ)(I −A∆(δ))−1B

I

]
=

1
2




F0(δ)
F1(δ)

...
Fl(δ)






where ∆(δ) is block-diagonal and depends linearly
on δ (Doyle et al., 1991; Lambrechts et al., 1994;
Zhou et al., 1996). With the abbreviations

W (x) =




C0 D0

C D
0 I



′ 


0 0 I
0 0 x⊗ I
I x′ ⊗ I 0







C0 D0

C D
0 I


 ,

F (∆) =
[

∆(I −A∆)−1B
I

]
,

L(x,∆) =
[

F (∆)
I

]′
W (x)

[
F (∆)

I

]
,

∆ = {∆(δ) : δ ∈ δ},
the robust SDP with optimal value γopt reads as

infimize c′x
subject to L(x, ∆) ≺ 0 for all ∆ ∈ ∆.

(ROB)

The purpose of this paper is to investigated the
following family of relaxations for computing up-
per bounds on γopt. Choose linear Hermitian-
valued mappings G(y) and H(y) (with variable
y living in some finite-dimensional inner product
space) such that

G(y) ¹ 0 ⇒
[

∆
I

]′
H(y)

[
∆
I

]
º 0 ∀ ∆ ∈ ∆. (1)

For any such pair G, H consider the standard
linear SDP

infimize c′x subject to G(y) ≺ 0,

W (x) +
[

I 0
A B

]′
H(y)

[
I 0
A B

]
≺ 0.

(REL)

If γrel denotes its optimal value it is straightfor-
ward to prove on the basis of (1) that γopt ≤ γrel.
The computational complexity of computing γrel

is determined by the dimension of y and the size
of G(y) respectively.

It is stressed that a large variety of relaxations
suggested for robust linear algebra (El Ghaoui et
al., 1999; Ben-Tal and Nemirovski, 2001), robust-
ness analysis (Packard and Doyle, 1993; Iwasaki
and Hara, 1996; Trofino and de Souza, 1999;
Iwasaki and Shibata, 2001; Iwasaki and Hara,
2003; Scherer, 2003a; Scherer, 2005) or linear-
parameter-varying synthesis (Packard, 1994; Scor-
letti and El Ghaoui, 1998; Helmersson, 1995;
Scherer, 2001) are captured within this frame-
work. It is even possible to subsume recently sug-
gested sum-of-squares relaxations which can be
shown to be asymptotically exact (Scherer and
Hol, 2004).

Although the suggested relaxations are expected
to involve conservatism, it is often true that
they are actually exact, with the following pre-
cise meaning. Suppose W (x) = W0 + x1W1 +
· · · + xnWn with Hermitian W0, . . . ,Wn. If the
relaxation is infeasible, standard Lagrange duality

(Boyd and Vandenberghe, 2004) allows to con-
struct an infeasibility certificate, a pair (M,N) 6=
0 with 〈W0,M〉 ≥ 0 and

M ≥ 0, N ≥ 0,



〈W1,M〉

...
〈Wn,M〉


+ c = 0, (2)

H∗
([

I 0
A B

]
M

[
I 0
A B

]′)
+ G∗(N) = 0, (3)

where G∗, H∗ denote the adjoint mappings of
G, H and 〈., .〉 is the standard inner product for
matrices. The following result shows under which
conditions and how one can verify whether the
original robust LMI problem is infeasible as well
(Scherer, 2005).

Theorem 1. (ROB) is not feasible iff there exists
some ∆0 ∈ ∆ such that

L(x, ∆0) ≺ 0 is not feasible. (4)

∆0 ∈ ∆ satisfies (4) iff there exist an infeasibility
certificate (M,N) of (REL) with

[
I −∆0

] [
I 0
A B

]
M = 0. (5)

If (REL) is feasible, it admits dual optimal so-
lutions, matrix pairs (M, N) with 〈W0,M〉 =
γrel and (2)-(3). If one can solve the equation
(5) for any of these dual optimal solutions it
is guaranteed that the relaxation is exact, and
that any ∆0 satisfying (5) is a worst-case uncer-
tainty. Moreover the converse holds true as well
(Scherer, 2003b).

Theorem 2. If (REL) admits a dual optimal solu-
tion (M, N) for which (5) has a solution ∆0 ∈ ∆
then γopt = γrel and ∆0 is a worst-case uncer-
tainty in the sense that

inf

{
c′x :

[
F (∆0)

I

]′
W (x)

[
F (∆0)

I

]
≺ 0

}
= γopt.

(6)
Conversely if γopt = γrel and if there exists some
∆0 ∈ ∆ with (6) then there exist a (REL)-dual
optimal solution (M, N) satisfying (5).

The purpose of this paper is to investigate under
which conditions the exactness test of Theorem 2
is indeed applicable in practice. It is assumed
from now on that ∆ is compact and admits an
LMI description. Moreover suppose that (ROB)
is feasible and that the (obviously closed and
convex) set

X = {x ∈ Rn : L(x,∆) ¹ 0 for all ∆ ∈ ∆}
is bounded and hence compact. As a consequence,
c′x attains its minimum on X, and the set of
minimizers Xopt is convex and compact. To avoid
trivialities suppose c 6= 0. Finally consider a



relaxation (REL) which is feasible, and denote by
M the set of all matrices M such that (M, N) is
optimal for the relaxation’s dual.

2. APPROXIMATE EXACTNESS

In order to verify exactness one computes some
element M ∈M and determines

νrel(M) = inf
∆∈∆

∥∥∥∥
[
I −∆

] [
I 0
A B

]
M

∥∥∥∥ . (7)

Since M º 0 and since ∆ has an LMI description,
the computation of νrel(M) can be easily trans-
lated into an SDP. If νrel(M) vanishes, the relax-
ation is exact and any minimizer defines a worst-
case uncertainty as in Theorem 2. If νrel(M) ≤ ν0

for some small ν0 we can actually infer approxi-
mate exactness, as made precise with explicit error
bounds in the following result whose proof can be
found in Appendix A.

Theorem 3. Suppose that ‖(I − ∆A)−1‖ ≤ a
and ‖F (∆)‖ ≤ b for all ∆ ∈ ∆ and de-
fine r = 2a(1 + b)max{‖W0‖, . . . , ‖Wn‖}. More-
over assume that (∆0, ν0) ∈ ∆ × R satisfies∥∥[

I −∆0A −∆0B
]
M

∥∥ ≤ ν0.

If ‖x‖1 ≤ ξ for all (ROB)-feasible x ∈ Rn then

γopt ≤ γrel ≤ γopt + ν0(1 + ξ)r. (8)

If ‖x‖1 ≤ η for all x ∈ Rn with L(x, ∆0) ≺ 0 then

γrel−ν0(1+η)r ≤ inf{c′x : L(x, ∆0) ≺ 0} ≤ γopt.
(9)

Remark. Note that r and ξ are solely determined
by (ROB), and (rough) estimates can be obtained
by solving (rough) relaxations. In fact Theorem 3
can be viewed as an approximate version of The-
orem 2 for small ν0, and the latter is recovered
with ν0 = 0. Finally observe that νrel(M) is
continuous in M since ∆ is compact. Hence, if
νrel(M) vanishes or is small, it is guaranteed that
νrel(M̃) is small as well for all M̃ close to M , which
guarantees stability of the suggested approximate
exactness test against small errors in the compu-
tation of M .

3. VERIFIABLE EXACTNESS

From now on let us fix (existence assumed) a
worst-case uncertainty ∆0 ∈ ∆ which satisfies
γopt = inf{c′x : L(x, ∆0) ≺ 0}. It is then
not difficult to check that (5) is equivalent to
〈Ŵ ,M〉 = 0 if defining

Ŵ :=
[

I
−F (∆0)′

] [
I −F (∆0)

] º 0. (10)

As a major practical difficulty, this condition
might not be valid for some computed M ∈ M,

even if the relaxation is exact. This is indeed
of relevance since SDP-solvers of different nature
return different points in M, and M is in general
not a singleton. This motivates the concept of
verifiable exactness which implies that we can
check exactness irrespective of which particular
element of M is computed.

Verifiable exactness. (REL) is verifiably exact
if 〈Ŵ ,M〉 = 0 for all M ∈M.

Remark. If (REL)’s dual is strictly feasible,
central-path-following primal-dual interior-point
algorithms determine an element M̂ ∈ M satis-
fying im(M) ⊂ im(M̂) for all M ∈ M (Goldfarb
and Scheinberg, 1998). Therefore (10) holds for
M̂ iff it holds for all M ∈ M. We conclude that
we can check exactness in terms of M̂ only if the
relaxation is verifiable exact in the sense of our
definition.

Let us first relate verifiable exactness to the fol-
lowing perturbation of (REL) with some fixed
t ∈ R, denoted as (REL)t with value γrel(t):

infimize c′x subject to G(y) ≺ 0,

tŴ + W (x) +
[

I 0
A B

]′
H(y)

[
I 0
A B

]
≺ 0.

For all t in a neighborhood of t = 0, γrel(t)
is finite (since finite at t = 0 by assumption),
nondecreasing (since Ŵ ≥ 0), and convex. There-
fore its right-derivative γ′rel(0) at zero does ex-
ist and is non-negative (Bertsekas, 2003). By a
rather standard result in convex analysis γ′rel(0)
equals sup{〈Ŵ , M〉 : M ∈ M}. This leads to the
following alternative characterization of verifiable
exactness.

Lemma 4. (REL) is verifiably exact iff γ′rel(0) = 0.

This reformulation opens the path for a relation
to the perturbed version of (ROB), again obtained
by just replacing W (x) with W (x)+tŴ for t ∈ R.
Due to the particular structure of Ŵ , (ROB)t

reads explicitly as

γopt(t) = inf {c′x : ∀∆ ∈ ∆ : L(x, ∆)+
+t[F (∆)− F (∆0)]′[F (∆)− F (∆0)] ≺ 0} .

Similarly as for γrel(t) it is seen that γopt(t)
is finite, non-decreasing and convex in a neigh-
borhood of t = 0. Therefore its right-derivative
γ′opt(0) exists and is non-negative.

It is again easy to show that γopt(t) ≤ γrel(t). If
the relaxation is verifiably exact, γopt(0) = γrel(0)
implies 0 ≤ γ′opt(0) ≤ γ′rel(0) = 0 and thus
γ′opt(0) = 0. Hence we have identified γ′opt(0) = 0
as a necessary condition for (ROB) to admit a
verifiable exact relaxation.

Theorem 5. There exists no verifiable exact relax-
ation if γ′opt(0) > 0.



It is interesting to observe that γ′opt(0) is positive
if there exists a worst case uncertainty ∆1 ∈ ∆
different from ∆0 such that F (∆1) − F (∆0) has
no kernel. This is a consequence of the following
more refined condition.

Theorem 6. γ′opt(0) > 0 if there exists some ∆1 ∈
∆ \ {∆0} such that

inf{c′x : L(x, ∆1) ≺ 0} = γopt, (11)

and such that (11) admits a dual optimal solution
Z with [F (∆1)− F (∆0)]Z 6= 0.

Proof. Since (ROB) is feasible, (11) is strictly
feasible. Consider

γ(t) = inf{c′x : L(x, ∆1)+
+ t[F (∆1)− F (∆0)]′[F (∆1)− F (∆0)] ≺ 0}.

Clearly γ(t) ≤ γopt(t). By hypothesis γ(0) =
γopt(0) = γopt. Therefore γ′(0) ≤ γ′opt(0). Let us
prove γ′(0) > 0. This holds if there exists a dual
optimal solution Z for (11) such that 〈[F (∆1) −
F (∆0)]′[F (∆1)− F (∆0)], Z〉 > 0 or, since Z ≥ 0,
equivalently [F (∆1)− F (∆0)]Z 6= 0.

It remains to clarify under which conditions
γ′opt(0) vanishes such that we have indeed a chance
to construct some verifiably exact relaxation. This
is the contents of the following result whose proof
is found in Appendix B.

Theorem 7. γ′opt(0) = 0 if there exists some
xopt ∈ Xopt such that

ker[L(xopt,∆)] ⊂ ker[F (∆)− F (∆0)]

for all ∆ ∈ ∆ \ {∆0}.

As an immediate consequence, γ′opt(0) vanishes
if there exists some xopt ∈ Xopt such that
L(xopt, ∆) ≺ 0 for all ∆ ∈ ∆ different from ∆0.
The latter property requires ∆0 to be unique as a
worst-case uncertainty.

To summarize, Theorem 6 formulates a sufficient
condition for γ′opt(0) > 0 which implies that there
cannot exist a verifiably exact relaxation. Roughly
speaking this property holds if ∆0 is not unique
as a worst-case uncertainty. In contrast Theorem
7 contains a sufficient condition for γ′opt(0) = 0,
which makes it possible to construct verifiably
exact relaxations. Roughly, this is true if the
worst-case uncertainty ∆0 is unique. Figure 1
and the subsequent example provide graphical
and numerical illustrations. If γ′opt(0) = 0 it can
be shown that the Pólya relaxations of (Scherer,
2003a) are verifiably asymptotically exact.

Remark. Without knowing a worst-case uncer-
tainty γ′opt(0) cannot be computed in practice.
Hence these these insights are mainly of theoreti-
cal interest.

Parameter t

γrel,3(t) exact,
verifiable

γopt(t)

t = 0

γrel,1(t)
inexact

γrel,2(t) exact,
not verifiable

Fig. 1. Illustration of inexact, not verifiably exact
and verifiably exact relaxations.

Example. Let us choose a one-parameter exam-
ple in order to guarantee that the standard re-
laxations from µ-theory are exact, although they
might not be verifiably exact. Consider the prob-
lem of minimizing a non-constant rational func-
tion f(δ) over δ ∈ [−1, 1] (without pole in this
interval). Standard realization theory allows to
construct a representation f(δ) = C∆(δ)(I −
A∆(δ))−1B + D with ∆(δ) = δI of minimal size
and (A, B) in controllability canonical form. Our
problem can be formulated as infimizing x1 such
that f(δ) < x1 for all δ ∈ [−1, 1] which is a special
version of (ROB). Clearly the unique minimizer
of (ROB) is xopt = maxδ∈[−1,1] f(δ), and the
standard µ-relaxation leads to γrel(t) = γopt(t)
and thus γ′opt(0) = γ′rel(0).

If f(δ) = xopt for exactly one δ0 ∈ [−1, 1], then the
relaxation is verifiably exact. Indeed if δ ∈ [−1, 1]\
{δ0} we infer f(δ)−xopt < f(δ0)−xopt and hence
ker(f(δ) − xopt) = {0}; by Theorem 7 we have
γ′opt(0) = 0; therefore γ′rel(0) = 0 and we can
apply Lemma 4. We stress that this fact does not
depend on the nature (order) of the zero δ0 of the
function f(δ)− xopt as one might expect!

Now suppose that f(δ0) = f(δ1) = xopt for
different δ0, δ1 ∈ [−1, 1]. Then neither the stan-
dard relaxation nor any relaxation can be veri-
fiably exact. This follows from Theorem 5 since
γ′opt(0) > 0, which is a consequence of Theorem 6
and δ0(I − δ0A)−1B 6= δ1(I − δ1A)−1B. The
latter is true since equality implies δj

0/ det(I −
δ0A) = δj

1/ det(I − δ0A) for j = 1, 2 because
(A,B) is in controllability canonical form and A
has at least dimension two. If δ0 = 0 we infer
δ1 = 0 from j = 1, a contradiction; otherwise
we have δ0[δ0/ det(I − δ0A)] = δ1[δ1/ det(I −
δ1A)] = δ1[δ0/ det(I − δ0A)] and hence δ0 = δ1,
again a contradiction.

Consider the concrete example (Figures 2 and 3)

f(δ) = −1/3 +
δ2

1− δ2 + δ4
− δ4

1− δ2 + δ4
.
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Fig. 2. Two maximizers, computed uncertainty
(circle).
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Fig. 3. One maximizer, computed uncertainty
(circle).

The standard relaxation computes the correct
maximal value, but it is not possible to confirm
exactness since the function has two maximizers;
the computed M has rank two and (7) admits
the minimizer δ = 0. If we slightly perturb the
function such that the maximum is attained at one
point only, we can indeed confirm exactness of the
relaxation and compute the correct maximizer.

4. CONCLUSIONS

For robust semi-definite programming problems
with rational dependence on uncertainties we re-
called a general framework for formulating upper
bound relaxations that encompass a large vari-
ety of special versions in the literature. In the
main technical contribution we provided explicit
necessary and sufficient conditions for being able
to numerically verify (approximate) relaxation ex-
actness.

Appendix A. PROOF OF THEOREM 3

Introduce the abbreviations F1 = (I − F (∆0)),
F2 = (F (∆0)′ I), F = col(F1, F2). Note that
F1F

′
2 = 0 and F ′F = diag(I + F (∆0)F (∆0)′, I +

F (∆0)′F (∆0)) which implies I ¹ F ′F ¹ (1+b2)I
and hence ‖F‖ ≤ 1 + b as well as ‖F−1‖ ≤ 1.
Observe that the hypothesis on (∆0, ν0) implies
‖(I − ∆0A)F1M‖ ≤ ν0 and hence ‖F1M‖ ≤
aν0 which guarantees ‖F1MF ′‖ ≤ a(1 + b)ν0.
Define M̂ = [F ′2(F2F

′
2)
−1F2]M [F ′2(F2F

′
2)
−1F2] to

conclude ∥∥∥M − M̂
∥∥∥ ≤ 2a(1 + b)ν0.

Let us finally introduce ĉj = −〈Wj , M̂〉, j =
1, . . . , n, to define the vector ĉ. Now suppose that
x is (ROB)-feasible. Since F2W (x)F ′2 ¹ 0 and
M̂ º 0, F1M̂ = 0, 〈Wj , M̂〉+ ĉj = 0, j = 1, . . . , n,
one shows as in the proof of Theorem 2 (see
(Scherer, 2005)) that 〈ĉ, x〉 ≥ 〈W0, M̂〉. If we recall
〈W0,M〉 = γrel, cj = −〈Wj ,M〉, j = 1, . . . , n, and
‖x‖1 ≤ ξ, we conclude

〈c, x〉 = 〈ĉ, x〉+
n∑

j=1

〈Wj , M̂ −M〉xj ≥

≥ γrel + 〈W0, M̂ −M〉+
n∑

j=1

〈Wj , M̂ −M〉xj ≥

≥ γrel−(1+ξ)
n

max
j=0

‖Wj‖‖M̂−M‖ ≥ ν0(1+ξ)r.

Since x was arbitrary (ROB)-feasible we have
proved (8). If x only satisfies L(x,∆0) ≺ 0, the
same line of reasoning with ‖x‖1 ≤ η gives (9).

Appendix B. PROOF OF THEOREM 7.

If B denotes the unit ball in Rm, we observe that
γopt(t) = min{c′x : x ∈ Rn, g(x, t) ≤ 0} where
g(x, t) equals

max
(∆,w)∈∆×B

wT L(x, ∆)w + t‖[F (∆)− F (∆0)]w‖2.

Since (x, t) → wT L(x, ∆)w+t‖[F (∆)−F (∆0)]w‖2
is affine, and since the derivative with respect to t
is ‖[F (∆)− F (∆0)]w‖2, we can invoke Danskin’s
theorem (Bertsekas, 2003, p.245) to infer that
g(., .) is continuous and convex, and that the right-
derivative of g(x, .) at t = 0 is given by

g′(x, 0) = max
(∆,w)∈M(x)

‖[F (∆)− F (∆0)]w‖2

where M(x) = {(∆, w) ∈ ∆×B : wT L(x, ∆)w =
g(x, 0)}. Now note g(xopt, 0) = 0 (since c is
nonzero and the objective c′x is linear in x)
and L(xopt, ∆) ¹ 0 for all ∆ ∈ ∆. Therefore
M(xopt) = {(∆, w) ∈ ∆ × B : L(xopt,∆)w =
0}. At this point we exploit the hypothesis to
conclude that g′(xopt, 0) = 0.

Since (ROB) was assumed feasible there exists
x0 ∈ Rn with g(x0, 0) < 0, and we can hence
fix some t0 > 0 and δ > 0 such g(x0, t) ≤ −α0

for all t ∈ [0, t0]. For these parameters, the set
{x ∈ Rn : g(x, t) ≤ 0} is hence nonempty, and
it is also compact since contained in X. Therefore
γopt(t) satisfies γopt(0) ≤ γopt(t) ≤ γopt(t0) < ∞,



the set of optimizers Xopt(t) is nonempty and
compact, and the set of Lagrange multipliers Λ(t)
is nonempty. Moreover for all t ∈ [0, t0], λt ∈ Λ(t),
xt ∈ X(t) we infer with the usual saddle-point
property of the Lagrangian (Boyd and Vanden-
berghe, 2004) that
− α0λt ≥ λtg(x0, t) =

= λtg(x0, t) + 〈c, x0〉 − 〈c, x0〉 ≥
≥ λtg(xt, t) + 〈c, xt〉 − 〈c, x0〉 =
= γopt(t)− 〈c, x0〉 ≥ γopt(0)− 〈c, x0〉.

With α = (〈c, x0〉 − γopt(0))/α0 > 0 this implies
0 ≤ λt ≤ α for al λt ∈ Λ(t), t ∈ [0, t0].

Now choose an arbitrary ε > 0. Since g′(xopt, 0) =
0, there exists δ ∈ (0, t0] with g(xopt, t) ≤
g(xopt, 0) + tε/α for all t ∈ (0, δ]. With t ∈ (0, δ],
xt ∈ X(t), λt ∈ Λ(t) we exploit again the saddle-
point property to obtain

γopt(t) = cT xt + λtg(xt, t) ≤
≤ cT xopt + λtg(xopt, t) ≤

≤ cT xopt + λt[g(xopt, 0) + tε/α] ≤
≤ cT xopt + λtg(xopt, 0) + tε ≤

≤ cT xopt + λ0g(xopt, 0) + tε ≤ γopt(0) + tε

and hence (γopt(t) − γopt(0))/t ≤ ε. This proves
γ′opt(0) ≤ 0 and hence γ′opt(0) = 0.
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