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Abstract: This paper presents a new class of model in the field of topical algebra
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motivation for the current study is the modelling of Time Petri nets like Time
Stream Petri Nets and P-time Petri nets which extend Timed Petri Nets and
generalize the semantic of its synchronization. The final objective is to make
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1. INTRODUCTION

Discrete event dynamics systems involving syn-
chronization can be modeled by several types of
Petri nets (PNs). Among these PNs, we can quote
P-time Petri nets (P-time PNs), Time stream
Petri nets (Time Stream PNs),.... which extend
the application field of Timed Event Graphs.
Time Stream Event Graphs for example, allow to
specify the synchronization requirements of mul-
timedia applications (Diaz and Owezarski, 1997)
and can describe complex synchronizations. The
Time Stream Petri Nets present different types
of semantic as “And”, “Weak-And”, “Strong-Or”,
“Or”, “Master” and theirs variations (Courtiat et
al., 1996) which correspond to different temporal
evolutions. In (Declerck and Alaoui, 2004), we
show that P-time Event Graphs can be modeled
by a new class of systems called interval descriptor
system for which the time evolution is not strictly
deterministic but belongs to intervals. The lower
and upper bounds depends on the maximization,

minimization and addition operations, simultane-
ously. Moreover, the liveness can be studied in the
topical algebra using the spectral theory.

Let us assume that some events are stated as con-
trollable, meaning that the corresponding tran-
sitions (input) may be delayed from firing until
some arbitrary time provided by a supervisor.
Given a desired behavior of some transitions (out-
put) of the interval descriptor system such as
a sequence of execution times, we wish to slow
down the system as much as possible without
causing any event to occur later than this se-
quence. So, the problem is to determine whether
there exist control actions which will restrict the
system to that behavior. If this is possible, we
wish to determine the greatest input in order to
obtain the output before the desired date. The
objective of this paper is to make optimal control
for Time Stream Event Graphs and to general-
ize the classical “backward” equations applied to
Timed Event graphs. Let us recall that for Timed



Event Graphs, the greatest solution (the latest
times) of the control problem is explicitly given by
the “backward” recursive equations where the co-
vector plays the role of the state vector, whereas
dater equations give the least solution (the ear-
liest times) of the process evolution (Baccelli et
al., 1992)(Declerck, 1999).

The paper is structured as follows. We give ini-
tially, the notations and some previous results.
We then introduce the modelling of Time Stream
Event Graphs in the (min, max, +) algebra and
study the optimal control problem of interval
(min, max, +) systems. The objective of control
is the determination of the existence of a solution
and the effective calculation of the greatest con-
trol. Lastly, the approach is applied to a simple
example.

2. PRELIMINARIES

A monoid is a couple (S, ®) where the operation
@ is associative and presents a neutral element.
A semi-ring S is a triplet (S, ®,®) where (S, ®)
and (S, ®) are monoids, @& is commutative, ® is
distributive relatively to & and the zero element
e of @ is the absorbing element of ® (¢ ® a =
a®e=c¢).A dioid D is an idempotent semi-ring
(the operation @ is idempotent, that is a ®a = a
). Let us notice that contrary to the structures of
group and ring, monoid and semi-ring do not have
a property of symmetry on S. The unit RU{—occ}
provided with the maximum operation denoted &
and the addition denoted ® is an example of dioid.
We have : R0 = (RU{—00}, B, ®) . The neutral
elements of @ and ® are represented by € = —oo
and e = 0 respectively. The absorbing element
of ® is e. Isomorphic to the previous one by the
bijection:  — —z , another dioid is U {400}
provided with the minimum operation denoted A
and the addition denoted ®. The neutral elements
of A and ©® are represented by t = +oo and
e = 0 respectively. The absorbing element of ®
is €. The following convention is taken: t ® ¢ =
e and t ®e = t. The expression a ® b and a ® b
are identical if at least either a or b is a finite
scalar. The partial order denoted < is defined
as follows: z < y <= 2Dy = y < x A
y=x < x; <vy; ,forifrom1 ton in R".
Notation x < y means that * < y and = # y.
A dioid D is complete if it is closed for infinite
sums and the distributivity of the multiplication
with respect to addition extends to infinite sums
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For example, Ryaz = (RU{—oc0} U {400}, ®, ®)
is complete. The set of n.n matrices with entries
in a complete dioid D endowed with the two
operations ¢ and ® is also a complete dioid which
is denoted D™". The elements of the matrices

in the (max,+) expressions (respectively (min,+)
expressions) are either finite or e ((respectively
t). We can deal with nonsquare matrices if we
complete by rows or columns with entries equals
to € ( respectively t). The different operations
operate as in the usual algebra: The notation ®
refers to the multiplication of two matrices in
which the A-operation is used instead of &. The
mapping f is said residuated if for all y € D, the
least upper bound of the subset {x € D | f(z) <
y} exists and lies in this subset. The mapping x€
(Rimaz)™ — A ®@ x defined over Rnqeis residuated
(Baccelli et al., 1992) and the left @ —residuation
of B by A is denoted by: A\B = max{z € (Rmax
)™ such that A ® x < B}.

In (®, ®) algebra, Kleene’s star is defined by:
A* = @5 A’ . Denoted G(A), an induced graph
of a square matrix A is deduced from this matrix
by associating: a node ¢ to the column ¢ and line
i ; an arc from the node j towards the node i if
A;; # €. The weight of a path p, | p |, is the sum
of the labels on the edges in the path. The length
of a path p, | p |; is the number of edges in the
path. A circuit is a path which starts and ends at
the same node.

Theorem 2.1 (Baccelli et al., 1992) For matrix
A with induced graph G(A) , if the cycle weights
in G(A) are all strictly negative, then there is a
unique solution to the equation r = A® x ® B
which is given by A* ® B .

Definition (Cochet-Terrasson et al., 1999)

A (min, max, +) function of type (n,1) is any
function f : ®® — R, which can be writ-
ten as a term in the following grammar: f =
X1,T2, .. Xy | f@al fASF]f® f where ais an
arbitrary real number (a € R). The vertical bars
separate the different ways in which terms can be
recursively constructed. A (min,max,+) function
of type (n,m) is any function f : ®* — R™,
such that each component f; is a (min, max, +)
function of type (n,1). The set of (min, max, +)
function of type (n,m) is noticed F(n,m) and
is a special class of topical functions which are
homogeneous, monotonic and nonexpansive. Only
homogeneity (VA € R,Vo € R" f(A®z) = A ®
f(z) in the usual vector-scalar convention: (A ®
x); = A®x;) will be used. They include (max, +)
linear maps and (min, 4) linear maps which can
be written respectively as: g(z); = @ (Ai;®x;)

1<j<n
where A is a n xn matrix with entries in ®U{—o0}
hz); = N (B;j®x;) where B is a nxn matrix
1<j<n
with entries in R U {400}

Let f € F(n,n). A subset S C F(n,n) is said to
be a max-representation of f if S is a finite set of

(max,+) functions such that f = A h. A subset
hes
T C F(n,n) is said to be a min-representation



of fif T is a finite set of (min,+) functions such

that f = A h. The mutual distributivity of ®
heT

and A (((z @y Az = (xA2) @ (yAz) and

(xANy)®z=(x®z2)A(y®z) ) entails that every

(min, max, +) function have a max-representation

and a min-representation.

The set of (min, max, +) functions F(n,n) has
a natural representation as an n-fold cartesian
product: F'(n,n) =F(n,1)x...F(n,1). Let R; the
set {h; such that h € S}. The rectangularisa-
tion of S, denoted rec(S) , is defined by rec(S)
=R1xRox...xR,,. In other words, a set S of min-
max functions is rectangular if for all h, b’ € S,
and for all ¢+ = 1,...,n the function obtained by
replacing the i-th component of A by the i-th
component of A’ belongs to S. So, rec(S) is finite
when S is finite and S C rec(S) .

Dynamics of the form are considered: z(k) =
flz(k —1)) , Yk > 1 and x(0) = £ € R™ where
f is a (min, max, +) function of type (n,n)
R™ — R™. The cycle time vector is defined by
x(f) = kl'l)n;o x(k)/k if it exists. It does not depend

on & In the following theorem, the notion of

cycle time which always exists in F'(n,n) makes
it possible to check the existence of a solution of
different inequalities and equalities.

Theorem 2.2 (Cochet-Terrasson et al., 1999)

(Cochet-Terrasson, 2001) Let f € F(n,n). The
two following conditions are equivalent: (i) It
exists a finite x such that < f(x) (respectively,

2 > f(2)) (i) x(f) = 0 (respectively, x(f) < 0)

The calculation of the spectral vector can be re-
alized as follows. If ¢ is a circuit, its cycle mean,
denoted m(c) is defined by m(c) =| ¢ |, / | ¢ |i(the
notation / represents the classical division). A
node j is upstream from ¢, denoted i <— j, if
either ¢ = j or there is a path in G(A4) from j
to i. Vector u(A) € R is defined by p;(A) =
max{m(c) | i <= c}. If f € F(n,n) is max-only
and A is the associated matrix over R,,q., then
x(f) exits and x(f) = p(A) . The result is identi-
cal for min-only function. If S and T are rectan-
gular max and min-representations, respectively,

of f € F(n,n) , then x(f) = A x(h) = D x(9)-

heS geT

3. MODELLING OF TIME STREAM EVENT
GRAPHS

Time Stream PNs are an extension of Petri nets
which allows to represent complex synchroniza-
tions and temporal compositions of the tasks or
processes which are carried out (Courtiat et al.,
1996)(Diaz and Owezarski, 1997). Time Stream
PNs directly extend P-time PNs. We consider
Event Graphs which constitute a subclass of Petri

nets of which each place has exactly one upstream
and one downstream transition.

Definition (Time Stream Event Graph) Let
I; a set of upstream arcs of a transition j and
P; the corresponding set of upstream places. A
Time Stream Event Graph is an Event-Graph
such as: an interval [a;, 5;] (QTUO0) X (QT U+00)
is associated to each a; € I; ; defined below, a
special semantic of firing is associated to each
transition.

Considering one outgoing arc from a given place,
when a token is received by that place at time
x , the token should remain in the place during
an amount of time defined by a value inside the
range [x+«, z+ (] associated with the arc. As the
firing time of a transition depends on the nature
of the processes which will be synchronized, dif-
ferent semantics of firing may be associated to a
transition. In this paper, we consider two types of
semantics, And and Weak-And, which we will use
later. They are defined by a couple [z + a;, x + 3]
associated to each ingoing arc.

Definition For a transition i , let I; denote a
set of upstream arcs and P; the corresponding
set of upstream places. A transition ¢ of the type
“And” and “Weak-And” is firing at absolute time
x; if and only if the two following conditions are
satisfied:

1) transition 7 is enabled for the current marking:
every upstream place j of P; contains at least one
token. Let x; the entrance date of the token which
is also the date of firing of the upstream transition
of this place.

2) For the semantic And, the value of z; is such
as: (z; + ;) <z; < (x; + ;) for every upstream
place p; € P; and arc a; € I; (every time condition
has to be fulfilled).

For the semantic Weak-And, the value of z; is
such as: (z; + «;) < x; for every upstream place
pj € Pyand arca; € I; and 3j € Py z; < (z;+05;)
(the firing may wait until the last time interval).

Now, let us consider the variable z;(k) as the date
of the kth firing of transition ¢ and P; the set of the
upstream places of this transition. If we take the
assumption of functioning FIFO of the transition ¢
which guarantees the condition of non overtaking
of the tokens between them, a numbering of the
events can be carried out and the model can be
written as follows: Given n; the number of the
present tokens in each place p; at the instant ¢ = 0
(initial marking), for each transition , @ (z;(k—

JEP;
n;) + a;) < wi(k) < A (z;(k — ny) + B;) if the
JEP;
semantic is And; @ (x;(k —n;) + ;) < zi(k) <
JEP;

@D (zj(k—n;)+G;) if the semantic is Weak-And.
JEP;



Let us notice that the inequalities of P-time Event
Graph correspond to semantic And.

4. CONTROL SYNTHESIS

One can represent the date z(k) by the following

formal power series in v: z(v) = @ x(k)y*. Vari-
kEZ
able may also be regarded as the backward shift

operator in event domain (formally, yz (k) = z(k—
1)) and y-transforms of functions can express this
effect. Reciprocally, the dater algebraic function
®;1(X) associated to a formal f(z(v)) on a hori-
zon [ is a function obtained by developing f(z(7))
algebraically with dater variables over the appro-
priate dimensions. It describes every connection
which links the different variables which composed
X = (z(k),z(k +1),....2(k + 1))t with (min,
max, +) functions. The evolution of the system
is described by the following equations where f~
and fT are formal (min, max, +) functions on the
set of sequences over RU {£o0} f~(z(7),u(y)) <
z(y) < fT(z(y),u(y)) . The vectors z and u are
respectively the state and the input. We can also
introduce the output y by y(y) = C(y) ® z(v)
without reduction of generality. As the type of
the system is defined by the types of the functions
f~ and fT, we can characterize the model by the
following couple (type of f~, type of fT). The
type ((min,max,+), (min,max,+)) represents nat-
urally the more general mathematical case. Under
the assumption of the existence of a solution, they
define corresponding classes of interval descriptor
systems. If the lower bound defined by f~ is a
(max,+) function and the upper bound is infinite,
the classical (max,+) systems can be obtained
after some classical manipulations. In this case,
equality arises from the assumption that there
is no extra delay for firing transitions whenever
tokens are all available.

For stream flow Petri nets for semantics And
and Weak-And, f~(z(v),u(v)) can be a (max,
+) function and f(z(vy),u(y)) a (min, max, +)
function. We can write: f~(z(y),u(y)) = A~ ®

o) & Bu(y) and [H().u() = A AT S
(7) & B u(y)

The just-in-time objective is to calculate the
greatest control u such that y < z with y(y) = C®

z(7)
As function f ~ is residuated , the determination

of the greatest solution (z(v),u(7y))! of the follow-
ing inequality set, will give the greatest control.

We can write (Zg;) <h ( igg) with

(A\a(3) A (C\=(0)A
n(50)) = | At est e Brue |0

i=1
B \z(y)

Clearly, this set contains (min,max,+) functions.

Notice, that the first expression presents an usual

backward part (A~\z(y)) A (C\z(v)) but also, in

the case where Aj' and B;‘ have positive expo-

J1

nents a forward part ( A (Af ® z(y) ® B u(v)))
i=1

which increases the complexity of the problem

and forbids the writing of simple equations on
a short horizon as the classical backward equa-
tions. In other words, we must solve a (min, max,
+) fixed-point problem of type = < f(z) over
the horizon of the desired output z. Naturally,
if the matrices A;-F and B;‘ have only negative
exponents, the control can be calculated by an
iterative backward approach. However, the reso-
lution must still consider a (min, max, +) system.
If fT(z(y),u(y)) is a (min,+) function, h has
only a (min,+) type: P-time Event graphs lead
to this formulation (Declerck and Alaoui, 2004).
When the matrices A and B; does not exist,
the resolution is reduced to the classical approach
and for the daters, h is a (min,+) function. As the
function h contains the desired output z, h is not
a (min, max, +) function of type (n,m) which is
homogeneous. The form of our practical problem
is to find a greatest x (if  exists) such that

7 < f(a) (2)
with f a non-homogeneous (min, max, +) func-
tion which can be defined by the following gram-
mar: f = b,a1,@2,....00 | f@a| fAL|fOf
where a, b are arbitrary real numbers (a,b € R).
In the aim of applying the spectral theory about
these functions, we will realize a relaxation by as-
sociating in the above definition a variable xg to b
such that b is replaced by b®z(. So, the problem is
to find a greatest y = (xq, 21, ..., 2,)" (if y exists)
such that zo = 0 and z; < fi(zo, 21, ..., ,)") for
i # 0 . If we introduce the obvious inequality
x9 < g , the general problem becomes: find a
greatest y = (zg, %1, ..., n)" (if y exists) such that
2o < zg and x; < fi(wo, 21, ..., x,)?) for i # 0 with
zo = 0 . In other terms, we have to solve the new
system

y < 9(y) 3)
with g an homogeneous function of type (n+1,n+

1).

Suppose that a non-homogeneous (min, max, +)

function is given in the form: f;(z) = A Az
veV (1)

(¢ from 1 to n) and fo(x) = 0 with =

(0, @1, ..., Tp)" where V (1), ...,V (n) are finite sets

of indexes and A;, are row vectors with entries



in Rpax. We say that a policy is a map 7 :
{0,...,n} — Up<i<n V (i), such that n(i) € V (i),
for all 0 < i < n. The corresponding policy
matrix A[r] is defined by A[r]; = A;r;). Each
h belonging to rec(S) define a policy 7. So, h :
x € R" — h(x)=A[m,]®z . A function h € rec(S)
and the corresponding policy 7y, are said safe if all
cycles in the graph induced by A[nj] have strictly
negative weight. The resolution of the system has
an unique solution given by the first column of
A*[mp]. To consider the corresponding homoge-
neous function, we introduce the expressions V' (0)
and Agy by V(0) = {0} and Ay = (e,...,&) .
In this case, a function h and the corresponding
policy are safe if it is true in the non-homogeneous
case.

The following proposition allows us to transpose
the results from non-homogeneous case to homo-
geneous case.

Proposition 4.1 For f and g respectively defined
by (2) and (3) {z such that < f(z) } = {z such
that z; = (—yo) ® y; for y satisfying y < g(y) }

Proof Given z such that z < f(z) . The variable
y = (0,21, ...,2,)" is clearly a solution of zq < xq
, 2 < filzo, w1y ey Tp)t) for i # 0 with g = 0
or y < g(y) with yo = 0. Reciprocally, given y
a solution of y < ¢(y) , the homogeneity entails
that A ® y is also a solution. Particularly, we can
take A = (—yo) and the solution z; = (—yo) ® y;
satisfies zg = 0 and z; < fi(zo, 21, ..., 2n)t) for
1#£0 O

Consequently, the resolution and analysis of exis-
tence of a solution can be applied to the homoge-
neous system and transpose to the initial system
by multiplication ® of (—yp) to each component.
Now, we consider the case of structures which
satisfies x(®y;(.)) = 0. It leads to two structural
propositions about the resolution.

Proposition 4.2 Given f(z) = A g(x) with
g€eG

g(xz) a max-only function. Each solution of a
structure (max,+) with x(g) = 0 satisfies f(z) <
x.

Proof f(z) = A g(x) with g(z) a max-only
geG

function. If x(g) = 0, then there exists a solution
denoted a which satisfies & = g(«). So, f(a) <

gla)=a. O

Now, we consider the important particular case of

safe structure.

Proposition 4.3 The solution of a safe (max,~+)

structure A(m) for o = 0 is an upper bound of

the solution space of x < f(z) and = = f(x).

Proof Given f(z) = A g(x) with g(x) a max-
geG

only function. A safe (max,+) structure A(m) for
o = 0 has a unique solution denoted a. It is
also the greatest solution satisfying z < g.(z)

and x = gp(z). As each solution must satisfy
x < g;(x), it must satisfy particularly x < g,(x)
. Consequently, each solution is lower or equal «.
O

Now, we apply the spectral theory to the control
synthesis problem.

Theorem 4.4 Given a system of ((max, +), (min,
max, +)) type defined formally by

i) ZTo
o) | < [ 2t ()
atm ) \u)
with
. (A7) A (C\G() © s
")) T | A esm e )
B \elo)

It exists a solution satisfying the system (4) on
horizon [ if and only if x(®(.)) >0

Proof The final inequality set presents the gen-
eral form z(v) < p(z(v)) and is associated to the
algebraic inequality X < &, ;(X). The spectral
vector is here x(®p,;(X)). The system of ((max,
+), (min, max, +)) type is reduced to a (—oo,
(min, max, +)) type and can be analyzed by the
relevant theorem (2.2). If the cycle time satisfies
the corresponding condition of existence, it de-
scribes a compatible interval descriptor system.
|

Now, we consider the expression of the spectral
vector and its underlined structure.

In the function h, we can consider the classi-
cal “backward” part which corresponds to the
Just-In-Time problem in Timed Event Graphs.

Zo Zo X0

z(y) | < hi| z(y) | with by | 2(y) | =
u(y) u(y) u(y)

Zo

(A7 \z(7)) A (C\(2(7) ® 20))

B \z(7)

The structural observability (respectively control-
lability) gives a condition to observe an effect in
the output (resp. transition) whose origin comes
from at least one internal transition (resp. input)
and allows us to introduce the following proposi-
tions.

Definition(Baccelli et al., 1992) An event graph
is structurally controllable if, every internal tran-
sition can be reached by a path from at least one
input transition. An event graph is structurally
observable if, from every internal transition, there
exists a path to at least one output transition.
Proposition 4.5 A structurally controllable and
observable event graph satisfies x(®p,(.)) = 0
and the solution of classical “backward” approach
satisfies h(z) < z and gives an upper bound of the
solutions of x < h(z) and x = h(x)
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Fig. 1. A Time Stream Event Graph

Theorem 4.6 In a structurally controllable and
observable event graph, there exists a solution

To To
satisfying the equality [ x(y) | =h [ z(y) | or
u(v) ()

there exists no solution in inequality (4)

Let us notice that the effective calculation of
the greatest control can be made by a classical
iterative algorithm (Zad et al., 1999) which is
known to be pseudo-polynomial. The resolution
of x< f(x) is given by the iterations of zxi11 «—
f(xk) Azy if the starting point is greater than the
final solution. In the control problem, application
of the classical “backward” approach in a first step
allows to give this starting point before an optimal
minimization.

Application

A simple example of Time Stream Petri nets in
the static case and without specifications, is given
in figure 1.

o = (56) o = () o -
=247 = (1),

C=(e

D lar bl = [1,5], [az bo] = [2,6], [a3
bs] = [2,8] and [aq b4] = [3,12].
o < I

21(k) < 2\ 22(0)) A [(wn (k) +5) © (un(k) +6)]
zo(k) < (2 + o) A (z1(k) + 8) A (u1 (k) + 12)
un(k) < (1\ 1 (1)) A (3\ 22(k))
uz(k) <2\ z1(k)
As x(®(X)) = (0,0,0,0,0)* > 0, there is a solu-
tion X which is equals to
(20, 21(1), 22(1), us (1), ua(1))* = (0,12, 14,11, 10)"

Case 2: [a1 bl] = [0,3], [G,Q bg} = [].,2], [a3 bg} =
[2,4] and [a4 by] = [7,12]. The problem has no

solution because x(®(X)) = (0,—3, -3, -3, —3)°

5. CONCLUSION

In this paper, we have shown that Time Stream
Petri Nets can be modeled under the form of a
new model, the interval descriptor system based
on (min,max,+) functions. The interval descriptor
system can describe the time behaviour of a lot of
models as Timed Event Graphs but also P-time
Petri Nets. These results lead us to think that
the interval descriptor system will bring an unified
model and a new subject in the field of Time and
Timed Petri Net.

The second part considers the problem of opti-
mal control synthesis with specifications for these
models. The resolution leads to an inequality
set whose form includes the optimal approach
used in Timed Event Graphs. The application
of fixed point theory makes it possible to calcu-
late the greatest solution. Moreover, the spectral
theory gives conditions of existence of a solution
which satisfies the corresponding equality when
the event graph is structurally controllable and
observable.
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