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Abstract: This paper considers a robust decentralized H,, control problem for uncertain
multi-channel systems. The uncertainties are assumed to be time-invariant, norm-
bounded, and exist in both the system and control input matrices. Our interest is focused
on dynamic output feedback. A necessary and sufficient condition for the uncertain
multi-channel system to be robustly stabilizable with a specified disturbance attenuation
level is derived based on the bounded real lemma, which is reduced to a feasibility
problem of a nonlinear matrix inequality (NMI). A two-stage homotopy method is
employed to solve the NMI iteratively. First, a decentralized controller for the nominal
system with no uncertainty is computed by imposing structural constraints on the
coefficient matrices of the controller gradually. Then, the decentralized controller is
modified, again gradually, to cope with the uncertainties. On each stage, a variable is
fixed alternately at the iterations to reduce the NMI to alinear matrix inequality (LMI). A
given example shows the efficiency of this method. Copyright © 2005 IFAC
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1. INTRODUTION

Robust decentralized H,, control problems have been
paid much attention. Since system models aways
contain uncertainties, expected performances cannot
be attained if the controller is designed only for the
nominal model.

It has been well known that linear-matrix-inequality
(LMI)-based approaches are very powerful for
centralized controller design (Boyd, et al., 1994,
Iwasaki and Skelton, 1994; Gahinet and Apkarian,
1994). A large number of results based on LMIs for
centralized control problems have been reported in the
literature. However, it is not so in the decentralized
case. Decentralized H,, controller design problems can
be formulated as feasibility problems of bilinear
matrix inequalities (BMIs), but cannot be reduced to
LMI problems because of the structural constraint on
controllers, i.e, block-diagonal forms of coefficient
meatrices.

At present, there is no globally effective method to
solve general BMI problems, but a number of practical
techniques have been proposed. One of them is the
idea of homotopy methods, whose main advantage is
ability to dispense with restrictive requirement.
Applications of a homotopy method to decentralized
control problems have been introduced in the works of
Richter and DeCarlo (1983,1984), where the method
has been shown to be useful for computing
decentralized state feedback in eigenvalue assignment
problems.  Zhai, et al. (2001) have solved a
decentralized H., control problem for multi-channel
systems using a homotopy method. The problem was
formulated as feasibility of a BMI. Their algorithm
deforms the controller’s coefficient matrices from full
matrices defined by a centralized controller, to block-
diagonal matrices of specified dimensions which
describe a decentralized controller. Another algorithm
for a decentralized H,, controller was proposed based
on a double homotopy path method by Mehendale and



Grigoriadis (2003). Along one of the paths a full
centralized structure was deformed to a block diagonal
decentralized structure. Along the other path, designs
were improved by solving a linear approximation to
the BMI problem. Above contributions did not
consider any uncertainty in the coefficient matrices.

In this paper, we consider a robust decentralized
H, control problem for uncertain multi-channel
systems. The uncertainties are assumed to be time-
invariant, norm-bounded, and exist in both the system
and control input matrices. A necessary and sufficient
condition for the uncertain multi-channel system to be
robustly stabilizable with a specified disturbance
attenuation level is derived based on the bounded rea
lemma, which is reduced to a feasibility problem of a
nonlinear matrix inequality (NMI). A two-stage
homotopy method is employed to solve the NMI
iteratively. The idea of the two-stage homotopy
method has been proposed by Chen, et al. (2004) in
solving a sufficient condition for a robust
decentralized H,, controller to exist for interconnected
systems, where the dimensions of local controllers are
the same as those of corresponding subsystems. First,
a decentralized controller for the nominal system with
no uncertainty is computed by imposing structural
constraints on the coefficient matrices of the controller
gradually.  Then, the decentralized controller is
modified, again gradually, to cope with the
uncertainties. At each stage, a variable is fixed
aternately at the iterations to reduce the NMI to a
linear matrix inequality (LMI). A given example
shows the efficiency of this method.

2. PROBLEM DESCRIPTION

We consider an N-channel linear time-invariant system
with uncertainties, which is described by a state-space
model as

N
x=(A+64)x+Bw+ Y (By +06By )u,

i=1
N
z:C1x+D11w+ZD12,u,. D
=1

y; =Cyx+Dyy,w, i=12,---,N

where x e R" is the state, we R" is the disturbance
input, z € R” is the controlled output, and u, € R™ and

v, € R" are the control input and the measured output
of channel i ( i=12,---,N ), respectively. The
matrices A, By, By, Ci1, Cy, D11, D1y, @and Doy are
constant and of appropriate dimensions. The matrices
04 and 6B, denote time-invariant uncertainties in the
system and control input matrices. We suppose that
the uncertainties are related as
[5"4 0B,, 5321\']:EA[F1 Fy - Fzm] ¥
where E,F,F,,---,F,, are known constant matrices
and A isan unknown constant matrix satisfying
ANA<LT. ©)

We assume that there is no unstable fixed mode
defined by thetriplet (C,,4+d4, B, +0B,).

We adopt a dtrictly proper decentralized output
feedback controller described by

X, =A% +By,

u =C3
where X, € R" is the state of the i-th local controller
apd n, is a specified dimension. The matrices 4,,
B, C, i=12,--,N ae constant and to be
determined.

, i=1,2,-,N 4

We denote the transfer function from the disturbance
input w to the controlled output z of the closed-loop
system obtained by applying the decentralized
controller (4) to the system (1), by 7. (s). We say that
the system (1) is robustly stabilizable with the
disturbance attenuation level y if there exists a
decentralized controller (4) so that the closed-loop
system is robustly stable and satisfies ||7, || <y for
any A bounded as (3), where y is a specified positive
number. The control problem of this paper isto design

a decentralized controller (4) realizing such a closed-
loop system.

To solve the decentralized control problem, we employ
the following lemmas.

Lemma 1 (Bounded Real Lemma) (lwasaki and
Skelton, 1994; Gahinet and Apkarian, 1994). Suppose
that 4, B, C and D are given matrices of appropriate
dimensions. Then, the following statements are
equivalent:
(i) 4 isastablematrix and |C(sI - 4)*B+D| <y.
(ii) There exists a positive definite matrix P which
satisfiesthe LMI:

A"P+PA PB ('

B'P -y D' |<O0.
C D -u

Lemma 2 (Petersen, 1987) Suppose that =] E, and F
are matrices of appropriate dimensions and %= is
symmetric. Then,

E+EAF+F'A'E" <0
for all A satisfying A"A < I, if and only if there exists
ascalar £>0 suchthat

E+eEET +&'F'F <O.

3. EXISTENCE CONDITION FOR ROBUST

DECENTRALIZED H.. CONTROLLER

To write the closed-loop system in a compact form, we
define matrices in the system (1) as



322[321 B, - szv]

c,=lc; ¢ -~

D,=[D,, D, - D] 5
p,=[p, DL - D]

5B, =[6B, OB, - OB,

F,=[F, F, - F,]

and write the coefficient matrices of the controller (4)
as

>

L =diag{ A, A, A}
B, = diag{ B,, B, B,} ©)
¢, =diag{C,.C,,-,C,}
and form a matrix
G, =| % B @
¢, 0]

D

We also introduce the notations
A+ 04 El Ez+5§2

91 lzll DlZ
C2 D21 B
A+04 O, | B, |0, B,+0B, (8)
Oﬁxn Oﬁxﬁ Oﬁxr 1;? Oﬁxm
= Cl Opxn D11 0,}x5 D12
Oﬁxrz [ﬁ Oﬁxr
Cz gxi D21
N N N N N
where n=>"n,m=% m, q=) ¢, and
i-1 i-1 i-1

©)

- [64 0,] = [0, ©B,
A = i) 6B, =| " .
0,, O, 0,, O

nxn Axi axn Axm

Then, the closed-loop system can be written in a
compact form as

X=[A4+064+(B,+0B,)G,C,)% +[B,+ B,G,D,]w
=[4+EAF, + (B, + EAF,)G,C,]% + (B, + B,G,D,,)w
z=(C,+D,G,C,)% + (D, +D,G,D,)w
(10)

x=[x" X", x=[x] x, - xI

E:m Folr o). F<[o F].

To derive (10), we have used the fact

5B,G,D,, = O.i 9B, /:10 B, 0 =0. (12)
° 0., 0,.]c, o]D,

A necessary and sufficient condition for the existence

of a robust decentralized H,, controller is given as
follows.

Theorem 1. For agiven constant y > 0, the uncertain

system (1) is robustly stabilizable with the disturbance
attenuation level » via a decentralized controller (4)

composed of s, -dimensional local controllers, if and

only if there exist a matrix G, of (7), a positive

definite matrix P, and ascalar >0 such that
ZT13+132+¢“ 13§1 cT

J(G,,P,&)= B'P -4 D
C, D, -/
[ PB
: ~ = ] 12
+ Or>’<‘(ﬁ+m) Gn Cz D21 O(fm,)xp
L DlZ
—~— T
PB,
10,4 GG D 0, ] <0
DlZ
holds, where

¢ =ePEE'P +&(F. + F,G,C,)"(F. + F,G,C,). (13)

Proof. From Lemma 1 for the closed-loop system (10),
we see that the uncertain multi-channel system (1) is
robustly stabilizable with the disturbance attenuation
level y, if and only if there exist a matrix G, of (7)

and a positive definite matrix P such that

A"P+P4 PB Cf PB,
El:[ P A Dy |+ Opx(ii+m) GD[52 Dy 0(ﬁ+q)xp]
G Dy -y Dyp
— T
PB,
+3| Orx(irm) GD[62 Dy O(;H—q)xp]
Dy
PE 0 0| [(F+FGyCy) 0 O
+| 0 0 OJ|A 0 00
0 0O 0 00
_— e T
PE 0 0| [(R+FGpCy) 0 0
o o ol 0 0 olt <o (14)
0 0O 0 00

holds. Based on Lemma 2, inequality (14) holds for
any A sdatisfying (3) if and only if there exist G, , P,
and ascalar ¢ > 0such that (12) with (13) holds. Thus,
Theorem 1 has been proved.

We note that if there is no uncertainty in system
matrices, Theorem 1 is reduced to the result of Zhai, et
al. (2001).

Remark 1: In this paper, we extensively consider
uncertainties in the system matrix 4 and the control
input matrix B,. We can also treat the dual form of (1)
where uncertainties appear in the system matrix 4 and
the measured output matrix C, as

i=(A+3)x+Bw+Y Bu,
i=1

12i7%i

N
z=Cx+Dyw+ ) D,u,, (15)
i=1

v, =(C, +6C,)x+Dyw, i=12-- N



where

5 E,
5C E
: 21 — :21 AF (16)
5C E

2N

F are known constant matrices.

2N

and E ,E

Byt

E

2N

4. COMPUTATION ALGORITHM

The existence condition (12) for arobust decentralized
H.. controller is an NMI with the variables G,,, P and

& . Inorder to solve this problem, we adopt the idea of
the homotopy method. For this purpose, we first

decompose J (Gp,ﬁ,g) of (12) into the nomina part
J,(G,,P) and the perturbation pat J (G,,P,e)
generated by the uncertainties, as

J(G,,P,&)=J,(G,,P)+J,(G,,Pe)  (17)
where

D?

A"P+PA PB, C]
B

J,(G,,P)=| BP -y D
51 511 -A
PB,
+o.. 16l b, o] @8
D,
PB, '
+110,5 [Gs [52 D, oww]
D,
J (G,,P.&) =
éPEE'P +&*(F. + F,G,C,)' (F,+ F,G,C,) 0 0
0 0 0}
0 00
(19

To solve the NMI (12), we propose a two-stage
homotopy method. On the first stage, we consider the
nominal case without uncertainty, i.e 064=0,

6B, =0. In this case, the NMI (12) is reduced to a
BMI J,(G,,P)<0. To solve this, we employ the

technique of Zhai, et al. (2001) by introducing a real
number A varying fromOto 1 as

H,(G,,P,A)=J,(1- )G, + AG,,P) (20)

where
A, B,
G, =
|:CF 0 i|

isamatrix of the samesizeas G,and 4,,B,,C,, are
coefficient matrices of an 7 -dimensional centralized
H., controller for the disturbance attenuation level ».

Then, a decentralized H,, controller can be obtained by
solving

H,(G,,P,A)<0 (21)
using a homotopy method, where the controller’s
coefficient matrices are deformed from the full matrix
G, to block-diagonal matrices of specified dimensions
in G,. Suppose that a solution (G,,P) of (21) at

A = 1has been obtained, which we denote by (G,,,P,) .

On the second stage, we take into account uncertainties
in the multi-channel system (1). In order to compute a
solution of the NMI (12), we again employ a
homotopy method in a different way. We introduce a

real number 1 e [0]] and define the matrix function
H,(G,,P.e,A)=J,(G,,P)+J (G, Pe). (22
Then,

D! D

J,(G,,P),A=0
J(G,,P,e), A =1

and the problem of finding a solution to (12) is
embedded in the parametrized family of problems

H(G,,P,e1)<0, 4e[0]]. (24)

H,(G,, P& 1) ={ (23)

D?

To solve (24) from 4 =0 to 1 =1 we apply the
Schur complement and consider two equivalent matrix
inequalities shown as

H,(G,,P,&,7)

AP+ PA+ & 551 Ef (Fl + ﬁzGl,d)T

| B'P -y D] 0
C, D, -y 0
(F;L + FZGDCZ) O O - gﬂ’il]
[ PB,
0. - -
+ riwm) GD[CZ D21 o(qu)XP 0]
D12
| 0
—_— T
PB,
+ O,ia+,,z) G, [52 521 O(QMW 0] <0 (25)
D12
0
where ¢, = APEE'P , and
H,(G,,P.e" 1)
[4"P+PA+¢, PB, C; PE
| BF O a B o
C D, -4 0
E'P 0 0 -&22
| PB,
0. - -
+| i) Gn[ 2 D21 O(ﬁw)w 0]
D12
| 0
—_— T
PB,
n 0,«1(,;%) Gu[52 521 O(ﬁ+q)xp O] <0 (26)
D12
0

where ¢, = ¢ *A(F, + F,G,C,)" (F, + F,G,C,). We see



that (25) isan LMI in G, and ¢ if we fix P and (26)
isanLMIin P and & if wefix G, .

We note that the solution to (24) at 4 =0 has been
already obtained as a result of the first stage
Therefore, we choose the solution of the nominal case

as the initial value (G,,, U) in the homotopy method
for the second stage. Then, we make a homotopy path
to transform this initial solution at 1 =0 to a solution
at 1 =1lasfollows.

Let M be apositive integer and consider (M+1) points
A =kIM ( k=0,1---,M ) in the interval [0,1] to
generate a family of problems
H,(G,,P.&,)<0. (27)
If the problem at the k-th point is feasible, we denote
the obtained solution by (G, , A) Then, we compute
a solution (G, ,.., M) of Hu(GD,P g, /Lk
H,(G,,P,& ,/IM)<O by solving each as an LMI
with variables being fixed as P=P, or G, =G,,. If
the family of problems H,(G,,P,&,4,) <0, k=1, 2,
-, M are al feasible, a solution of the NMI (12) is
obtainedat k =M (1 =1).
both H_(G, P.&4.,)<0 and H,(G,. P e,
Z,Hl) <0 areinfeasible for some k, we consider more

)<0 or

+1

If it isnot the case, that is,

points in the interval [;fk Jd] by increasing M, and
repeat the procedure from the solution (G,,, k) a
A= /1

We formulate this idea of the second stage in an
algorithm for computing a robust decentralized H,
controller.

Step 1: Initialize M to a certain positive integer, and
set acertain upper bound M for M. Setk:=0. Let
P, =P, and G, =G,, using the solution of the first
stage.
Step 20 Set ki=k+1 and_ Z =k/M. Compute a
solution (G,,¢) of H,(G,,P,_,,&,4,)<0. If itisnot
feasible, go to Step 3. If it is feasible, set G, =G,
and compute a solution (P &Y of H,(G,,P,
&, /1)<0 Then, set P P and goto Step 5.
Step 3: Compute a solution (P,e") of H,(G,, ., P,
e )< 0. Ifitisnot feasible, goto Step 4. If itis
feasible, set_ P P and compute a solution (G, €)
of H,(G,, P, ¢, /1 )<0. Then, set G,, =G,, and go
to Step 5.
Step 4: Set M := 2M under the constramt M<M,_,
set Pz(k 1) Pk71’ Gn‘ 2(k-1) Gn, k=11 : _Z(k 1) and go
to Step 2. If we cannot increase M any more, we
conclude that this algorithm does not converge.

Step 5. If k<M, go to Step 2. If k=M, the
obtained (G,,,, V,,g) isasolution of the NMI (12).
Remark 2. At each of Steps 2 and 3, we suggest
solving two LMIs obtained by fixing one of the
variables in (25) or (26). It is theoreticaly not
necessary to deal with the second one, but according to
authors' experiences, it improves the convergence of
the algorithm.

Remark 3. In Step 4, we may simply set M : = 2M,
k=0, and go back to Step 2. This means that we
compute a different homotopy path from the beginning.

5. AN EXAMPLE

We present an example to demonstrate the efficiency
of the two-stage homotopy agorithm. We dea with a
two-channel system, where the coefficient matrices of
the nomina system are
A=
[10 -10 -22 -10 20 20 02 -20]
21 -51 -12 O 11 10 01 -07
21 -10 -32 -09 20 20 02 -20
83 -104 -74 -10 74 70 01 -65
22 -40 -13 O 02 11 01 02
-22 18 32 03 -72 -23 -09 13

24 51 -02 -09 -40 20 -28 -20
_—1.2 6.0 2.2 02 -62 -02 -10 0.2 ]
0 3 0 0 1] 0
0 -400 0 0
0 3 10 -1 2
2 300 1 0
B=lo 400/ %70l %|1
101 11 0 1
0 3 01 -1 1
0 0 0 1] 0 0
01000 O
-11 1 1 0 -1
0 0-101 0
1 0 2 00 0-10

C,=0 0 -1 0110 -1
C,=[-2 130 -10 -1 4
D,=0,,, D=L 1 0 0, D,=[0 0 1 0f
D,,=[0 1 0 0,D,=[0 0 -1 0]
and the uncertainties are defi ned by
=01 02 03 01 01 04 07 o1
F,=[01 02 01 02 04 01 06 0.1]
F,=[03 02].
We set the disturbance attenuation level to be achieved
as2.9.

On the first stage, we consider the case of no
uncertainty. We obtain the initial value for the
homotopy method of the first stage by solving a



centralized H,, control problem for the nominal system
as
[-295 -242 -168 -134 211

-103 -246 014 114 -0.10

-104 -147 -3.02 -035 045
113 138 204 -280 -153
063 246 -088 257 -3.75

G, =
" |-049 -025 -0.88 308 198
039 08 321 -004 -156
-010 060 136 -157 -232

-160 -014 033 0.30 0.63
|-050 -076 070 0.29 0.65
~-246 162 -177|-022 0.73]
-176 -228 130 | 0.05 0.19
-174 -215 -038|-0.38 0.85

421 015 -065| 021 -1.27

225 -416 277 | 260 -0.34
-7.27 160 252 | 105 179

304 -312 -119( 074 -113

207 -083 -315|-1.70 -0.95

023 -06 -235 0 0
-128 008 -0.16 0 0 |
This centralized H,, controller achieves the disturbance
attenuation level 2.23 for the nominal system. Then,
for the nominal system, we design a decentralized H,,
controller composed of two local controllers (4) whose
dimensions are n,=2 and n,=3. We obtain the

coefficient matrices of the decentralized H., controller
by using the homotopy method of Zhai, et al. (2001)
with M=128 as

~ [218 3727 - [094
A1 = , B1 =
-558 —6.46 ~0.05
C, =[769 953
~1597 -19.38 -5.25 -0.11

A,=|-362 -1460 908 |, B,=| 0.02
091 -075 0.65 -0.05

C,=[359 830 -151].

The disturbance attenuation level achieved by this
controller for the nominal systemis 2.33.

Next, by taking the above decentralized controller as
the initid value for the homotopy method of the
second stage, a robust decentralized H,, controller is
computed. With M=64 in the proposed agorithm, we
obtain the coefficient matrices

- -061 127 ~ 1116
A = , B, =
-20.74 -23.00 0.42

C,=[24.44 2867]
-3056 -1875 19.36 -0.07
A4,=-1932 -4529 1144 | B, =|-023
-2054 1185 -47.83 ~0.54
C,=[6.18 208 877).

The disturbance attenuation level achieved by this
controller is 2.58.

6. CONCLUSION

This paper has considered a robust decentralized H.,
control problem for uncertain multi-channel systems.
The uncertainties are assumed to be time-invariant,
norm-bounded, and exist in both the system and
control input matrices. A necessary and sufficient
condition for the uncertain multi-channel system to be
robustly stabilizable with a specified disturbance
atenuation level has been derived based on the
bounded real lemma. A two-stage design method
based on the idea of homotopy has been employed,
where a decentralized controller for the nominal
system with no uncertainty is computed first by
imposing structural constraints on the coefficient
matrices gradually. Then, the decentralized controller
is modified, again gradually, to cope with the
uncertainties.
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