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Abstract: The manufacture of integrated circuits is driven by a demand for faster calcula-
tion capabilities and lower costs, which will require the development of a new generation 
of manufacturing tools to increase yield productivity, spearheaded by improved meas-
urement devices and advanced process control. The objectives of this paper are review of 
the challenges in two main PSE areas: process monitoring and process control. PSE 
solutions appropriate for these challenges involve harnessing multivariate statistics, 
automated modeling approaches like genetic programming, and multivariable model-
based control. The paper is illustrated with several example applications, all tested in 
fabrication facilities in Israel.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Semiconductor devices, usually referred to as inte-
grated circuits (ICs), are created by subjecting wafers 
of doped silicon to a cycle of processes designed to 
form layers of conducting, semi-conducting and 
resistive layers with a prespecified topology, to 
impart the desired electronic functions on the final 
device. The width of polysilicon lines that can be 
repeatedly attained, defining transistor gates in IC 
circuits, is the key performance factor, usually 
referred to as the design rule. Technology commonly 
in use today has the capability of generating topology 
with design rules of 130 nm, based on 200 mm 
diameter silicon wafers. As pointed out by the 
international technology roadmap for semiconductors 
(ITRS) 2003, the IC industry is driving towards the 
manufacture of more compact devices, based on 300 
mm diameter wafers, and even smaller design rules, 
with 70 nm in ramp at several locations worldwide at 
this time.  
 
The current practice in the IC industry is to imple-
ment open loop, recipe-driven, feedforward control 
strategies. Often, the desired operating point is 
determined following a statistical design-of-experi-

ment (DOE) study to define the “stable” process 
window. Subsequently, the degrees-of-freedom of 
the process (the manipulated variables) are fixed 
according to the DOE results. Feedback control, if 
implemented at all, is usually limited to single loop 
PID control, and usually only for the lower level 
loops (e.g., temperature control). The main disad-
vantages arising from the widely accepted feedfor-
ward control strategy are obvious to anyone with 
modest control experience: (a) the approach cannot 
deal with unmeasured and/or unknown disturbances 
(which, of course, always occur in practice), and (b) 
since the feedforward correction is based of imper-
fect process knowledge, it will generally not allow 
product to be produced consistently on target (even 
in the absence of disturbances). Modeling activity is 
seldom seen, and if at all, usually limited to empiri-
cal, data-driven approaches. Typically, when loss-of-
control (LOC) incidents are encountered, the process 
is stopped, with a resulting loss in yield, and a new 
DOE is initiated to assess the problem and suggest 
corrections. Surprisingly, process monitoring is 
usually carried out using univariate methods, despite 
the fact that hundreds of variables need to be moni-
tored, often strongly correlated. 



     

Modern PSE methodologies can significantly 
improve the management of IC manufacturing. 
These call for model-based approaches, where 
models are generated with accuracy at a level appro-
priate to the application. Multivariable feedback 
control is favored as a means to deal with unmod-
eled/unmeasured disturbances and to accommodate 
constraints. Process monitoring is carried out relying 
on multivariate methods, such as principal compo-
nent analysis (PCA), coupled with first principles 
modeling to generate “smart” alarming. Ideally, the 
monitoring system should be integrated with the 
regulatory control system, to provide the framework 
of truly advanced process control (APC).  
 

 
 
Fig. 1. Probability functions for CTQ variable:        

(a) solid line – without regulatory control;       
(b) dashed line – with regulatory control but 
subject to large variance; (c) dashed-doted line 
– with regulatory control with lower variance.  

 
Figure 1 compares typical performances that can be 
expected depending on the control strategy 
implemented. The solid line (a) shows the expected 
distribution of the critical to quality (CTQ) variable 
when using only feedforward control, which cannot 
deal with the effect of unmeasured disturbances to 
the process, leading to a large fraction of the 
expected production under the LCL. The dashed line 
(b) indicates the improvement that can be expected 
by implementing a feedback control strategy 
designed to maintain the average CTQ measured on 
target. To significantly impact on product yield, 
however, it is necessary to apply not only feedback 
control, but also to reduce the CTQ variance as 
indicated by the dashed-dotted line (c) in Figure 1. 
 
By the end of 2004, worldwide revenues for semi-
conductor device manufacturing are expected to 
exceed $220 billion, a 27% increase from 2003 
(according to the Gartner press release, 24th August 
2004). Because of the huge market, there is room for 
significant improvements in profits, with each per-
cent of yield improvement in semiconductor device 
manufacturing being worth $2 billion on a global 
scale. Even on the scale of a modern manufacturing 
facility producing, say, 25,000 300-mm wafers per 
month, at a production cost of $3,000 per wafer, a 

1% increase in yield is worth $30/wafer, or 
$9M/year. 
 
The objectives of this paper are to present the 
challenges and the state-of-the-art in two main PSE 
areas that have application in microelectronics manu-
facturing: process control and process monitoring, 
illustrated by example applications developed in 
cooperation between our research group and the IC 
industry in Israel. 
 

 
2. PROCESS MONITORING 

 
In the microelectronics industry, attempts are being 
made to enhance performance and yield via fault 
detection. Most of the attention is being directed at 
reducing process variation by various means: feed-
forward control for reducing run-to-run variation 
(Leang et al., 1996; Ruegsegger et al, 1999), as well 
as model predictive control (Edgar et al, 1999). 
Multivariate statistical methods have also been 
applied with varying degrees of success (e.g., Chen 
et al, 2000). Our contributions have involved the 
usage of model-based principal component analysis 
(MBPCA). In recent work (Lachman-Shalem et al, 
2002a), a physical model describing an oxidation 
tube is used to simulate faulty oxidation ovens in the 
fabrication of a CMOS transistor, and combined with 
PCA to monitor simulated CMOS manufacturing. 
The results indicates that MBPCA is sensitive 
enough to identify abnormal operating conditions 
resulting from irregular correlations among 
monitored variables, even though the individual 
measured variables can be safely within their specific 
normal bounds.  
 
An additional study on the feasibility of applying 
MBPCA to monitoring a complex IC manufacturing 
process was recently commissioned. In the process, 
each wafer in a lot is processed individually, and 15 
transient variables are monitored for each processed 
wafer. Figure 2 shows typical transient profiles for 
each of the 15 monitored variables, for a lot of 17 
wafers. As outlined in our publications on MBPCA 
(Rotem et al., 2000; Lachman-Shalem et al., 2002a), 
the steps required are: 
a. Standardization and time-scale normalization of 

transient data for normal operating conditions 
(NOC). In this implementation, each wafer 
transient appears as 100 consecutive data points 
on the ordinate scale. 

b.  Generation of residual data by subtracting NOC 
model prediction from NOC data. In this 
implementation, average NOC transients are used 
as model predictions. 

c. Principal component analysis is used to generate 
a NOC model. For this application, the first eight 
principal components, capturing 70% of the NOC 
variance, were used to construct a model that 
adequately limits the approximation error. 



     

 

 
Fig. 2. Raw data for the 15 monitored variables, for all 17 wafers in the lot, after time-scale normalization.  
 

 
Fig. 3. MBPCA analysis of data in Fig. 2. Note the upper NOC limit at SPE = 9, indicating a root cause of the 

fault in wafer 8, identified in variable 4, propagating to variables 5, 7, 11, and 15. 



     

d. The squared prediction error (SPE) is computed 
from the difference between the actual data points 
and the PCA model prediction. As the data has 
been standardized, an expected maximum SPE 
limit of 9 implies greater than 99.9% confidence. 
The SPE upper limit of 9 is plotted as a reference 
level in Figure 3. 

 
In this way, an on-line monitoring of the measured 
variables can be tracked as the SPE as a function of 
sample time, as shown in the example in Figure 3. It 
is noted that the lot is normal until the eighth wafer 
(from sample 800 on the ordinate scale), when the 
SPE for measurement 4 registers a severe 
abnormality. This failure propagates to faults indi-
cated in additional sensors (5, 7, 11 and 15), which 
continue to the end of the lot. This information is 
helpful in setting up preventative maintenance meas-
ures in the FAB. It is interesting to note that conven-
tional univariate statistics is unable to identify 
failures of the kind demonstrated in these plots. 

 
 

3. PROCESS CONTROL 
 
The microelectronics industry today owes much of its 
success to remarkable advances in the lithographic 
process used to fabricate integrated circuits. The eco-
nomic inducement of cheaper yet more sophisticated 
integrated circuits continues to motivate the industry 
to produce ever-smaller features. The miniaturization 
of the components of the integrated circuit has been 
achieved through improvements in projection print-
ing, in the photoresists that are used to generate the 
structures, and better control of the photolithography 
cluster. The main production problem is the control of 
the precision of the printed line width (critical dimen-
sion, CD).  The tolerance on the CD is delineated by 
upper and lower control limits, with the variability in 
CDs being one of the limitations to increased wafer 
yield.    
 
Much work has been reported on the application of 
process control to lithography. Lithography is com-
prised of a number of basic, but interacting, opera-
tions. Despite this, to the best of our knowledge, all of 
the reported work on photolithography control relates 
to single-loop control, in which a key manipulated 
variable in the process track is selected for regulation 
of the specified CD. In theoretical work carried out in 
our group, a nonlinear model predictive control 
(NMPC) has been developed and tested on a full-
track simulation using the commercial simulator 
PROLITH. The performance of the NMPC has been 
demonstrated to be significantly better than the best-
possible single-loop controller (Lachman-Shalem et 
al, 2002b). 
 
The success of the theoretical study provided the 
motivation to test the NMPC approach on a problem-
atic layer at Tower Semiconductors Ltd. (Tower), an 

IC foundry in Migdal HaEmek in Israel. The method-
ology proposed in Lachman-Shalem et al (2002b) was 
followed, modified to account for FAB limitations, 
namely: (a) the manipulated variables used for the 
controller were limited to the stepper variables (dose 
and focus); (b) Both dense and isolated CDs were 
regulated; (c) The controller was implemented lot-by-
lot, rather than wafer-to-wafer. 
 
Realization of the NMPC approach to the Tower FAB 
involved the following steps (Grosman et al, 2005):  

a. Calibration of the PROLITH model using focus 
exposure matrices (FEMs) supplied by Tower. 

b. Generation of empirical nonlinear models relat-
ing the focus and dose to the CD outputs. This 
was carried out using our in-house genetic 
program (GP) – see Grosman and Lewin (2002 
and 2004). 

c. Development of NMPC using the nonlinear GP 
models to predict the process behavior. The 
controller uses filtered CD measurements, 
weights to favor the tracking of the more critical 
dense CD values, and to maintain the manipu-
lated variables in mid-range, whenever possible. 
Figure 4 shows the simulated performance of the 
NMPC in rejecting a disturbance in the develop-
ment time, imposed at sample 0 in the plot. Note 
that whereas this disturbance causes the uncon-
trolled dense CD to violate its lower acceptance 
limit bound, the NMPC succeeds in rejecting the 
disturbance almost immediately. The simulated 
noise levels correspond to those found in the 
FAB. 

d. Implementation at Tower. The pre-tuned control-
ler was implemented successfully with no further 
adjustments to any of the tuning parameters, 
giving the performance as shown in Figure 5. The 
same disturbance simulated in Figure 4 was 
imposed at wafer 2, causing the dense CD to 
violate its lower acceptance limit at wafer 6. At 
this point, the NMPC was activated, returning 
both dense and isolated CDs to their set points. 

e. Note that in both the simulation and in the FAB 
test, the regulation of the CDs is attained at the 
expense of having both of the manipulated 
variables at their constrained limits (the dose at 
its minimum value and the focus at its maximum 
value). This is an indication of a process problem 
(indeed, the development time is excessive), and 
should be identified by the monitoring system. It 
is recommended that multivariate statistics be 
employed in setting up such a system, as 
discussed above. 

The control strategy described above improves the 
yield by shifting the operating mode illustrated in 
Figure 1 from curve (a) to curve (b) using feedback 
control. Tower estimate that the implementation of 
the proposed control strategy on the recipe it was 



     

designed for is worth $250,000/year in increased 
yields. 

 

 
Fig. 4. Open-loop (dashed) and closed-loop (solid) 

response of CD dense and isolated lines to a 
simulated disturbance in development time. 

 

 
Fig. 5. True closed-loop response of CD dense and 

isolated lines to a disturbance in development time 
as implemented at Tower. 
 

To make an even more significant impact, the 
variance in the CDs needs to be reduced. The 
variance in CDs is noticed in practice, since CDs are 
typically measured at several locations on a wafer (at 
Tower, five measurements are made). In the so-called 
average mode control described above, the feedback 
signal used for control is the average of these five 
measurements. To use the power of the stepper to 
reduce the variability, it is proposed to control CDs at 
each of the measured locations independently, by 
manipulating the local focus and dose settings. The 
main difficulty associated with this approach is the 
limited capability of existing stepper software and 
hardware to handle it. 
 
The so-called field-to-field (F2F) control strategy 
involves: 
a. Generating a PROLITH model relating local 

focus and dose settings with the CDs measured 

in each location. The five measurement points 
were selected to be close to the center, and east, 
north, west and south of center, at distinct radial 
locations.    

b. Developing GP, reduced-order models relating 
the same CDs with the focus and dose settings. 
Each model provides the predictive capability 
required to control each of the five measured 
CDs using NMPC. 

c. Tuning the NMPC involves the resolution of the 
following issues: (i) Defining the weights on 
tracking errors for dense and isolated CDs;      
(ii) Defining weights on moves using dose and 
focus; (iii) Defining the filter on CD measure-
ments, since these are known to be noisy;  (iv) 
Defining weights on offsets of the focus and 
dose settings from their mid-range value. This 
so-called “goalkeeper” feature was introduced to 
force the manipulated variables to mid-range 
values if there is no need for them to be else-
where, to increase the capability of the 
controller to be resilient to unknown future 
disturbances. 

 
The typical simulated performance of the F2F control 
strategy is presented in Figure 6. The plots show the 
response to a step disturbance in exposure time, 
imposed on the 11th wafer and corrected in the 39th 
wafer, with no simulated noise. In the first 11 wafers, 
the control succeeds in effectively reducing the F2F 
variance, as indicated by the sharp reduction in 
standard deviations (from 4 to 1 nm for isolated CDs 
and from 5 to 1 nm for sense CDs). The controller 
achieves this result by adjusting the five sets of focus 
and dose values (one corresponding to each location 
where CDs are measured) in a fan-like fashion.  From 
the 11th wafer, when the disturbance is applied, the 
manipulated variables are adjusted to try to maintain 
the CDs as close as possible to their setpoints. It is 
seen that this comes about at the cost of having to 
give up the minimization of the standard deviations of 
the CDs. However, from the 39th wafer, where the 
disturbed exposure time is returned to its nominal 
value, the goalkeeper weights cause the controller to 
gradually readjust the manipulated variables to the 
minimum offsets from the mid-range values while 
satisfying the CD setpoints.  
 
The simulations indicate that the F2F mode controller 
reduces the standard deviations of CDs to between 
20-25% of the values obtained using average mode 
control. Returning to Figure 1, this in equivalent of 
going from curve (b) to curve (c), with the resulting 
expected product yields.  
 

 
4. CONCLUSIONS 

 
The drive for increasingly smaller critical dimensions 
in IC manufacture, together with increased yields is 
leading the industry to turn to APC solutions for the 
monitoring and regulation of production. This paper 



     

has focused on the possible impact of PSE tools in IC 
manufacturing. The applications demonstrated indi-
cate that the implementation of model-based, multi-
variable control, backed up by a smart monitoring 
system using multivariate statistics, appears to have 
great promise in many applications.  
 
From our experience, the entry of system engineers 
into the IC manufacturing business involves a steep 
learning curve. It is important to have a good working 
knowledge of the business, its vocabulary and tech-
nology, and this requires serious effort. Without this 
knowledge, communication with partners in the IC 
industry is difficult, but with it, and the necessary 
enthusiasm at the receiving end, the expertise and 
experience brought by the control systems engineer 
provide vehicles for significant contributions. 
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Fig. 6. Average and standard deviation of CDs during and after a step of +25ms in the exposure time. 


