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Abstract: A new combined iterative learning control (ILC) and real-time feedback
control (RFC) algorithm has been proposed on the basis of the state space
formulation and the two-stage implementation. The proposed method assumes
Gaussian disturbances and deals with the batch-wise recurrent and nonrecurrent
disturbances by independent LQG formulation for ILC and RFC, respectively. In
this way, the problem with the existing combined ILC-RFC methods that the
nonrecurrent real-time disturbance causees ILC to digress from its convergence
track along the run index could be overcome. The performance of the proposed
technique has been demonstrated using numerical simulation.
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1. INTRODUCTION

Tterative learning control (ILC) is a special batch
process control technique which is concerned with
the issue of learning from the past operations
with an aim to attain the ultimate tracking per-
formance under model uncertainty and run-wise
recurrent (RWR) disturbances. In practical ap-
plications, ILC alone is seldom used but real-
time feedback control (RFC) is combined to treat
run-wise nonrecurrent (RWNR) real-time distur-
bances. The combination of RFC with ILC (RFC-
ILC) is typically done(Hashimoto and Xu, 1987)
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(Xu et al., 1995)(Moore, 1999)(Phan et al., 2000)
as a feedforward-feedback conliguration such as

up(t)=up—1(t)+ Heg—1(1: N)+Fep(1:t) (1)

where ey, is the control error at the £ run; (i : )
means data from ¢ = i to j; H and F represent the
(possibly time-varying) gains for ILC and RFC,
respectively. Phan et al. (2000) have carried out
a comprehensive study on the ILC structure in a
deterministic setting and found that the existing
RFC-ILC methods can be unified by the above
formulation.

In practical applications, various disturbances
with both RWR and RWNR nature may enter the



process and the RFC-ILC methods based on (1)
may show performance limitations. For example,
when a large RWNR disturbance occurs, the RFC
action Hs(t)er(1 : t) may produce a large input
change. This leads ug(-) to digress from the con-
vergence track for learning and deteriorates the
performance of the subsequent runs. The most
desirable controller action is that RFC responds
only to RWNR real-time disturbances whereas
ILC reacts only to RWR disturbances. It is evident
that (1) lacks such feature.

Considering the above problems, the authors have
recently developed the so-called two-stage batch
control (TBC) technique and proposed an impulse
response model-based algorithm(Chin, 2004). The
TBC technique is based on a framework to update
ILC in a separate track from RFC and thus can
prevent ILC from being affected by RFC.

The purpose of the present paper is to extend
the previous TBC technique to a stochastic state
space model-based algorithm. For this, a distur-
bance model is first assumed by decomposing the
disturbance into three parts: the RWR part, the
RWNR part, and the measurement noise. Also
the input is split into two parts: one for ILC and
the other for RFC. With the above decomposi-
tion, we devised an LQG-based two-stage control
technique where RFC and ILC are executed in
turn during and after a batch run. During this
procedure, the effect of the real-time RWNR dis-
turbance is appropriately discriminated from that
of the RWR disturbance and the influence of the
real-time disturbance is effectively prevented from
being carried over to future runs.

2. DISTURBANCE PROPAGATION IN THE
EXISTING TECHNIQUES

In this section, we first revisit how the existing
ILC and RFC-ILC techniques respond to the real-
time RWNR disturbance(Chin, 2004).

2.1 Process Modelling

We consider a linear discrete-time batch process
with ug(t), ye(t), and d(t) as input, output, and
disturbance at the k" run, respectively, defined
over a finite interval with NV sampling steps. Such
a process can be represented by a linear algebraic
system between the input and output sequence
vectors over the underlying discrete-time domain.

vi = Gup —dg (2)

where

Ug

[ul (0) wZ(1)--uT (N - 1)]"
OO R A (3)

and likewise for dg. In the above, G is a low-
triangular matrix whose respective columns con-
sist of (possibly time-varying) pulse response co-
efficients. The disturbance can be decomposed as

Yk

d, =s, + vy, (4)
where s; and v represent the RWR and RWNR

parts, respectively.

If we represent the RWR part as an integrated
white noise process along the run index, then dy
can be expressed as follows:

Sk =Sp_1 + Wj (5)
dy=wy + vy
where both {w;} and {v,} represent the zero-

mean white noise processes along k.

Let e = yg — yi and &, = e, — vy, where yyq is
the desired output trajectory. Then the following
inter-run transition model of tracking error can be
derived from (2) and (5):

&, =&,_1 — GAuy + wy, (6)
e =€ + Vi.

A
where Au, = u;, —up_1.

2.2 Pure Iterative Learning Control

The pure ILC algorithm can be written as

Au, = Hep_ (7)

with an appropriate learning gain H. In practice,
€y_1 should be replaced by an estimate.

Substituting (7) into (6) gives

e,=[1—-GHle,_1 + wg (8)
e = [I — GH}ék71 + v+ wyg

It can be seen that Augy; is not affected by vy,
which implies that ILC based on (7) can keep its
integrity from the effect of the RWNR real-time
disturbance. If e;_1 is used in (7) instead of €;_1,
Auy, is affected by vy.

2.8 Iterative Learning Control with Real-time
Feedback

The feedforward-feedback combination of RFC
and ILC can be expressed in a general form as



Au;, = He,_, + Fey, (9)

To reject the real-time disturbance, e, instead of
€ is considered in the current run.

Substituting (9) into (6) results in

e,=[I+GF| " (I-GH]Je, 1 +vi+wg)  (10)
€ I[I+GF]_1([I— GH]ékfl— GFv, +Wk)

It can seen that v; has an effect on €; and,
consequently, Aug,; is affected by the RWNR
disturbance.

3. A NEW RFC-ILC FRAMEWORK

From the aforementioned investigation, the present
RFC-ILC configuration cannot maintain the in-
tegrity of the learning procedure. Occurrence of
the RWNR disturbance interferes with the in-
put signal updating. To fix the problem, Chin et
al.(2004) proposed to separate the input for ILC
from uy, and to let ILC proceed independently of
the RWNR disturbance. For this, it is necessary
to recast the model in (6) first.

3.1 Process Modeling

For more complete handling of the disturbance, we

decompose the disturance into three terms: sg, vg,
and n; which refer to the RWR and RWNR . dis-
turbances, and measurement noise, respectively.

dp,=s; +vp+n; (11)
S =Sk_1 T Wg.
Also we decompose uy, into @ and 0y such that
u = u+ 4, which correspond (o the ILC and RFC

parts, respectively. Then the process model can
be expressed as

vi = Gug — dg = G(0y, + Gg) — (sp + Vi + 1)

=Guy — s, +GUg — vy — ng
a/_/

Ve
=yr+ Gl — v, —n, =y, —ng (12)
—_

Ve

Similarly to (6), the following model equation can
be derived from (12):

e, =¢,_1 — GAu, + wy,
é,=¢e;, — Gy, + vy, (13)

e, = e, + 1y

- A — A A -
where €, = yq — ¥ and &, = yq — Y-

3.2 Input Updating Low

For (13), one may consider the following ILC and
RFC laws, respectively:

Au,=Hiep | - Gy =101+ Hiep_1(14)

u, = Hyé;, — u, =1, + Hoé,,

Substitution of the above equations into (13)
yields

€, = [I — GHl]ék,1 + Wi (15)
e, =[I+ GHa]"' (&, + vi) + ny.

The above is what we have desired. v, doesn’t
affect e, and is attenuated in e; by the separate
RFC action. In real implementations, e, and
€y cannot be directly measured but need to be
estimated using appropriate observers.

Implementation of the above method should be
done in two stages as can be noticed from (14).
After finishing the & — 1** run, 1 is calculated.
With @, as the bias input signal, @(¢) is com-
puted and ug(¢) is implemented to the process in
real-time during the £*" run.

4. STATE SPACE FORMULATION OF THE
TWO-STAGE RFC-ILC ALGORITHM

4.1 Recasting of State Space Model

Suppose that the batch process dynamics is de-
scribed by the following stochastic state space
model:

xz(t + 1) = Az(t) + Bult) + w(t)
y(t)=Cz(t) +v(t), t€{0---,N-1} (16)

In the above, w(t) and v(t) refer to zero-mean
white noise sequences in time but they may show
RWR behavior. In fact, both wg(t) and v (t)
may exhibit drifting behavior along % in addition
to random fluctuations. Such behavior can be
reasonably modeled by the equation

wi (t) =W (6) + Wk (t), W —Wr—1(t) =mg(t)
v () =0 (8) + O (t), Uk —Op—1(t) =ng(t) (17)

where Wy (t), mg(t), 0x(t), and ng(t) are zero-
mean white noise sequences in both £ and ¢. In
the above, w(t) and vy (¢) represent the parts of
the disturbances that ILC rejects; wy (t) is the one
that RFC handles; 04(t) refers to the measure-
ment noise that should be filtered, respectively.

Now, we decompose uy(t) into ux(t) and (),
and decompose (16) into two parts, one that is
driven by @ (¢), Wi (t), and T (), and the other by



G (t) and 95 (t). Rearrangement of the first part
after introducing the models for wy () and v (t),
the two parts are represented as

Tp(t + 1) = Azg(t) + BAug(t) + ma(t)
Uk(t) = Cxg(t) + ge—1(t) +ni(t)  (18)
Zp(t+1) = Ay (t) + Blig(t) + Wi (2)

gr(t) =

where Aty £ @y, — G_1 and yg(t)

Cip(t) + (1) (19)

= g (t) + 9 (2)-

4.2 ILC Formulation

The role of ILC is to compute i using the
information up to the k& — 1*® run. For this, we
first define

s2 [e(1)” e2)” é<N>T]T (20)
Aa2[Aa(©0)" Au(1)T - Aa(N - 1)7]"
where &(t) 2 yq(t) — 7(t) and similarly for

other variables. Through straightforward deriva-

tion from (18) and (19), we have
€r = €x_1 — GAa; + (21)
er 1+ Gl 1 =8, 1+& 1
where
CB 0 - 0
CAB CB - 0
G2 . . . (22)

CAN-'B c4N—?B ... CB

7y 1s expressed by a linear combination of Z(0),
my, and ng, and thus represents a RWNR distur-
bance. Likewise, & is composed of #(0), wg, and
Vi, and also represents a RWNR disturbance.

Importing the idea of QILC (quadratic-criterion
ILC) (Lee et al., 2000), Aty is determined to
satisfy

N _
min- o {||ek\k—1||%;z =+ ||Auk||§} (23)
g

where &g, is the optimum prediction of &,
which is given by the Kalman filter applied to
(21). The unconstrained solution to (23) is

Aty =(G"QG+8)'GT Qe 1 (24)
where €;_1;_; is obtained form the following

Kalman filter equation:

€ 1)k-2 =€ a2 — GATg_1 (25)

€p_1jk—1 =Cp_1|h—2 T K(ex—1 +Gilg_1 —€5_15—2)

4.8 RFC Formulation

RFC determines 4 (t) in real-time during the k0
run. For this, it is necessary to have a model that
relates @ (t) to yi(t). In order to construct the
model, we first calculate the output by Aug(¢)
using the following relationship:

ap(t+1)= Aag(t) + BAGL(E)  (26)
ya,k(t) = Cak(t)

Subtracting (26) from (18) to eliminate Adg(¢)
yields

Tor(t+1) = AZq x(t) +my(t) (27)

Tr(t) = CTo k(1) + Yo,k (t) + Fr—1(t) + ni(t)

Combining (19) and (27) gives

) =10 4] |

FPp—1(t) + 05 (t) + ng(t)

In the above, §x—1(t) can be reasonably approx-
imated by gg_1)5—1(t), which is an optimal esti-
mate of g,_1(t) on the basis of the information
up the £ run. Then (28) can be written in a
simplified form

zip(t+ 1)
yi(t)

We consider the LQG criterion for iy (t):

= Q2g(t) + Dig(?) + G (?) (29)
— Yo, k() = Tp—1p—1(t) =

N-1
min E{ e
() t=0
subject to (29)

DI + Iz} (30)

Enforcing ex(t) — 0 is equivalent to steering
ok(t) £ yr(t) = Yau(t) = Fr1jp—1(t) to ya(t) —
Ya,k(t) — Up—1)k—1(t). Hence, (30) is a standard
LQG servo problem for the output of (29) to
follow y4(t) — Ya,k(t) — Jr—1jk—1(t). The solution
is standard and given in the following form:

Up(t) = —Lpp(t)2x(tlt) + Lep(H)be(t +1) (31)
= ug(t) = up(t) + dg(t)

where zj(t|t) represents the state estimate from
the Kalman filter applied to (29). Detailed forms
of Lyy(t) and Ly (¢) can be found from literature
like (Lewis and Syrmos, 1995) or (Lee et al., 2001).



One may handle 7 _1 (¢) in (28) in a rigorous man-
ner instead of approximation. For such treatment,
please refer to Lee et. al(2001).

4.4 Tuning Guideline

The proposed TBC technique has eight tuning
factors: four from the covariance matrices of the
noise terms in (18) and (19) for the Kalman fil-
ter design and the other four from the weight-
ing factors of the quadratic criteria in (23) and
(30). Among them, the weighting factor tuning
is rather transparent whereas the covariance ma-
trix tuning needs some discussion. Since the most
crucial thing to the proposed control technique
is how to correctly estimate e; by the associated
Kalman filters, we give brief tuning guidelines for
the covariance matrices using R to denote the
covariance matrices.

We start from the ILC part. From the nature of
the Kalman filter for (21), a large R, to R ratio
results in weak filtering of RWNR disturbances
(much confidence on the measurement values).
Such a choice should be made when the real-time
disturbance is not large or a newly entered distur-
bance is supposed to last for ensuing runs. In the
opposite case, opposite choice of the covariance
matrices is needed. Here, &, is composed of my
and ng, and ng of Wi and 7. Hence, increasing
R can be made by increasing Ry and/or R;
and likewise for R,. Now, from (28) we can see
that the four covariance matrices also determine
the behavior of the RFC Kalman filter. In this
case, however, v and ng act as the measurement
noise, and w; and m; as the process noise. In
most cases, especially in most chemical engineer-
ing problems, the process noise dominates the
measurement noise, hence R, and Ry practically
determine R, and R, respectively.

On the basis of the above consideration, the
tuning procedure can be recommended as [ollows:
First, tune the ILC part covariance matrices R,
and Rg using R,, and Iy, respectively. Next, tune
R, and Rj; in relation to R,, and Ry for desired
RFC performance.

5. NUMERICAL ILLUSTRATION

5.1 Linear SISO System

The plant and nominal models are the sampled-
data versions of

25
Py = =2 and
G's) = S0 1355 71 ™
1.5
G™(s) (32

T 97082+ 335+ 1

with a sampling period of 1, respectively, over
N =100 sampling steps. On the plant output,
zero-mean measurement noise of variance 0.022
is added. The controller was designed using a
state space conversion of the nominal model. It
is assumed that a unit step signal filtered by
1.5/(10s + 1) enters at the plant output as a
disturbance from ¢t = 31 to the batch terminal
time. We considered two disturbance scenarios.
In the first scenario, the disturbance occurs only
at the 11" run. In the second scenario, the same
disturbance is repeated from the 11*" to 20*" runs.

Nominal values of tuning parameters were given
as follows:

R4=0.12I, R;=0.02%I, R,,=0.1%I, R,=0.02%1,
Q=1I, S=001I, Q=1, S=0.011 (33)

5.2 Results and Discussion

In Fig. 1, the performance of the proposed con-
trol technique is shown for the first disturbance
scenario. Through ten consecutive runs, the input
as well as the output signals converge to their
respective limits. When there enters a disturbance
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Fig. 1. Performance of the proposed batch
control technique against a run-wise
nonrecurrent disturbance.

at the 11" run, its effect is almost completely
isolated the 11*" run and virtually not carried to
the 12" run. The performance can be more lucidly



observed from the learning input signal given in
Fig. 1(b). We can see that the ILC signal u(t)
doesn’t change much by the RWNR disturbance
while 4y () moves aggressively by the RFC action.

a8 / p

e —— Referance Trajsctory \

= 10th run {converged) \
o 4 11t run with dist. \
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Time
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e e 12th run with dist,
y “

(74
o

INPUT,

INPUT, i7 Ve

0 20 40 _ 60 80 100
Time
Fig. 2. Performance of the proposed batch
control technique against a run-wise recurrent
disturbance.

In Fig. 2, the performance for the second dis-
turbance scenario is shown. In this scenario, the
disturbance is repeated from the 11*" run and it is
completely rejected by the learning control action
as the run number increases. At the 11*P run,
the controller regards the disturbance as a RWNR,
one and hence large 4 is exerted. However, as the
same disturbance is repeated, @ begins to change
and eventually converges to a new prolile that can
compensate for the disturbance just as in ordinary
ILC methods.

6. CONCLUSIONS

The two-stage batch control technique, where ILC
and RFC can independently respond to the RWR,
and RWNR disturbances, respectively, has been
developed based on the stochastic state space
model. The key step to this derivation is the ap-
propriate decomposition ol the disturbance signal
and input signal, and accompanied decomposition
of the state space model. Numerical study re-
veals that the proposed technique works as antic-
ipated overcoming the problems ol existing RFC-
ILC methods. It is believed that the advancement

made by the present study will improve the prac-
tical applicability of ILC methods.
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