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Abstract: We discuss a force control problem for a constrained one-link flexible arm based
on distributed parameter model. In order to solve the force control problem, we propose
a simple feedback control law. This control law consists of bending moment at the root
of the flexible arm and its derivative, which regulates simultaneously the force and the
rotational angle of the motor without the angle and the force information. Then it provides
the exponential stability of the closed-loop system by using energy multiplier method. As
the control law is derived based on the distributed parameter model, we can avoid the
drawbacks resulting from finite dimensional approximation. Copyright c⃝2005 IFAC
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1. INTRODUCTION

It is necessary for industrial and space manipulators to
be manufactured from lightweight material because of
demands for low-energy consumption and limitation
on carrying capacity of space rockets. An elasticity of
such elements gives rise to problem of an undesired
vibration. Dynamics of arms with distributed elasticity
are expressed as distributed parameter systems. How-
ever the controller of such distributed parameter sys-
tems is generally designed based on finite dimensional
approximated model. In this case how infinite dimen-
sional systems is approximated to finite dimensional
systems is one of important topics.

Finite dimensional approximated model is derived
by neglecting infinite modes. Therefore the follow-
ing problems arise: the dimension of the controller
increases as the number of the modes, which are
considered in the controller design model, increases,
spillover occurred by the disregarded high frequency
characteristic makes a system unstable and so on
(Balas, 1978). From this point of view the controller

design based on infinite dimensional systems is de-
sired. For vibration or vibration and tip position con-
trol of flexible arm, various controllers have been pro-
posed (Morgül, 1991; Luo, 1993; Luo and Guo, 1997;
Luo and Feng, 1999) and asymptotic/exponential sta-
bility is shown.

On the other hand only vibration and tip position
control are not enough to use flexible arms in more
complex task. It is also necessary to control the con-
tact force which an end-effector of the flexible arms
exerts on an object or environment. For force control
of a constrained one-link flexible arm, although there
are some researches based on finite dimensional ap-
proximated model (Chiou and Shahinpoor, 1988; Mat-
suno and Kasai, 1998; Morita et al., 2001; Siciliano
and Villani, 2000), there are few researches based on
distributed parameter model (Morita et al., 2002). In
Morita et al. (2002) the force control problem for
one-link flexible arm is discussed based on distributed
parameter model. And the asymptotic stabilizing con-
troller of the closed-loop system is constructed using
Lyapunov method. However it is better to construct the



controller which exponentially stabilize the closed-
loop system, in the sense of control performance. So
we discuss the force control problem for the flexible
arm based on distributed parameter model and show
that the exponential stability of the closed-loop system
can be accomplished by the simple feedback control
law.

In this paper we consider the design of control law
and exponential stability of the closed-loop system for
the constrained one-link flexible arm. We design the
controller based on an original distributed parameter
model, we can avoid the above drawbacks. The paper
is organized as follows. In Section 2 we describe the
mathematical model of the constrained one-link flexi-
ble arm. Since we consider the force control problem
of the arm, our aim is to design controller which regu-
lates the constraint force to a desired one, and achieves
the vibration absorption when the arm is rotated in
the horizontal plane. Then in order to accomplish
this control objective we propose a simple feedback
control law and prove the exponential stability of the
closed-loop system by using energy multiplier method
in Section 3. Finally Section 4 presents conclusions.

2. DESCRIPTION OF PROBLEM

2.1 Dynamics of Constrained Flexible Arm

Constrained one-link flexible arm which we consider
in this paper has been illustrated in Fig.1. One end
of this flexible arm is clamped to the control motor
and the other end has a concentrated mass m. The tip
mass is making contact with a surface of the object.
Using this control motor the arm rotates in the hori-
zontal plane and are not affected by the acceleration of
gravity. The flexible arm, having length l, uniform lin-
ear mass density ρ, and uniform flexural rigidity EI ,
satisfies the Euler-Bernoulli beam hypothesis which
ignores the moment of inertia and shear deformation
of the arm.

Denote by O-XY a world coordinate system, and by
O-xy a local coordinate system as shown in Fig.1. The
origin of O-xy is fixed at the rotor of the control motor
and O-xy rotates with the rotor. Let J , τa(t), θ(t) and
w(x, t) be the moment of inertia of the rotor of the
motor, the torque caused by the motor, the rotational
angle of the motor and the transverse displacement of
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Fig. 1. Constrained one-link flexible arm.

the arm at time t and at a spatial point x, respectively.
Note that θ(t) and w(x, t) are assumed to be small.

Since the tip mass is making contact with the surface,
we obtain a geometric constraint as shown in the
following:

φ ≡ lθ(t) − w(l, t) = 0. (1)

Under the above preparation we can obtain the equa-
tions of motion (Matsuno and Kasai, 1998):

wtt(x, t) +
EI

ρ
wxxxx(x, t) = xθ̈(t), (2)

w(0, t) = wx(0, t) = wxx(l, t) = 0, (3)

m{lθ̈(t) − wtt(l, t)} + EIwxxx(l, t) = λ(t), (4)

Jθ̈(t) + µθ̇(t) = τ(t), (5)

where µ is the viscous friction coefficient, τ(t) =
τa(t)−EIwxx(0, t), a dot denotes the time derivative
and the subscript denotes the partial derivative with
respect to the corresponding variable. Equation (2)
describes the bending vibration of the arm and (3),
(4) represent the boundary conditions. Equation (5)
gives a description of the equation of rotation of the
motor. In equation (4) λ(t) is the Lagrange multiplier
associated with the constraint φ. From equation (1)
and (4) it is found that λ(t) = EIwxxx(l, t), λ(t)
is equivalent to the contact force which arise in the
direction in the normal vector to the constraint surface.
Substituting this relation into (4) gives

lθ̈(t) − wtt(l, t) = 0.

This equation is equivalent to the two time derivative
of constraint φ, and hereinafter we use this constraint
instead of (4). By introducing the new variable

y(x, t) = w(x, t) − xθ(t), (6)

the equations of motion can be rewritten as

ytt(x, t) +
EI

ρ
yxxxx(x, t) = 0, (7)

y(0, t) = y(l, t) = yxx(l, t) = 0, (8)
Jyxtt(0, t) + µyxt(0, t) = −τ(t). (9)

2.2 Control Objective

The aim of this paper is to control the contact force. In
other words the control objective is to derive the con-
trol law such that the λ(t), wt(x, t) and θ̇(t) satisfies
the following relations:

λ(t) → λd, wt(x, t) → 0, θ̇(t) → 0, (10)

where λd is the constant desired contact force. Since
the equation yt(x, t) = 0 is hold in the desired states
from (10), y(x, t) becomes function of only variable x
and describes it as ys(x). By substituting (10) into the
equations of motion (7), (8) and considering λ(t) =
EIwxxx(l, t) = EIyxxx(l, t), we obtain the equation

ys(x) =
λd

6EI
x(2l2 − 3lx + x2). (11)



This is a static transverse displacement of y(x, t) in
the case that the force converges to the desired value
(λ(t) → λd). Let yd(x) be ys(x). Then control
objective (10) is accomplished by constructing the
control law such as y(x, t) → yd(x) and yt(x, t) → 0.
It is one character of the force control of flexible arms
that the static transverse displacement is treated as
objective variable for controlling the contact force,
and this is a different character from the case of rigid
robot arms.

On the other hand when flexible arm generates desired
contact force λd, the static rotational angle of the arm
is as follows:

θd = −yd
x(0) = − l2λd

3EI
. (12)

From (11) and (12) we found that desired static trans-
verse displacement and desired rotational angle are
coupling through λd. Thus it turns out that rotational
angle and contact force are uncontrollable to arbitrary
point if we want to set the contact force and rotational
angle to desired one, independently.

3. FORCE CONTROL

3.1 Proposed Control Law

We construct the control law which satisfies following
relations:

y(x, t) → yd(x), yt(x, t) → 0. (13)

If yt(x, t) = 0 is satisfied then y(x, t) = ys(x)
and it is easy to see that ys(x) = yd(x), provided
that ys

xx(0) = yd
xx(0). Therefore we can rewrite the

relations (13) as

yxx(0, t) → yd
xx(0), yt(x, t) → 0. (14)

We propose the following feedback control law to
accomplish the relations (14):

τ(t) = − k1EI
{
yxx(0, t) − yd

xx(0)
}

− k2EIyxxt(0, t), (15)

where feedback gain k1 and k2 are positive constants.
In the control law (15) the first term is expected to
achieve that the bending moment at the root of the arm
yxx(0, t) converges to the desired yd

xx(0). The second
term is also the term for the absorption of the bending
vibration (yt(x, t) → 0) and it is known that this
term is effective for vibration absorption in the case of
one-link flexible arm with free end (Luo, 1993). This
control law consists of bending moment at the root
of the flexible arm and its derivative. The proposed
control law is henceforth described as Moment-PD
control because of simplicity.

It is necessary to investigate that the equilibrium point
of the system under the control law (15) is desired
states. Since yt, ytt, yxt(0, t) and yxtt(0, t) are equal
to zero at equilibrium states, y become function of
variable x. Substituting them into closed-loop system

then it is easy to see that the equilibrium states be-
comes desired states by simple calculations.

In the next subsection we will investigate about the
stability of the closed-loop system. For simplicity the
equilibrium point is moved to origin using

y(x, t) = y(x, t) − yd(x). (16)

3.2 Closed-Loop System

We formulate the following closed-loop system to a
first order evolution equation in an appropriate Hilbert
space:

ytt(x, t) +
EI

ρ
yxxxx(x, t) = 0, (17)

y(0, t) = y(l, t) = yxx(l, t) = 0, (18)

yxtt(0, t) + µ̃yxt(0, t) − k̃1EIyxx(0, t)

− k̃2EIyxxt(0, t) = 0, (19)

where {̃·} = {·}/J . First we define the function

ζ(t) = −EIyxx(0, t) +
1
k̃2

yxt(0, t), (20)

as Conrad and Morgül (1998). Substituting (20) into
(19) gives

k̃2ζ̇(t) + k̃1ζ(t) +
(

µ̃ − k̃1

k̃2

)
yxt(0, t) = 0. (21)

Next we introduce following functional space H as the
state space of the closed-loop system (17), (18), (20)
and (21):

H =
(
H2(0, l) ∩ H1

0 (0, l)
)
× L2(0, l) × R. (22)

The space Hm(Ω), Ω is a bounded open set in R, is
the Sobolev space of order m, the space Hm

0 (Ω) is
the closure in Hm(Ω) of C∞

0 (Ω) and the space L2(Ω)
is the usual square integrable functional space. In the
state space H we define the inner-product:

〈z, ẑ〉H =
EI

2

∫ l

0

uxxûxxdx +
ρ

2

∫ l

0

vv̂dx +
C

2
ζζ̂,

(23)
where z = (u, v, ζ)T ∈ H, ẑ = (û, v̂, ζ̂)T ∈ H , C =
k̃2
2/(k̃1 + µ̃k̃2). It can be shown that H together with

the inner-product given by (23) becomes a Hilbert
space. Finally we define the unbounded linear operator
A : D(A) ⊂ H → H as follows:

Az =


v

−EI

ρ
uxxxx

− k̃1

k̃2

ζ − 1
k̃2

(
µ̃ − k̃1

k̃2

)
vx(0)

 , (24)

where the domain of the operator A is defined as

D(A) =
{
z : u ∈ W1, v ∈ W2, ζ ∈ R;

uxx(l) = 0, ζ = −EIuxx(0) + vx(0)/k̃2

}
, (25)

W1 = H4(0, l) ∩ H1
0 (0, l),

W2 = H2(0, l) ∩ H1
0 (0, l).



With the previous notations the closed-loop system
(17), (18), (20) and (21) under the Hilbert space H
can be written as the first order evolution equation:

ż = Az, (26)

where z = (y, yt, ζ)T .

We have the following lemma for the properties of the
closed-loop system.

Lemma 1. The operator A generates a C0-semigroup
of contractions.

PROOF. According to the Lumer-Phillips theorem
(Pazy, 1983) we have to show that the operator A is
dissipative and R(I − A), the range of the operator
I−A, is the whole space H . For any z = (u, v, ζ)T ∈
D(A) it follows that

〈Az,z〉H =
EI

2

∫ l

0

vxxuxxdx − EI

2

∫ l

0

uxxxxvdx

− C

2

{
k̃1

k̃2

ζ +
1
k̃2

(
µ̃ − k̃1

k̃2

)
vx(0)

}
ζ

= −C

2

{
k̃1

k̃2

(EI)2u2
xx(0) +

µ̃

k̃2
2

v2
x(0)

}
≤ 0.

From this calculations we found that the operator A
is dissipative. Next we prove R(I − A) = H . For
any given z̃ = (ũ, ṽ, ζ̃)T ∈ H we have to find
z = (u, v, ζ)T ∈ D(A) so that (I − A)z = z̃.
Eliminating v and ζ in this equation, we obtain the
following equations:

u +
EI

ρ
uxxxx = α,

u(0) = u(l) = uxx(l) = 0,

− EIuxx(0) +
1 + µ̃

k̃1 + k̃2

ux(0) = β,

α = ũ + ṽ, β =
1

k̃1 + k̃2

{
k̃2ζ̃ + (1 + µ̃)ũx(0)

}
.

Now we introduce new variable

u(x) = q(l − x), r = l − x,

for solve the above equations. Then we get

q′′′′(r) +
ρ

EI
q(r) =

ρ

EI
α̃, (27)

q(0) = q′′(0) = 0, (28)
q(l) = 0, (29)

− EIq′′(l) − kq′(l) = β̃, (30)

where a dash denotes the derivative with respect to the
variable r, α̃ and β̃ are translated functions related to
α and β by introducing new variable respectively, and
k = (1 + µ̃)/(k̃1 + k̃2). The solution of (27) together
with the boundary conditions (28) is given by

q(r) =c1 sin ar cosh ar + c2 cos ar sinh ar

+ a

∫ r

0

[
sin a(r − τ) cosh a(r − τ)

− cos a(r − τ) sinh a(r − τ)
]
α̃(τ)dτ,

(31)

where c4 = ρ/EI , a = c/
√

2, and the parameter
c1 and c2 are constants which are determined by
the remaining boundary conditions. Substituting this
solution into the boundary condition (29) and (30), we
get the following matrix form relation:

M [c1, c2]T = [f1, f2]T .

It is easy to see that

detM =a2EI (cosh 2al − cos 2al)

+
1
2
ak (sinh 2al − sin 2al) > 0,

then the parameter c1 and c2 can be uniquely deter-
mined from

[c1, c2]T = M−1[f1, f2]T .

Hence we can obtain u(x) = q(r). The remaining
unknows v and ζ can be found by using u. Therefore it
is shown that the operator A generates a C0-semigroup
of contractions. 2

3.3 Exponential Stability

We prove that the closed-loop system under the
Moment-PD control (15) is exponentially stable by
using energy multiplier method (Chen et al., 1987;
Rao, 1994).

Theorem 2. The closed-loop system (26) is exponen-
tially stable.

PROOF. Let us introduce the following energy func-
tion:

E(t) = 〈z, z〉H .

Then its time derivative along the solutions of the
system yields

Ė(t) = 2〈Az, z〉H

= −C

{
k̃1

k̃2

(EI)2u2
xx(0) +

µ̃

k̃2
2

v2
x(0)

}
≤ −C1ζ

2,

where C1 is some positive constant and we have used
the relation

ζ2 ≤ 2
{

(EI)2u2
xx(0) +

v2
x(0)
k̃2
2

}
. (32)

Thus we found that Ė(t) is not negative definite. To
prove the exponential stability we introduce a new
function:

V (t) = E(t) + εσ(t),
where the positive constant ε is to be determined and

σ(t) = ρ

∫ l

0

(x − l)uxvdx + ρux(0)
∫ l

0

(l − x)vdx.

Using the Cauchy-Schwartz inequality, Poincaré in-
equality and the inequality

|a||b| ≤ 2|a||b| ≤ δa2 +
b2

δ
,

a, b, δ ∈ R, δ > 0, (33)



it is easy to verify that

|σ(t)| ≤ C2E(t),

where C2 is some positive constant. Therefore we
have the following estimate:

(1 − εC2)E(t) ≤ V (t) ≤ (1 + εC2)E(t). (34)

On the other hand the time derivative of σ(t) yields

σ̇(t) = − ρ

2

∫ l

0

v2dx − 3
2
EI

∫ l

0

u2
xxdx

+
EI

2
lu2

xx(0) + ρvx(0)
∫ l

0

(l − x)vdx.

Using the Cauchy-Schwartz inequality and the in-
equality (33), we obtain the estimate

ρvx(0)
∫ l

0

(l − x)vdx ≤ ρlδ1v
2
x(0) +

ρl2

δ1

∫ l

0

v2dx,

where δ1 is some positive constant. Thus σ̇(t) can be
rewritten as

σ̇(t) ≤− ρ

2

(
1 − 2l2

δ1

)∫ l

0

v2dx − 3
2
EI

∫ l

0

u2
xxdx

+
EI

2
lu2

xx(0) + δ1ρlv2
x(0),

from which we have

V̇ (t) ≤ −ρ

2
ε

(
1 − 2l2

δ1

) ∫ l

0

v2dx − 3
2
εEI

∫ l

0

u2
xxdx

−
{

C
k̃1

k̃2

(EI)2 − EI

2
εl

}
u2

xx(0)

−
(

C

k̃2
2

µ̃ − εδ1ρl

)
v2

x(0)

= −ρ

2
κ1

∫ l

0

v2dx − EI

2
κ2

∫ l

0

u2
xxdx

− κ3C(EI)2u2
xx(0) − κ4C

v2
x(0)
k̃2
2

, (35)

where ε < min{1/C2, 2Ck̃1EI/(k̃2l), Cµ̃/(δ1ρlk̃2)},
κ1 = ε(1 − 2l2/δ1), κ2 = 3ε, κ3 = k̃1/k̃2 −
εl/(2EIC), κ4 = µ̃ − εδ1ρlk̃2

2/C. Thus we obtain
the following estimate from the (32), (34) and (35):

V̇ (t) ≤ −KE(t) ≤ − K

1 + εC2
V (t),

where K = minκi (i = 1, . . . , 4). Therefore we
obtain

E(t) ≤ 1 + εC2

1 − εC2
e−

K
1+εC2

tE(0),

which means the exponential stability of the closed-
loop system under the Moment-PD control,

||z||H ≤
√

1 + εC2

1 − εC2
e
− K

2(1+εC2) t||z(0)||H . (36)

2

Although the exponential stability of the closed-loop
system (17), (18), (20) and (21) is established, the
exponential stability of the system (2)-(5) and (15) is

not shown yet. We need to show that the trajectory of
w, wt, θ, θ̇ and λ decays exponentially. Finally we can
obtain the following theorem.

Theorem 3. The trajectory of w, wt, θ, θ̇ and λ decays
exponentially. That is, there exists positive constants
Mi (i = 1, . . . , 5) and δ such that

||w − wd||L2 ≤ M1e
−δt, ||wt||L2 ≤ M2e

−δt,

||θ − θd|| ≤ M3e
−δt, ||θ̇|| ≤ M4e

−δt,

||λ − λd|| ≤ M5e
−δt,

where || · ||2L2 =
∫ l

0
·2dx and || · ||2 = ·2.

PROOF. Let us denote equation (36) as

||z||H ≤ Me−δt.

From this equation, we obtain the following estimates:

||y||L2 ≤ K0Me−δt, ||yt||L2 ≤ K1Me−δt, (37)

where we used Poincaré inequality in the derivation of
the first term and K0, K1 are some positive constant.
Further it is easy to see that the estimate

y2
x(0, t) ≤ K2

∫ l

0

y2
xxdx (38)

is satisfied by using the Cauchy-Schwartz inequality
and (33), where K2 is some positive constant. This
means

||yx(0, t)|| ≤
√

2K2

EI
Me−δt. (39)

For z(0) ∈ D(A), we can show that

||z||D(A) ≤ M1e
−δt||z(0)||D(A) ≡ M2e

−δt, (40)

where M1 =
√

(1 + εC2)/(1 − εC2) and ||·||D(A) =
||z||H + ||Az||H . Now the following estimate is ob-
tained as same as the derivation of (38):

y2
xt(0, t) ≤ K3

∫ l

0

y2
txxdx, (41)

where K3 is some positive constant. Thus
EI

2K3
y2

xt(0, t) ≤ ||Az||2H ≤ M2
2 e−2δt,

which means

||yxt(0, t)|| ≤
√

2K3

EI
M2e

−δt. (42)

Next we consider the decay of EIyxxx(l, t). To prove
this fact we introduce the following function:

h1 =
C

2

{
−EIyxx(0, t) +

1
k̃2

yxt(0, t)
}2

+
EI

2

∫ l

0

y2
txxdx.

Then, by using (33) and (41), we obtain

h1 ≥C

2
(1 − δ2)(EI)2y2

xx(0, t)

+
C

2

(
1
k̃2
2

− 1
k̃2
2δ2

+
EI

K3C

)
y2

xt(0, t),



where δ2 satisfies δ2 ∈ (1/(1 + k̃2
2EI/(K3C)), 1).

Thus, using this estimate, we found that

||z||2D(A) ≥ K4

{∫ l

0

y2
xxxxdx + (EI)2y2

xx(0, t)

}
,

(43)

for K4 ≤ min{C(1 − δ2)/2, (EI)2/(2ρ)}. On the
other hand we can show that there exists some positive
constant K5 such that

(EI)2y2
xxx(l, t)

≤ K5

{∫ l

0

y2
xxxxdx + (EI)2y2

xx(0, t)

}
,

(44)

by using the Cauchy-Schwartz inequality, Poincaré
inequality and (33). From (43) and (44) we can obtain
the estimate about the decay of EIyxxx(l, t):

||EIyxxx(l, t)|| ≤
√

K5

K4
M2e

−δt. (45)

Therefore we have the desired result by using (6), (16),
(37), (39), (42), (45), and by considering the relation
λ(t) = EIyxxx(l, t). 2

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we consider force control problem
for constrained one-link flexible arm. We proposed
Moment-PD control which has a feedback of the bend-
ing moment at the root of the flexible arm and its time
derivative. Hence this controller is very simple in its
structure. Furthermore this controller does not need
information about the contact force and the rotational
angle. Then exponential stability of the closed-loop
system was proven by using energy multiplier method.

The future work is the experimental validation of the
proposed Moment-PD control.
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