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Abstract: This paper studies the problem of quantized feedback control for sampled-data
systems which employ a quantizer to transmit feedback signals at a given sampling rate.
The so-called static (memoryless) quantizers are considered. Given a continuous-time
system, the design objective is to stabilize the system or to achieve certain performance
using the coarsest quantization density. We study the possible advantages of over-
sampling where the input/output signals of the system are sampled at a faster rate than the
guantizer. Our first result is for stabilization, and it shows that the coarsest quantization
density achievable using quantized state feedback can be generically achieved using
output feedback with any over-sampling ratio. Our second result provides a solution to
the quantized feedbadh., problem for both with and without over-sampli@ppyright
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1. INTRODUCTION ing quantized feedback is studied, where the quantizer
is assumed to be static and time-invariant (i.e. memo-

Control using quantized feedback has been an impor-ryless and with fixed quantization levels). They proved
tant research area for a long time as seen in Kalman'sthat the best quantizer is the so-calledarithmicand
pioneer work (Kalman 1956), which studied the effect that the coarsest quantization density is given explic-
of quantization in a sampled data system. Recently, itly in terms of the system’s unstable poles. The results
there is a new line of research on quantized feedbackhave been generalized to the multi-input systems by
control where a quantizer is regarded as an informa-sector bound approach in (Fu and Xie 2003a).
tion coder; see, e.g., (Baillieul 2001), (Brockeet and )
Liberzon 2000), (Elia 2000), (Elia and Mitter 2001), However, most pf the re_sults on quantized fee_dback
(Nair and Evans 2003), (Fu and Xie 2003a, 2003b) control are for discrete-time systems only. In this pa-
and references there in. The fundamental question ofP€", We study the problem of quantized feedback con-
interest is how much information needs to be commu- tro! for sampled-data systems. In such a system, a

nicated by the quantizer in order to achieve a certain CONtinuous-time plant is controlied by a digital com-
control objective including stabilization. pensator with AD/DA converters through a commu-

_ _ ~nication network channel or quantizer. There are two
In (Elia and Mitter 2001), the problem of quadratic important issues to be investigated for the sampled-
stabilization of discrete-time single-input systems us- data case which do not appear in the discrete-time
case. One is the inter-sample behaviors which have to
1 This research was partially supported by Australian Research be taken into aCCOl_Jnt to evaluate the control Perf_or'
Council, the 21st Century COE Program on Information Science Mance. The other is the extra freedom of designing

and Technology Strategic Core, and CREST of JST (Japan Sciencesample and hold schemes, which may improve the
and Technology Agency).




control performance significantly. Note that modern Itis assumed that the quantizer operates with sampling
approaches to sampled-data systems such as liftingperiodT, whereass and# operate with sampling pe-
techniques are quite powerful to treat the inter-sampleriod h = T /g for some integeqg > 1. More precisely,
behaviors reasonably; see, e.g., (Chen and Franciss takes a sample evetytime interval and everyg of
1995) and references there in. However, most of thethese samples are stacked up together as the input to
results ignore the quantization effects. H1(z) which produces an outputk) to the quantizer

Q everyT time interval. The quantized sign&(k) is

sent toH»(z) everyT time interval to produce out-

puts to# which is a zeroth-order hold (ZOH) with the

The work in this paper is concerned with the use of
static (memoryless) quantizers. Given a continuous-

time system with a certain quantization sampling rate, time interval ofh. Itis further assumed that the process

the design objective is to stabilize the system or to _ . . o ; .
. . : _noisew(t) is constant within each sampling peribd
achieve certain performance using the coarsest quanti-

zation density. The main focus of the paper is to study (See Remark 4 about relaxing this assumption).
the possible advantages of over-sampling where theWe will call T = ghthequantization sampling periqod
input/output signals of the system are sampled at ah the input-output sampling perio@nd g the over-
faster rate than the gquantizer. Two main results aresampling ratio The transfer functiond; (z) andHz(2)
obtained. The first one is for quantized feedback sta-will be referred to aspre-quantizer controllerand
bilization, and it shows that the coarsest quantization post-quantizer controllerespectively.
Qensny a(_:h|evable_ using state feedback_can be 9€NeTIL order to develop the sampled-data model for the
ically achieved using output feedback with any over- - . .

. ) . . system in Figure 1, we first find the sampled-data
sampling ratio. The second result provides a solution

. . model corresponding td = h (i.e.,q = 1). It is easy
g’n;hvii?h%ﬁtgvic:_;ﬁsﬁ% problem for both with to verify that this model is given by

X(k+1) = Ax(k) + Biw(k) + Bou(k)

z(k) = Cix(k) +D1uaw(k) +D1au(k)  (2)
2. PROBLEM FORMULATION y(k) = Cox(k) + D21w(k) + D22u(k)
The type of sampled-data systems we consider in thiswhere
paper is depicted in Figure 1. The continuous-time x(k) = xc(kh); w(k) = wg(kh)
plantG(s) has the following realization: u(k) = uc(kh); y(k) = ye(kh)
Xc(t) = AcX(t) + Biewe(t) + BacUc(t) andz(k) is related taz:(t) by
Zc(t) = ClCXC(t) + DllCWC(t) + D12Cuc(t) (1) (k+1)h

Ye(t) = CocXe(t) 4+ D21eWe(t) + Daacu(t) 2(K) |2 = / l|z(t) |2t

wherex:(t) € R" is the statew(t) € R™ is the pro- o k'f
cess noisa(t) € R™ is the control inputz.(t) e R+ The matrices in (2) are given by

is the output used for measuring the performance, A = expAch);
ye(t) € RP2 is the output used for control feedback. h
For simplicity, we only consider the single-input, B — /exp(Ac(h—r)dtBic i—12
single-output case, i.exp = py = 1. ) ’ ’
We(t) z(t) C2 = Cyc, D21=D2ic, D22 = D22
Ue(t) G(s) Ye(t) h 1/2
[C1 D11 Do) = /M(T)MT(T)dT
0
H S [ Cicexp(AcT) ]
T
u D11c+C1c/eXp(Ac(T —0))d6B;¢
M(T) = 0
Ha(2) Ha(2) Dz +Ci [ eXp(AG(T -~ 6))d6Bz:
L 0 _
&(k) v(k)
Q Now we return to the case whefe= gh,q> 1. The

— sampled-data system (2) can be rewritten using the

standard lifting technique as follows:
Fig. 1. Sampled-Data System
X(k+1) = Ax(k) +Biw(k) + Bau(k)
In Figure 1,Q is a quantizer, and and A represent z(k) = C1x(k) + D1aw(k) + D1ou(k)  (3)
generalized sampling and hold functions, respectively. y(k) = Cox(k) + D21w(k) + D2ou(K)



where
w(k) = [w(gk) w(gk+1) ... w(gq(k+1)—1)]"
andu(k), z(k) andy(k) are similarly defined but
x(k) = x(gk)
The matrices in (3) are given by
A =A% B = [AT1B AY2B; ... B
G Dij 0O ... O
c GA . Ci.Bj D.ij 0
1 : .. 0
GA GAY2B; ... GB; Dj;
fori,j=1,2.
w(k) 2(k)
¥ ¥
u(k) G(2) y(K)
HZ(Z) Hl(z)
&(k v(k
(k) 9 (k)

Fig. 2. Discrete-Time Model

The general setup of the sampled-data system we
consider in this paper is depicted in Figure 2. In this

setup,G(2) is the transfer function corresponding to
(3), the transfer functionsi,(z) andH,(z), are to be
designed and they are of the form

Hl(Z) = [hll(Z) hlz(Z) hlq(Z)];

Hz(Z) = [hz]_(Z) h22(Z) hzq(Z)]T
Also, Hi(z) andHy(z) must be chosen such that the
mapping fromy(k) to u(k) is causal. The blocR is a
quantizer mapping from(k) to &(k). In this paper, we
only considerstaticquantizers, i.e.,

&(k) = f(v(k)
for a static nonlinear functiofi(-). In view of the work
in (Elia and Mitter 2001) and (Fu and Xie 2003a), we
considerdogarithmic quantizersMore precisely, let

2 = {+u ul) =p'u® i=4142..}

4
U{£u@}u{0}, 0<p<1,u® >0 “)
The associated quantizélis defined as follows:
Ui if 1 —U<v< — 1
B} | =
1+0 1- 6
f(v) = 0, if v=0 ()
—f(—v), ifv<O.
where
1-p
“1Irp ©

The parametep above can be regarded as theanti-
zation densityNote that a smallep corresponds to a
coarser quantizer.

A quantized feedback problem can be loosely formu-
lated as follows:Given the continuous-time system
(1), quantization sampling period and over-sampling
ratio, find the coarsest quantization density such that
there exists pre- and post-quantizer controllers to ei-
ther stabilize the system or to meet certain perfor-
mance requirement.

The main objective of the paper is to study the pos-
sible benefits of over-sampling in quantized feedback
control. We will study four scenarios:

S1: No Over-sampling. This corresponds to
Hl(Z) = [hll(Z) 0... 0]
Ho(z2) =hxu(z)[1 1 ... 1"
S2: Over-sampling at Input Only. This corresponds

to
Hl(Z) = [hll(Z) 0... 0]
S3: Over-sampling at Output Only. This corresponds
to
Hy(2) =hyg(2)z ...z 17

(Note that the delay terms are there to ensure
causality of the controller.)

S4: Over-sampling at both Input and Output. This is
the general case.

3. STABILIZATION

In this section, we study the problem of quantized
feedback stabilization. In this problem, the process
noisew(t) (orw(k)) is setto zeroz(t) (or z(k)) is void,
and G(z) reduces toGyy(z). The goal is to achieve
stabilization with a minimum quantization density.

We first introduce a benchmark scenario depicted in
Figure 3 so that we can compare the four scenarios
discussed earlier against it. In the benchmark scenario,
the full stateX(k) is measured, where

%(k) = [x"(gk) X" (qk+1) ... X" (gk+q—1)]"

(2) is the transfer function from(k) to X(k), and

Goo(2
K(2) is a dynamic state feedback controller.

u(k)

ézz(Z)

Hz(Z)

&(k)

Fig. 3. State Feedback Model

For the special case whetge= 1, K(2) is static and
Hx(z) = 1, the benchmark scenario was first studied in



(Elia and Mitter 2001) which showed that the coarsest Therefore, it is without loss of generality to take

guantization density is given by

Pinf = i; Zzzz (7)
with
Ssup= [TIA'(A)] = exp<T ZW(&-)) ®)

where A{'(A) (resp. A{'(Ac)) denotes the unstable
eigenvalues oA (resp.Ac).

The result below shows that the same result holds in

general.

Theorem 1.Consider the benchmark scenario in Fig-

ure 3. The coarsest quantization density is given by

(7)-(8) and this can be achieved by taking

K()=[K10...0 Ho(@=[11...1  (9)

That is, over-sampling does not improve the coarsest

guantization density.

Proof: It is obvious that the particular choice fir(z)

andHz(2) coincides with the special case discussed

above, and hence the value @f; in (7)-(8) can be

achieved. It remains to show that this value cannot be

reduced by using othd{(z) andHz(z). GivenHy(2),

itis known (Fu and Xie 2003a) that the corresponding

dsup Is maximized when the full state Gfizz(z)Hz(z)
is available for feedback and in the case,
6s_ulp: |_| |)\|u|

wheref\iu are the unstable poles @,2(2)H2(2). So
dsupis maximized by takingdz(z) = [1 1 ... 1]T. This
case is the same gs= 1 and thus, it suffices to choose
a staticK(z) as in (9). [

Now, we consider the four scenarios in Figure 2.

Theorem 2.Consider the Scenario S1in Figure 2. The
coarsest quantization density is given by (7) vathp
given by

1

= 10
infhz) [[Gn(2)]]e (10)

ésup

where

Gn(2)

(1-h(2)01(2)*h(@)a1(2) (11)
with
01(2) =[10... 0Gx(2)[11... 4"

Furthermore, if1(2) has relative degree equal to 1 and

h11(z) = 1. Denotingh(z) = hy1(2), then this revised
guantized feedback stabilization problem has been
studied in (Fu and Xie 2003a) and the results in the
theorem are directly cited from (Fu and Xie 2003m).

Remark 1.What is implied in Theorem 2 is that for
any givenp > pinf, a stabilizing controller can be
constructed by takindp;1(z) = 1 and solvingh1(2)
such that

1Gh(2) || < 572 (12)

whered andp are related as in (7).

Remark 2.There are two special cases where we can
obtain the analytical expressions foify, ) ||Gn(2)||«

by applying the solution of the Navanlinna-Pick inter-
polation problem.

e Supposeay;(z) is minimum phase and its relative
degree is one. Then we have

Np

ﬂl?\i”\

whereAl',1<i <N,, are unstable poles gi(z).
This corresponds to the state feedback case.

e Supposey;(2) has only one unstable poleand
non-minimum phase zerag, 1 < j <N, and its
relative degree is > 1. Then we have

Ne Zia—1

=g

Remark 3.It is well-known thatg;(z) has relative
degree equal to 1 generically. Howevgi(z) is not
minimum phase in general. Therefore, it is seen from
Remark 2 that Theorem 1 also implies that Scenario
S1 is in general inferior to the benchmark scenario.
See Section 5 for an example.

inf [|Gh(2)||e =
L?J‘ h(2) |l

inf ||G w=|A]Y
inf G (@) = | |

Theorem 3.The coarsest quantization density achiev-
able by Scenario S2 in Figure 2 is generically identical
to that of the benchmark scenario for agy>- 1. In
particular, this can be achieved by choosing

Hi(2)=[10... 0]

and Hz(2) such thatH;(z)Gz2(2)Hz2(2) is minimum
phase and having relative degree equal to 1, which is
generically possible.

Proof. It is well-known thatH1(z)Gg2(2) has relative
degree 1 with co-prime elements generically. There-
fore, it is generically possible to choos(z) such

no unstable zeros, then the coarsest quantization denthat gi(z) = H1(2)Gz2(2)H(2) is minimum phase
sity for Scenario S1 matches that for the benchmark and has relative degree equal to 1. Hence, by taking

scenario.

Proof. Note that in Scenario S1,
H1(2)G22(2)H2(2) = ho1(2)h11(2)91(2)

Ha(2) = h(2)H2(2), the desired result is obtained by
applying Theorem 2 (Part 2) @ (z) andh(z). [

Theorem 4.The coarsest quantization density achiev-
able by Scenario S3 in Figure 2 is generically identical



to that of the benchmark scenario for agy- 1. In Theorem 5.Given y > 0 and p > 0, the quantized
particular, this can be achieved by choosing feedbackH., control problem for the system in Fig-
H(2)=[z!...ztq" ure 2 is solvable if there exists a controller pair

o (H1(2),H2(2)) and a scaling parameter> 0 for the
and Hi(2) such_ thatHz(z)Gzz(z)Hl(z) IS minimum  system in Figure 4 such that
phase and having relative degree equal to 1, which is B

generically possible. 1G(7)]] < 1 17)

Proof. The proof is similar to that of Theorem 3. Proof. It is straightforward to see that (17) implies

Since both Scenarios S2 and S3 can do as well aSthat the transfer function fromw to z in Figure 5 has

the benchmark scenario, there is no need to consideP" induced.,-norm less thary for any |A(k)| < 6. It

; - A then follows from the sector bound approach in (Fu
Scenario S4 for quantized feedback stabilization. ) X .
g and Xie 2003a) that the latter is equivalent to that the

guantized feedbadH., control problem for the system

4. H,, CONTROL in Figure 2 is solvable for the givenandp. [
In this section, we study a quantized feedbatk W 7
control problem for the system in Figure 2. More pre-  ad

cisely, given arH., performance boung > 0 and a
guantization densitp, find, if it exists, a stabilizing
controller pair,(H1(z),H2(2)), such that the closed- Ho Hy
loop system in Figure 2 hdlsgzu||» < Y. When a solu- T + v
tion to this problem is available, the coarsest quantiza-

tion density can be found by using a simple bisection

algorithm. A(K)
Following the sector bound technique in (Fu and Xie
2003a), we can write Fig. 5. Auxiliary System foH., Control
§(k) = (1+A(v(k)))v(k) 13) Now we remark on the design &f,(z),H»(z) andrt.
From (15)-(16), it is clear that for a fixed if Hi(2)
where (respHz(2)) is given, the design dflx(2) (resp.Hi(2))
IAV(K)| <8, 3= (1—p)/(1+p) (14) is a standardH., optimization problem. However, un-

like the quantized feedback stabilization problems,
That is, the quantization error lies in a sector of size  H1(2) @ndHz(2) can not be designed jointly, even for
scenarios S1, S2 and S3. Moreover, it is even not clear
whether the optimaHi(z) and Hz(z) has the same
order asG(2z).

To get around this difficulty, we propose to take either
Hi(z) or Hz(z) as a constant vector. The idea is this
vector is used to assign the zero$eh(z). We assume
below thatH;(z) = H1 is constant below although the
proposed algorithm below works either way. Otte

is given,Hx(z) andt can be optimized. For a fixed
solvingHy(z) is a standardH., optimization problem.
The parameter is then searched numerically. We
caution that the minimunjG(z)|| is not necessarily
We introduce an auxiliary system in Figure 4, where a convex function of. In addition, because the over-
1> Ois a scaling parameter to be searched. If we write sampling ratio is typically smallH; can be found

Fig. 4. Auxiliary System foH., Control

G(z2) = {Gij(2)}, i,j = 1,2, then it is easy to verify  through a numerical search. To summarize, we use the
that the transfer function fromw to z is given by following iterative algorithm.
1 1 i i i :
é(z) _ = (Gu1+ GioHoHH1Go1) T—GlezH as) Iterative Design Algorithm foH,, Control:
(18)HH1G21 3H1GooHoH (1) For fixed H; and 1, use anyH. optimization

algorithm onH1(z) to minimize||G(2) |-
where (2) Search numerically for an optimal
(3) Search numerically for an optimél; .
H(2) = (1 - H1(2)G2a(2)H2(2)) 1 (16)
Remark 4.We now comment on the assumption of
We have the following result: We(t) being constant for each input-output sampling



period. This assumption can be easily relaxed(t) 10°

is relaxed to be constant for each sub-sampling period - - H,@)=[1 0], Hy(2)=h,,(2)[L; 1]
— H,(@)=[10]; Hy@)=[h,, (2); h,,(2)]

ho = h/qo for some integerp > 1, then a discrete-
time model similar to Figure 2 can be developed
using the lifting technique. The resulting model has
the same state dimension, but the dimensionfgk)

will be increased by times. Other than this change,
the result in Theorem 5 still applies. Furthermore,
assumptions om(t) can be totally avoided by taking
go — o in which case matrices relatedwdk) become
infinite-dimensional linear operators.

10F

10'}

5. SIMULATION EXAMPLE 10 . . . .
10 10 107 5 100 100 10°
To demonstrate the results in previous sections, we
consider an example of system (1) with Fig. 6. Simulation fod vs.y
A — [(1) g} By — [_11}  Byo — [ﬂ 6. CONCLUSION
105 0 0 In this paper, we have studied two quantized feedback
Cic= {0 0 ] ; D1xc = {0} ; Dic = {1] control problems for sampled-data systems: stabiliza-

) ; tion andH., control. We have shown that the use of
Coxc=[1 1]; Dy3c=0; Dopc =0 . . o .

over-sampling can provide a significant improvement
We takeT = 0.4 andq=2. in achieving the coarsest quantization density. This is
Firstly, we consider is quantized feedback stabiliza- shown in Theorems 1-4 and a simulation example.
tion in Scenario S1. For this case, we have

01(2) = [1 0Gz2(2) [ﬂ = (2_1.21.22(:6)—(21?31{)92 7 REFERENCES
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Finally, we consider thél, control problem for both
Scenarios 1 and 2. The result is shown in Figure 6.
The two vertical lines correspond to the two values
of dsyp as mentioned above. It is clear that the design
corresponds to S2 can tolerate a much ladger

Remark 5.The simulation example above confirms
that there is significant improvement by using over-
sampling. However, we point out that the improve-
ment given by over-sampling is not simply due to fast
sampling. In fact, if we take =1 andT = 0.2 for
stabilization, it givedsyp= 0.2 only.



