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Abstract: This paper studies the problem of quantized feedback control for sampled-data
systems which employ a quantizer to transmit feedback signals at a given sampling rate.
The so-called static (memoryless) quantizers are considered. Given a continuous-time
system, the design objective is to stabilize the system or to achieve certain performance
using the coarsest quantization density. We study the possible advantages of over-
sampling where the input/output signals of the system are sampled at a faster rate than the
quantizer. Our first result is for stabilization, and it shows that the coarsest quantization
density achievable using quantized state feedback can be generically achieved using
output feedback with any over-sampling ratio. Our second result provides a solution to
the quantized feedbackH∞ problem for both with and without over-sampling.Copyright
c©2005 IFAC
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1. INTRODUCTION

Control using quantized feedback has been an impor-
tant research area for a long time as seen in Kalman’s
pioneer work (Kalman 1956), which studied the effect
of quantization in a sampled data system. Recently,
there is a new line of research on quantized feedback
control where a quantizer is regarded as an informa-
tion coder; see, e.g., (Baillieul 2001), (Brockeet and
Liberzon 2000), (Elia 2000), (Elia and Mitter 2001),
(Nair and Evans 2003), (Fu and Xie 2003a, 2003b)
and references there in. The fundamental question of
interest is how much information needs to be commu-
nicated by the quantizer in order to achieve a certain
control objective including stabilization.

In (Elia and Mitter 2001), the problem of quadratic
stabilization of discrete-time single-input systems us-

1 This research was partially supported by Australian Research
Council, the 21st Century COE Program on Information Science
and Technology Strategic Core, and CREST of JST (Japan Science
and Technology Agency).

ing quantized feedback is studied, where the quantizer
is assumed to be static and time-invariant (i.e. memo-
ryless and with fixed quantization levels). They proved
that the best quantizer is the so-calledlogarithmicand
that the coarsest quantization density is given explic-
itly in terms of the system’s unstable poles. The results
have been generalized to the multi-input systems by
sector bound approach in (Fu and Xie 2003a).

However, most of the results on quantized feedback
control are for discrete-time systems only. In this pa-
per, we study the problem of quantized feedback con-
trol for sampled-data systems. In such a system, a
continuous-time plant is controlled by a digital com-
pensator with AD/DA converters through a commu-
nication network channel or quantizer. There are two
important issues to be investigated for the sampled-
data case which do not appear in the discrete-time
case. One is the inter-sample behaviors which have to
be taken into account to evaluate the control perfor-
mance. The other is the extra freedom of designing
sample and hold schemes, which may improve the



control performance significantly. Note that modern
approaches to sampled-data systems such as lifting
techniques are quite powerful to treat the inter-sample
behaviors reasonably; see, e.g., (Chen and Francis
1995) and references there in. However, most of the
results ignore the quantization effects.

The work in this paper is concerned with the use of
static (memoryless) quantizers. Given a continuous-
time system with a certain quantization sampling rate,
the design objective is to stabilize the system or to
achieve certain performance using the coarsest quanti-
zation density. The main focus of the paper is to study
the possible advantages of over-sampling where the
input/output signals of the system are sampled at a
faster rate than the quantizer. Two main results are
obtained. The first one is for quantized feedback sta-
bilization, and it shows that the coarsest quantization
density achievable using state feedback can be gener-
ically achieved using output feedback with any over-
sampling ratio. The second result provides a solution
to the quantized feedbackH∞ problem for both with
and without over-sampling.

2. PROBLEM FORMULATION

The type of sampled-data systems we consider in this
paper is depicted in Figure 1. The continuous-time
plantG(s) has the following realization:

ẋc(t) = Acx(t)+B1cwc(t)+B2cuc(t)
zc(t) = C1cxc(t)+D11cwc(t)+D12cuc(t)
yc(t) = C2cxc(t)+D21cwc(t)+D22cu(t)

(1)

wherexc(t) ∈ IRn is the state,wc(t) ∈ IRm1 is the pro-
cess noise,uc(t)∈ IRm2 is the control input,zc(t)∈ IRp1

is the output used for measuring the performance,
yc(t) ∈ IRp2 is the output used for control feedback.
For simplicity, we only consider the single-input,
single-output case, i.e.,m2 = p2 = 1.

-wc(t) zc(t)

uc(t) yc(t)

ξ(k) v(k)

G(s)
-

-

?

S

??

H1(z)

H

66

H2(z)

6
Q ¾

Fig. 1. Sampled-Data System

In Figure 1,Q is a quantizer, andS andH represent
generalized sampling and hold functions, respectively.

It is assumed that the quantizer operates with sampling
periodT, whereasS andH operate with sampling pe-
riod h = T/q for some integerq≥ 1. More precisely,
S takes a sample everyh time interval and everyq of
these samples are stacked up together as the input to
H1(z) which produces an outputv(k) to the quantizer
Q everyT time interval. The quantized signalξ(k) is
sent toH2(z) everyT time interval to produceq out-
puts toH which is a zeroth-order hold (ZOH) with the
time interval ofh. It is further assumed that the process
noisewc(t) is constant within each sampling periodh
(See Remark 4 about relaxing this assumption).

We will call T = qh thequantization sampling period,
h the input-output sampling periodand q the over-
sampling ratio. The transfer functionsH1(z) andH2(z)
will be referred to aspre-quantizer controllerand
post-quantizer controller, respectively.

In order to develop the sampled-data model for the
system in Figure 1, we first find the sampled-data
model corresponding toT = h (i.e., q = 1). It is easy
to verify that this model is given by

x(k+1) = Ax(k)+B1w(k)+B2u(k)
z(k) = C1x(k)+D11w(k)+D12u(k)
y(k) = C2x(k)+D21w(k)+D22u(k)

(2)

where

x(k) = xc(kh); w(k) = wc(kh)
u(k) = uc(kh); y(k) = yc(kh)

andz(k) is related tozc(t) by

‖z(k)‖2 =

(k+1)h∫

kh

‖zc(t)‖2dt

The matrices in (2) are given by

A = exp(Ach);

Bi =
h∫

0

exp(Ac(h− τ)dτBic, i = 1,2

C2 = C2c, D21 = D21c, D22 = D22c

[C1 D11 D12] =





h∫

0

M(τ)MT(τ)dτ





1/2

M(τ) =




C1cexp(Acτ)

D11c +C1c

τ∫

0

exp(Ac(τ−θ))dθB1c

D12c +C1c

τ∫

0

exp(Ac(τ−θ))dθB2c




Now we return to the case whereT = qh,q≥ 1. The
sampled-data system (2) can be rewritten using the
standard lifting technique as follows:

x(k+1) = Ax(k)+B1w(k)+B2u(k)
z(k) = C1x(k)+D11w(k)+D12u(k)
y(k) = C2x(k)+D21w(k)+D22u(k)

(3)



where

w(k) = [w(qk) w(qk+1) . . . w(q(k+1)−1)]T

andu(k), z(k) andy(k) are similarly defined but

x(k) = x(qk)

The matrices in (3) are given by

A = Aq; Bi = [Aq−1Bi Aq−2Bi . . . Bi ]

Ci =




Ci

CiA
...

CiA
q−1


 ; Di j =




Di j 0 . . . 0

CiB j Di j 0
...

...
...

.. . 0
CiA

q−2B j . . . CiB j Di j




for i, j = 1,2.
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Fig. 2. Discrete-Time Model

The general setup of the sampled-data system we
consider in this paper is depicted in Figure 2. In this
setup,G(z) is the transfer function corresponding to
(3), the transfer functions,H1(z) andH2(z), are to be
designed and they are of the form

H1(z) = [h11(z) h12(z) . . . h1q(z)];
H2(z) = [h21(z) h22(z) . . . h2q(z)]T

Also, H1(z) andH2(z) must be chosen such that the
mapping fromy(k) to u(k) is causal. The blockQ is a
quantizer mapping fromv(k) to ξ(k). In this paper, we
only considerstaticquantizers, i.e.,

ξ(k) = f (v(k))

for a static nonlinear functionf (·). In view of the work
in (Elia and Mitter 2001) and (Fu and Xie 2003a), we
considerlogarithmic quantizers. More precisely, let

U = {±u(i) : u(i) = ρiu(0), i =±1,±2, · · ·}
∪{±u(0)}∪{0}, 0 < ρ < 1,u(0) > 0

(4)

The associated quantizerf is defined as follows:

f (v) =





ui , if
1

1+δ
ui < v≤ 1

1−δ
ui

0, if v = 0
− f (−v), if v < 0.

(5)

where
δ =

1−ρ
1+ρ

(6)

The parameterρ above can be regarded as thequanti-
zation density. Note that a smallerρ corresponds to a
coarser quantizer.

A quantized feedback problem can be loosely formu-
lated as follows:Given the continuous-time system
(1), quantization sampling period and over-sampling
ratio, find the coarsest quantization density such that
there exists pre- and post-quantizer controllers to ei-
ther stabilize the system or to meet certain perfor-
mance requirement.

The main objective of the paper is to study the pos-
sible benefits of over-sampling in quantized feedback
control. We will study four scenarios:

S1: No Over-sampling. This corresponds to

H1(z) = [h11(z) 0 . . . 0]

H2(z) = h21(z)[1 1 . . . 1]T

S2: Over-sampling at Input Only. This corresponds
to

H1(z) = [h11(z) 0 . . . 0]

S3: Over-sampling at Output Only. This corresponds
to

H2(z) = h2q(z)[z−1 . . .z−1 1]T

(Note that the delay terms are there to ensure
causality of the controller.)

S4: Over-sampling at both Input and Output. This is
the general case.

3. STABILIZATION

In this section, we study the problem of quantized
feedback stabilization. In this problem, the process
noisew(t) (orw(k)) is set to zero,z(t) (orz(k)) is void,
and G(z) reduces toG22(z). The goal is to achieve
stabilization with a minimum quantization density.

We first introduce a benchmark scenario depicted in
Figure 3 so that we can compare the four scenarios
discussed earlier against it. In the benchmark scenario,
the full statex̃(k) is measured, where

x̃(k) = [xT(qk) xT(qk+1) . . . xT(qk+q−1)]T

G̃22(z) is the transfer function fromu(k) to x̃(k), and
K(z) is a dynamic state feedback controller.

u(k) x̃(k)

ξ(k) v(k)

G̃22(z)--

??

K(z)H2(z)

Q ¾

Fig. 3. State Feedback Model

For the special case whereq = 1, K(z) is static and
H2(z) = 1, the benchmark scenario was first studied in



(Elia and Mitter 2001) which showed that the coarsest
quantization density is given by

ρinf =
1−δsup

1+δsup
(7)

with

δ−1
sup= ∏

i
|λu

i (A)|= exp

(
T ∑

i
λu

i (Ac)

)
(8)

where λu
i (A) (resp. λu

i (Ac)) denotes the unstable
eigenvalues ofA (resp.Ac).

The result below shows that the same result holds in
general.

Theorem 1.Consider the benchmark scenario in Fig-
ure 3. The coarsest quantization density is given by
(7)-(8) and this can be achieved by taking

K(z) = [K1 0 . . . 0]; H2(z) = [1 1 . . . 1] (9)

That is, over-sampling does not improve the coarsest
quantization density.

Proof: It is obvious that the particular choice forK(z)
and H2(z) coincides with the special case discussed
above, and hence the value ofρinf in (7)-(8) can be
achieved. It remains to show that this value cannot be
reduced by using otherK(z) andH2(z). GivenH2(z),
it is known (Fu and Xie 2003a) that the corresponding
δsup is maximized when the full state of̃G22(z)H2(z)
is available for feedback and in the case,

δ−1
sup= ∏

i
|λ̃u

i |

where λ̃u
i are the unstable poles of̃G22(z)H2(z). So

δsup is maximized by takingH2(z) = [1 1 . . . 1]T . This
case is the same asq= 1 and thus, it suffices to choose
a staticK(z) as in (9).

Now, we consider the four scenarios in Figure 2.

Theorem 2.Consider the Scenario S1 in Figure 2. The
coarsest quantization density is given by (7) withδsup

given by

δsup=
1

infh(z) ‖Gh(z)‖∞
(10)

where

Gh(z) = (1−h(z)g1(z))−1h(z)g1(z) (11)

with

g1(z) = [1 0 . . . 0]G22(z)[1 1. . . 1]T

Furthermore, ifg1(z) has relative degree equal to 1 and
no unstable zeros, then the coarsest quantization den-
sity for Scenario S1 matches that for the benchmark
scenario.

Proof: Note that in Scenario S1,

H1(z)G22(z)H2(z) = h21(z)h11(z)g1(z)

Therefore, it is without loss of generality to take
h11(z) = 1. Denotingh(z) = h21(z), then this revised
quantized feedback stabilization problem has been
studied in (Fu and Xie 2003a) and the results in the
theorem are directly cited from (Fu and Xie 2003a).

Remark 1.What is implied in Theorem 2 is that for
any given ρ > ρinf , a stabilizing controller can be
constructed by takingh11(z) = 1 and solvingh21(z)
such that

‖Gh(z)‖∞ < δ−1 (12)

whereδ andρ are related as in (7).

Remark 2.There are two special cases where we can
obtain the analytical expressions forinfh(z) ‖Gh(z)‖∞
by applying the solution of the Navanlinna-Pick inter-
polation problem.

• Supposeg1(z) is minimum phase and its relative
degree is one. Then we have

inf
h(z)
‖Gh(z)‖∞ =

Np

∏
i=1
|λu

i |

whereλu
i ,1≤ i≤Np , are unstable poles ofg1(z).

This corresponds to the state feedback case.
• Supposeg1(z) has only one unstable poleλ and

non-minimum phase zeroszj ,1≤ j ≤Nz , and its
relative degree isν≥ 1. Then we have

inf
h(z)
‖Gh(z)‖∞ = |λ|ν

Nz

∏
j=1
|ζ jλ−1

λ−ζ j
|

Remark 3.It is well-known that g1(z) has relative
degree equal to 1 generically. However,g1(z) is not
minimum phase in general. Therefore, it is seen from
Remark 2 that Theorem 1 also implies that Scenario
S1 is in general inferior to the benchmark scenario.
See Section 5 for an example.

Theorem 3.The coarsest quantization density achiev-
able by Scenario S2 in Figure 2 is generically identical
to that of the benchmark scenario for anyq > 1. In
particular, this can be achieved by choosing

H1(z) = [1 0 . . . 0]

and H2(z) such thatH1(z)G22(z)H2(z) is minimum
phase and having relative degree equal to 1, which is
generically possible.

Proof: It is well-known thatH1(z)G22(z) has relative
degree 1 with co-prime elements generically. There-
fore, it is generically possible to chooseH0

2(z) such
that g1(z) = H1(z)G22(z)H0

2(z) is minimum phase
and has relative degree equal to 1. Hence, by taking
H2(z) = h(z)H0

z (z), the desired result is obtained by
applying Theorem 2 (Part 2) tog1(z) andh(z).

Theorem 4.The coarsest quantization density achiev-
able by Scenario S3 in Figure 2 is generically identical



to that of the benchmark scenario for anyq > 1. In
particular, this can be achieved by choosing

H2(z) = [z−1 . . . z−1 1]T

and H1(z) such thatH2(z)G22(z)H1(z) is minimum
phase and having relative degree equal to 1, which is
generically possible.

Proof. The proof is similar to that of Theorem 3.

Since both Scenarios S2 and S3 can do as well as
the benchmark scenario, there is no need to consider
Scenario S4 for quantized feedback stabilization.

4. H∞ CONTROL

In this section, we study a quantized feedbackH∞
control problem for the system in Figure 2. More pre-
cisely, given anH∞ performance boundγ > 0 and a
quantization densityρ, find, if it exists, a stabilizing
controller pair,(H1(z),H2(z)), such that the closed-
loop system in Figure 2 has‖Gzw‖∞ < γ. When a solu-
tion to this problem is available, the coarsest quantiza-
tion density can be found by using a simple bisection
algorithm.

Following the sector bound technique in (Fu and Xie
2003a), we can write

ξ(k) = (1+∆(v(k)))v(k) (13)

where

|∆(v(k))| ≤ δ, δ = (1−ρ)/(1+ρ) (14)

That is, the quantization error lies in a sector of sizeδ.
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Fig. 4. Auxiliary System forH∞ Control

We introduce an auxiliary system in Figure 4, where
τ > 0 is a scaling parameter to be searched. If we write
G(z) = {Gi j (z)}, i, j = 1,2, then it is easy to verify
that the transfer function from̄w to z̄ is given by

Ḡ(z) =




1
γ
(G11+G12H2HH1G21)

1
τγ

G12H2H

(τδ)HH1G21 δH1G22H2H


(15)

where

H(z) = (1−H1(z)G22(z)H2(z))−1 (16)

We have the following result:

Theorem 5.Given γ > 0 and ρ > 0, the quantized
feedbackH∞ control problem for the system in Fig-
ure 2 is solvable if there exists a controller pair
(H1(z),H2(z)) and a scaling parameterτ > 0 for the
system in Figure 4 such that

‖Ḡ(z)‖∞ < 1 (17)

Proof: It is straightforward to see that (17) implies
that the transfer function fromw to z in Figure 5 has
an inducedL2-norm less thanγ for any |∆(k)| ≤ δ. It
then follows from the sector bound approach in (Fu
and Xie 2003a) that the latter is equivalent to that the
quantized feedbackH∞ control problem for the system
in Figure 2 is solvable for the givenγ andρ.
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Fig. 5. Auxiliary System forH∞ Control

Now we remark on the design ofH1(z),H2(z) andτ.
From (15)-(16), it is clear that for a fixedτ, if H1(z)
(resp.H2(z)) is given, the design ofH2(z) (resp.H1(z))
is a standardH∞ optimization problem. However, un-
like the quantized feedback stabilization problems,
H1(z) andH2(z) can not be designed jointly, even for
scenarios S1, S2 and S3. Moreover, it is even not clear
whether the optimalH1(z) and H2(z) has the same
order asḠ(z).

To get around this difficulty, we propose to take either
H1(z) or H2(z) as a constant vector. The idea is this
vector is used to assign the zeros ofḠ22(z). We assume
below thatH1(z) = H1 is constant below although the
proposed algorithm below works either way. OnceH1

is given,H2(z) andτ can be optimized. For a fixedτ,
solvingH2(z) is a standardH∞ optimization problem.
The parameterτ is then searched numerically. We
caution that the minimum‖Ḡ(z)‖∞ is not necessarily
a convex function ofτ. In addition, because the over-
sampling ratio is typically small,H1 can be found
through a numerical search. To summarize, we use the
following iterative algorithm.

Iterative Design Algorithm forH∞ Control:

(1) For fixed H1 and τ, use anyH∞ optimization
algorithm onH1(z) to minimize‖Ḡ(z)‖∞.

(2) Search numerically for an optimalτ.
(3) Search numerically for an optimalH1.

Remark 4.We now comment on the assumption of
wc(t) being constant for each input-output sampling



period. This assumption can be easily relaxed. Ifwc(t)
is relaxed to be constant for each sub-sampling period
h0 = h/q0 for some integerq0 > 1, then a discrete-
time model similar to Figure 2 can be developed
using the lifting technique. The resulting model has
the same state dimension, but the dimension forw(k)
will be increased byq0 times. Other than this change,
the result in Theorem 5 still applies. Furthermore,
assumptions onwc(t) can be totally avoided by taking
q0→∞ in which case matrices related tow(k) become
infinite-dimensional linear operators.

5. SIMULATION EXAMPLE

To demonstrate the results in previous sections, we
consider an example of system (1) with

Ac =
[

1 0
0 2

]
; B1c =

[
1
−1

]
; B2c =

[
1
1

]

C1c =
[

1 0.5
0 0

]
; D11c =

[
0
0

]
; D12c =

[
0
1

]

C2c = [1 1]; D21c = 0; D22c = 0
We takeT = 0.4 andq = 2.

Firstly, we consider is quantized feedback stabiliza-
tion in Scenario S1. For this case, we have

g1(z) = [1 0]G22(z)
[

1
1

]
=

1.105(z−1.8181)
(z−2.2246)(z−1.4924)

Using Theorem 2, we know thatδsup is given by (10),
which is computed to be

δsup= 0.0132

In comparison, the value ofδsup for the quantized state
feedback is given by (8) which equals to

δsup=
1

2.2246×1.4924
= 0.312

Secondly, we consider quantization feedback stabi-
lization with Scenario S2 and take

H1(z) = [1 0]; H2(z) = h(z)[1 −1.32]T

which yields

[1 0]G22(z)
[

1
−1.32

]
=

0.02042(z−0.7076)
(z−2.2246)(z−1.4924)

which is minimum phase and has relative degree 1.
The correspondingδsupcoincides with that in the state
feedback case above, as predicted by Theorem 3.

Finally, we consider theH∞ control problem for both
Scenarios 1 and 2. The result is shown in Figure 6.
The two vertical lines correspond to the two values
of δsup as mentioned above. It is clear that the design
corresponds to S2 can tolerate a much largerδ.

Remark 5.The simulation example above confirms
that there is significant improvement by using over-
sampling. However, we point out that the improve-
ment given by over-sampling is not simply due to fast
sampling. In fact, if we takeq = 1 and T = 0.2 for
stabilization, it givesδsup= 0.2 only.
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Fig. 6. Simulation forδ vs.γ

6. CONCLUSION

In this paper, we have studied two quantized feedback
control problems for sampled-data systems: stabiliza-
tion andH∞ control. We have shown that the use of
over-sampling can provide a significant improvement
in achieving the coarsest quantization density. This is
shown in Theorems 1-4 and a simulation example.
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