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Abstract: This paper investigates the structure present in constrained linear state
estimation problems formulated as a quadratic optimization program subject to
linear inequality constraints. Polyhedral constraints on the system disturbance,
the measurement noise, and the initial state are considered. The result interprets
the measurement data and prior estimate as parameters and the parameter
space is partitioned into multiple regions. Within each region the state estimate
can be calculated as a piece-wise affine function of the measurement data and
prior estimate. The parameterized regions and coefficients of the piece-wise
affine function can be precomputed offline allowing a simplified approach in
implementing a moving horizon estimation scheme. Copyright c©2005 IFAC.
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1. INTRODUCTION

A state estimation problem consists of determin-
ing estimates of internal states of a dynamical
system based on measured data of the dynamical
system’s output. The fact that the system states,
in general, are not directly accessible from the
measurements makes state estimation problems
relevant to many areas of engineering such as
communications and process control. In the case
of constrained state estimation the variables are
known, a priori, to satisfy various constraints. For
example, states in physical systems which may be
known to lie between certain limits.

A strategy to determine the optimal state esti-
mate is to formulate the problem as a quadratic
program (Goodwin et al., 2005). One of the advan-
tages of this formulation is the simplicity of adding
linear inequality constraints. However, the pres-
ence of inequality constraints precludes general
recursive solutions. Thus the problem size grows

without bound as more measurements are taken
into account. To counteract the growing complex-
ity, moving horizon estimation (MHE) schemes
have been proposed and investigated by many
authors, e.g., Muske et al. (1993), Robertson et

al. (1996), Rao et al. (2001).

A common point between optimal constrained
estimation and control problems is that, under
suitable conditions, both problems can be for-
mulated as quadratic programs. Recent papers
have exploited the underlying geometric struc-
ture of quadratic programming to obtain explicit
solutions for receding horizon control of con-
strained linear systems (e.g., Seron et al., 2003).
The present paper applies these concepts to the
framework of constrained linear state estimation
in a moving horizon configuration. Polyhedral
constraints on the disturbance, the measurement
noise, and the initial state are considered. The
result partitions the space of the measurement



data and prior estimate into multiple regions, and
within each region the state estimates can be
calculated as a piece-wise affine function of the
measurements and prior estimate.

The layout of the remainder of this paper is as
follows. In the next section, the constrained linear
estimation problem is considered and formulated
as a quadratic program. In Section 3, the struc-
ture of the quadratic program subject to linear
inequality constraints is explored, and an explicit
solution to the problem is obtained. In Section 4,
a MHE scheme using explicit solutions is consid-
ered. Finally, an example to illustrate the regions
of the explicit solution is examined in Section 5
and some conclusions are presented in Section 6.

2. CONSTRAINED FIXED HORIZON
ESTIMATION

Consider the problem to estimate the system
state xN given measurements y1, · · · , yN for the
following linear time invariant, discrete system

xk+1 = Axk + Bwk, k = 0, · · · , N − 1, (1a)

yk = Cxk + vk, k = 1, · · · , N, (1b)

where the initial state x0 ∈ R
n, input disturbance

wk ∈ R
m, and measurement noise vk ∈ R

p are
known to satisfy the following constraints:

x0 ∈ X0, wk ∈ W, vk ∈ V. (2)

In (2), X0, W and V are nonempty, polyhedral
sets, that is, the intersection of a finite number
of closed half-spaces. In addition, assume that the
disturbance sequence {wk} and the noise sequence
{vk} are i.i.d. sequences having truncated Gaus-
sian distributions
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for wk ∈ W and zero otherwise, and
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for vk ∈ V and zero otherwise; with Q > 0 and
R > 0. Also, assume that x0 is independent of
{wk} and {vk} and has a truncated Gaussian
distribution
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,

for x0 ∈ X0 and zero otherwise; with P0 > 0.

The constrained fixed horizon linear estimator
that seeks the joint a posteriori most probable

(JAPMP) estimate can be formulated as the so-
lution to the following optimization problem:

Given a prior estimate x̄0 and measurement data
{y1, · · · , yN}, solve

min
x0,w0,··· ,wN−1

J(x0, w0, · · · , wN−1), (3)

subject to (1)–(2). In (3), the objective function
is defined by

J(x0, w0, · · · , wN−1) ,

1

2
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2
R−1 ,

(4)
where ‖x‖2

M denotes xTMx for a real vector x
and real symmetric matrix M . Further detailed
discussion of the above optimization problem in
connection to JAPMP state estimation can be
found in Goodwin et al. (2005).

The optimization problem (1)–(4) can be ex-
pressed in a more concise form by defining the
vectors

v ,











x̄0 − x0

v1

...
vN











, w ,











x0

w0

...
wN−1











, y ,











x̄0

y1

...
yN











. (5)

Applying the above definitions, the linear con-
straints defined by the system equations (1) can
be written as

y = Gw + v,

with

G ,
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.

Finally, using the above definitions and

Q−1
, diag

{

0n×n, Q−1, · · · , Q−1
}

,

R−1
, diag

{

P−1
0 , R−1, · · · , R−1

}

,

the objective function (4) can be rewritten as

J(w) =
1

2
wTQ−1w +

1

2
(y − Gw)

T
R−1 (y − Gw)

=
1

2
wTHw + wTFy + J̄ , (6)

where J̄ is independent of w, and

H = Q−1 + GTR−1G, F = −GTR−1. (7)

The polyhedral constraints (2) can be expressed
as a linear inequality

Lw ≤ K, (8)

where, without loss of generality, the matrix L and
the vector K can be expressed as

L =

[

Φ
−Φ

]

, K =

[

α
β

]

+

[

Λ
−Λ

]

y. (9)

In (9), Φ is a q × (Nm + n) matrix, Λ is a q ×
(Np + n) matrix, α and β are q × 1 vectors such
that α+β > 0, component-wise. The form (8)–(9)
can be used to express q interval type constraints
on the components of x0, wk and vk.



Utilizing the aforementioned definitions, the opti-
mization problem defined by equations (1)–(4) is
equivalent to the following quadratic program

min
w

{J(w) : Lw ≤ K}. (10)

Let x̂k|N denote the state estimate at time k given

the measurements y1, · · · , yN and let x̂k , x̂k|k.
The solution to the optimization problem (10) is
the vector ŵT = [x̂0|N , ŵ0|N , · · · , ŵN−1|N ], which
yields the state estimate x̂N ,

x̂N = ΓNŵ, (11)

where
ΓN =

[

AN AN−1B · · · B
]

.

The constrained estimation problem (1)–(4) (and
the equivalent concise formulation (10)) has been
investigated by many authors (e.g., Rao et al.,
2001). In practice, the problem is usually imple-
mented in a moving horizon configuration, i.e., the
fixed horizon problem is solved at each time over a
window of size N and the window is moved at the
next time instance as a new measurement vector
becomes available. The quadratic program (10)
has, then, to be solved at each time instant. All of
the aforementioned references propose the use of
numerical optimization methods for the solution
of the quadratic program. However, numerical so-
lutions to quadratic programs can be computa-
tionally intensive and may limit the applicability
to relatively slow processes. Thus, it is of interest
to study the possibility of pre-computing the so-
lution off-line so as to limit on-line computations
to a minimum.

3. EXPLICIT SOLUTION TO CONSTRAINED
FIXED HORIZON ESTIMATION

Consider the equation

J(w) =
1

2
wTHw + wTFy + J̄ = c, (12)

where w ∈ R
Nm+n and c is a constant. This de-

fines an ellipsoid in R
Nm+n centred at −H−1Fy.

The linear inequality constraint (8)–(9) defines a
polyhedron in R

Nm+n where the solution to the
constrained optimization problem (10) must lie.
The elliptical contour (12) can be transformed
into a spherical contour by applying the trans-
formation

w̃ = H1/2w, (13)

allowing the cost function (6) to be written as

J(w̃) =
1

2
w̃Tw̃ + w̃TH−1/2Fy + J̄ . (14)

Similarly, applying the transformation to the lin-
ear inequality constraints (8)–(9) yields

Φ̃w̃ ≤ α + Λy, (15)

−Φ̃w̃ ≤ β − Λy, (16)

where Φ̃ = ΦH−1/2. It follows that in minimiz-
ing equation (14) subject to the linear inequality
constraints (15)–(16), the optimal solution is ob-
tained by the Euclidean projection of the uncon-
strained solution onto the constraint polyhedron
defined by the linear inequalities (see Seron et

al., 2003).

In the absence of constraints, or when the uncon-
strained solution lies inside the constraint polyhe-
dron, the optimal solution to the quadratic pro-
gram is the centre of the ellipsoid given by

ŵuc = −H−1Fy, ˜̂wuc = −H−1/2Fy, (17)

where the hat ˆ indicates the optimal solution,
and the subscript uc indicates an unconstrained
solution. Observe that the second of equation (17)
defines a transformation

w̃ = −H−1/2Fy, (18)

between the vector space of parameters y and the
vector space of decision variables w̃.

In the case when the unconstrained solution lies
outside the constraint polyhedron, the optimal
solution lies on a hyperface of the constraint
polyhedron defined by a set of active constraints of
(15)–(16). For each set of active constraints there
is a corresponding region in R

Nm+n where the
optimal solution in the transformed coordinates
w̃ can be obtained by the Euclidean projection of
the unconstrained solution onto the corresponding
hyperface of the constraint polyhedron.

If the following, we proceed to define the active re-
gions corresponding to a set of active constraints.
For a given matrix M , denote Mi, where i is a
set of indices, as a submatrix formed by selecting
the rows of M with indices in i. Let q = rank Φ,
and J , {1, 2, · · · , q}. A face of the constraint
polyhedron is given by the intersection with the
constraint polyhedron of a hyperplane defined by
a subset of Ñ ∈ J equalities within equations
(15)–(16). For each face of the polyhedron, let
l , {l1, l2, · · · , lN̄ : lk ∈ J} identify the rows
within (15)–(16) such that equality holds, and let
∆ ∈ R

N̄ be a vector with elements ∆k given by

∆k ,

{

αlk if Φ̃lkw̃ = αlk + Λlky,

−βlk if Φ̃lkw̃ = −βlk + Λlky.
(19)

That is, for each face of the polyhedron, the ele-
ments of the vector ∆ are the elements of vectors α
or β where the equality holds for the hyperplane.
Combining definition (19) and equations (15)–
(16), a hyperplane of the constraint polyhedron
is given by

Φ̃lw̃ = ∆ + Λly. (20)

Finally, let s , J − l = {s1, s2, · · · , sq−N̄ : sk ∈
J, sk /∈ l} identify the constraints that are not
active for each face.



The following results define the active regions in
R

Nm+n for the pair (l,∆) of active constraints and
give the explicit expression of the corresponding
state estimate x̂N .

Theorem 1. (Goodwin et al. (2005), § 6.5). The ac-
tive region corresponding to the face characterized
by the equality constraint (20) is given by

S[Φ̃lΦ̃
T
l ]−1[Φ̃lw̃ − Λly − ∆] ≤ 0, (21)

−βs ≤ Φ̃sw̃ − Λsy − Φ̃sΦ̃
T
l [Φ̃lΦ̃

T
l ]−1×

[Φ̃lw̃ − Λly − ∆] ≤ αs,
(22)

where S is a sign diagonal matrix such that its
(k, k)-entry is Skk = 1 if ∆k = −βlk and Skk = −1
if ∆k = αlk . ◦

Upon substituting transformation (18), the re-
gions characterized by Theorem 1 are parameter-
ized by the vector y = [x̄0, y1, · · · , yN ]T, where
x̄0 is the prior estimate and y1, · · · , yN are the
measurements. Thus the active regions can be
characterized by the data vector y. This is for-
malized in the following corollary.

Corollary 2. The projection onto the parameter
space y of the active regions defined by Theorem 1
is given by

S[Φ̃lΦ̃
T
l ]−1[−(Φ̃lH

−1/2F + Λl)y − ∆] ≤ 0,
(23)

−(Φ̃sH
−1/2F + Λs)y + Φ̃sΦ̃

T
l [Φ̃lΦ̃

T
l ]−1×

[(Φ̃lH
−1/2F + Λl)y + ∆] ≤ αs,

(24)

(Φ̃sH
−1/2F + Λs)y − Φ̃sΦ̃

T
l [Φ̃lΦ̃

T
l ]−1×

[(Φ̃lH
−1/2F + Λl)y + ∆] ≤ βs.

(25)

◦

Having defined the active regions, the constrained
solution to the optimization problem can be ob-
tained by the following theorem.

Theorem 3. For each active region defined by
equations (23)–(25), the optimal state estimate
x̂N is given by

x̂N = Mly + bl, (26)

where

Ml = ΓNH−1/2
(

Φ̃T
l [Φ̃lΦ̃

T
l ]−1Λl − H−1/2F

+ Φ̃T
l [Φ̃lΦ̃

T
l ]−1Φ̃lH

−1/2F
)

, (27)

bl = ΓNH−1/2Φ̃T
l [Φ̃lΦ̃

T
l ]−1∆. (28)

PROOF. The result follows from Goodwin et

al. (2005) Theorem 6.5.2 with the state estimate
given by (11).

2

This result allows the state estimate x̂N to be
computed as a piece-wise affine function of the
vector y, where the coefficients of the affine func-
tions can be precomputed offline.

4. MOVING HORIZON IMPLEMENTATION

In practice, the fixed horizon problem (1)–(4) is
usually implemented in a moving horizon sense,
that is, at each time instance k, problem (1)–(4)
is solved over a window of size N that is “moved”
forward as new measurements become available.
An important component in moving horizon esti-
mation is the incorporation of an arrival cost. It
has been shown in Rao et al. (2001) that this ele-
ment is pivotal to the stability and performance of
the estimator. In the case of the objective function
of the form defined by equation (4), the arrival
cost θ(xk−N ) is the first term on the right hand
side of (4)

θ(xk−N ) ,
1

2
‖xk−N − x̂k−N‖2

P−1

k−N

, (29)

where x̂k−N is the moving horizon state estimate
obtained at time k−N , and Pk−N is a qualitative
measure of that state estimate. For the fixed
horizon problem (1)–(4), k in equation (29) equals
N , and x̂0 = x̄0.

Several possibilities of including an arrival cost for
constrained linear systems have been examined
by Rao et al. (2001). In particular, using (29)
as the arrival cost and letting Pk−N be equal to
the steady-state solution of the Riccati equation
associated with the Kalman filter leads to an
estimator known as the steady-state MHE.

The steady state MHE for a horizon length N
solves, at time k,

min
xk−N ,wk−N ,··· ,wk−1

φ(xk−N , wk−N , · · · , wk−1) (30)

where

φ(xk−N , wk−N , · · · , wk−1) =

1

2

k−1
∑

j=k−N

‖wj‖
2
Q−1 +

1

2

k
∑

j=k−N+1

‖vj‖
2
R−1 + θ(xk−N ),

(31)
subject to (1) and (2). In the case of a linear
time-invariant system, the solution to the MHE
problem (30)–(31) is identical to the fixed horizon
problem (3)–(4). (For the fixed horizon problem
(3)–(4), time 0 must be interpreted as the current
time k of the moving horizon implementation.)

Implementing the moving horizon estimator de-
scribed above requires N past estimates to be
stored. Each of these stored estimates is used
N steps ahead. Namely, the stored past estimate
x̂k−N is propagated to the current estimate win-
dow at time k as part of the arrival cost (29). Upon
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Fig. 1. MHE scheme for horizon N = 3.

obtaining the current state estimate x̂k, this new
estimate is to be stored and used at a future time,
as the estimation window moves to time k + N ,
to obtain the estimate x̂k+N . This is a common
method of propagating the state estimate between
estimation windows. An illustration of this idea
for a MHE scheme with horizon N = 3 is depicted
in Figure 1.

At each time instance k, the solution to the
steady-state MHE can be obtained using the ex-
plicit solution. Problem (30)–(31) is parameter-
ized by the vector y = [x̂k−N , yk−N+1, · · · , yk]T ∈
R

Np+n (cf. (5)–(6)) and the corresponding active
regions are defined in Corollary 2. Since the linear
system dynamics (1) and polyhedral constraints
(2) are time invariant, it follows that the regions
are also time invariant allowing them to be com-
puted a priori and used repeatedly. Similarly, the
coefficients of the piece-wise affine function that
gives the state estimate for every region are time
invariant and need to be calculated once only.

The solution to problem (30) can thus be obtained
by first finding, for a given data vector y (mea-
surements and previous estimate), the region for
which the vector y satisfies equations (23)–(25) in
Corollary 2. Upon finding the active region, the
coefficients of the piece-wise affine function (26)
are uniquely determined and the state estimate
x̂k is obtained with a simple calculation.

5. SIMULATION EXAMPLE

We now present a simple example to illustrate the
parameter space partition of an explicit solution.

Example 5.1. Consider a constrained estimation
problem of the form (1)–(4) where the linear
system is given by

A =

[

1.589 −0.771
1 0

]

, B =

[

0.5
0

]

,

C =
[

0.222 0.201
]

.

We consider a truncated Gaussian distribution on
the disturbance sequence {wk}, that is, the distri-
bution is a scaled Gaussian distribution N(0, Q)
in the region [−1, 1] and zero elsewhere. The sys-
tem state x0 and the noise sequence {vk} are

assumed to be unconstrained. We take Q = 8,
R = 0.1, and P0 is obtained from the steady
state error covariance of the Kalman Filter. The
truncated Gaussian distribution imposes a linear
inequality constraint of the form (9) with Φ =
[0Nm×n INm×Nm], α = β = (1, · · · , 1)T, and
Λ = 0Nm×Nm+n.

The estimation problem is formulated in a moving
horizon configuration with horizon length N = 3.
To initialize the estimator, the first three initial
state estimates x̂j , 0 ≤ j ≤ 3 are set equal to
the true system states. For the simulation, the
initial system state x0 = [10 − 10]T was set to
achieve an exponentially decaying state evolution.
At time instance k, the prior estimate x̄0 in the
quadratic objective function (4) is taken as the
state estimate from the previous horizon window,
that is, x̄0 = x̂k−N |k−N . The resulting estimator
is the steady-state MHE.

The piece-wise affine solution given in Section 3
was computed for the above estimation problem.
Recall that the regions are parameterized at time
k by the vector y = [x̂k−N , yk−N+1, · · · , yk]T.
To be able to illustrate the partitions in two
dimensions, the state space partition, shown in
Figure 2, was obtained by projecting the active
regions onto the space of the vector x̂k−N and
letting yi, k − N + 1 ≤ i ≤ k, be equal to zero.
The first state estimate shown in the figure, where
the prior estimate was obtained from a MHE,
is x̂6. (Estimates before x̂6 are obtained with a
priori estimates that are, in this case, equal to the
actual system states.) State estimate x̂6 and the
successive estimates are plotted in Figure 2 along
with the actual states for comparison.

Finally, to see how the regions are affected by the
horizon length and the measurement noise vari-
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Fig. 2. Moving horizon state estimates x̂6, x̂7,
x̂8, · · · , in the state space partition for Ex-
ample 5.1 with horizon length N = 3 (cut
corresponding to yk−2 = yk−1 = yk = 0).
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Fig. 3. State space partition for combinations of R = 0.1, 0.4, 2.0 and N = 2, 3, 4 for the system
described in Example 5.1 (cuts corresponding to yk−N+1 = yk−N+2 = · · · = yk = 0).

ance, successive values of horizon length N = 2,
N = 3 and N = 4 in combination with R = 0.1,
R = 0.4, R = 2.0 were used in the objective
function (4). The resulting regions corresponding
to the combinations of N and R are shown in
Figure 3. Observe in the figure that the uncon-
strained (central) regions increase in size as the
measurement noise variance R increases. Lastly,
the increase in the horizon length N generates ad-
ditional regions in the parameter-space partition.

6. CONCLUSIONS

We have shown that an explicit solution can be
obtained for a fixed horizon constrained linear
estimation problem formulated as a quadratic pro-
gram. The optimal JAPMP state estimator can
thus be precomputed as a piece-wise affine func-
tion of the measurement data and prior state esti-
mate. The proposed explicit solution can then be
used to simplify the online calculations required in
the moving horizon implementation of the state
estimator, which constituted one of the motiva-
tions of the present study. Another motivation for
the explicit solution is to get a better understand-
ing of the structure of the state estimator and the
influence of different design (tuning) parameters.
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(2005). Constrained Control and Estimation.

An Optimisation Approach. Springer.
Muske, K.R., J.B. Rawlings and J.H. Lee (1993).

Receding horizon recursive state estimation.
American Control Conference pp. 900–904.

Rao, C.V., J.B. Rawlings and J.H. Lee (2001).
Constrained linear estimation — a moving
horizon approach. Automatica 37, 1619–1628.

Robertson, D.G., J.H. Lee and J.B. Rawl-
ings (1996). Moving horizon-based approach
for least-squares estimation. AIChE Journal

42(8), 2209–2224.
Seron, M.M., G.C. Goodwin and J.A. De Doná
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