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Abstract: The problem of output regulation with guaranteed transient performances
for buck-boost converter with inverting topology is discussed. The fast dynamical
controller with the relative highest derivative of output signal in feedback loop is
used. Consequently, two-time-scale motions are induced in the closed-loop system.
Stability conditions imposed on the fast and slow modes and sufficiently large mode
separation rate can ensure that the full-order closed-loop system achieves the de-
sired properties in such a way that the output transient performances are desired
and insensitive to external disturbances and parameter variations in the system. The
existence of stable limit cycle in the fast motion subsystem gives the robustness of the
output transient performances in the presence of external disturbance and parameter

uncertainty. Copyright (©2005 IFAC
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1. INTRODUCTION

There 1s a broad set of references devoted to anal-
ysis and design of switching buck, boost, or buck-
boost converters. In the most of references the
derivation of the converter circuit topology is dis-
cussed really (Maksimovic and Cuk, 1991; Jian-
ping Xu, 1991; Mohan et al., 1995; Giral et al.,
2002; Bryant and Kazimierezuk, 2002), rather
than methods of switching controller design.

The subject matter of this paper is the guaranteed
cost control for buck-boost converter with invert-
ing topology under uncertainties of parameters
and external disturbances represented by vary-
ing value of a load resistance. Hence, optimiza-
tion techniques can not be applied for the dis-
cussed control problem solution. As fas as nons-
mooth nonlinearities are inherent property of such
power converters, then the control system design
methodology based on sliding modes (Cunha and
Pagano, 2002; Shtessel et al., 2002; Sira-Ramirez,

2002) is widely used for this purpose in presence
of uncertainties.

The control system with the highest derivative in
feedback (Vostrikov, 1977) applied to a buck-boost
converter is discussed in the paper as well as pecu-
liarities caused by fast oscillations in such system.
Note that the analysis of fast oscillations by the
describing function method in the control systems
with the highest derivative and differentiating fil-
ter in feedback was discussed in (Suvorov, 1991).
In the recent paper the modified control law struc-
ture (Yurkevich, 2004) with the highest derivative
of output signal in feedback loop is used and by
that the integral action can be included in the con-
trol loop.

The paper is organized as follows. First, a model of
the buck-boost converter with inverting topology
is defined. Next, the discussed design method, in-
fluence of fast oscillations, and simulation results
are presented.



2. BUCK-BOOST CONVERTER
2.1 Buck-boost converter with inverting topology

Let us consider the buck-boost converter with in-
verting topology, shown in Fig. 1. The switched
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Fig. 1. Buck-boost converter circuit.

model of the buck-boost converter is given by

FE
i=Fu— (-, (1)
. 1
By=—mors %(1-@, (2)

where 21 = I, 29 = Vo = V,u: and u takes values

in the set {0,1}.

2.2 Buck-boost converter control task

The control problem is to provide the following
condition:

lim Ve (t) = V4 (3)

t—o0

where Vg is the reference value (reference input)
of voltage drop V¢ across a capacitor. Moreover,
the controlled transients Ve (1) — Vcd should have
desired transient performance indices. These per-
formance indices should be insensitive to parame-
ter variations of the buck-boost converter and ex-
ternal disturbance represented by varying value of

the resistor R = R(t).

In the paper a two-step approach will be used:
an inner controller of the current 77 through the
inductor with inductance L is desined such that

Jim 71 (1) = 1, (4)

and then an outer controller is conctructed in or-
der to meet the requirement (3).

3. INNER CONTROLLER DESIGN
3.1 System with continuous control variable

Let 21 be the measurable output of the system
(1)=(2) and consider the system given by

o1 Ty _
l‘z——RCl‘Q—'—C(l—U), (6)

where u 1s the continuous control variable. Let u €
(0,1).
First, assume that

vie[0,) (7)

21(t) = 1 = const,

where 71 = I¢. Then from (5) and (7), we get

_E+.l‘27 i)
0= 7T (8)

Denote #,, = u(t)| #1(t) = r, s the solution of (8).
Hence, we obtain
o F + x5

Uy,
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Since #,, € (0, 1), we obtain 25 € (0,00). Then the
system (5)—(6), having dimension 2, degenerates
into the system

r1 =71 = const,
T9g=———2 — [1—
T TRCTTC E+ 25

o

having dimension 1. The degenerated system (10)
has the unique asymptotically stable positive equi-
librium point x5 given by

47°1R
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. (11)

Therefore, the internal stability of the system (5)—
(6) is satisfied under condition that 21 = 1 (or, in
other words, the system (5)—(6) is the minimum
phase system).

Second, the variable 21 is considered as the output
of the system (5)—(6). From (5), it follows that the
relative degree of this system equals one. Hence,
let the desired output behavior of 21 be assigned
by l‘(ll) = F(x1,71), where

1
2V = Flri =], (12)

The deviation between the desired dynamics
F(z1,7r1) assigned by (12) and the actual value
of the relative highest output derivative l‘(ll)
noted by ef’ = F(zq,7) — :L‘(ll)7 where ef is the
error of the desired dynamics realization. Then the
control problem represented by (4) corresponds to
the insensitivity condition given by

1s de-

ef =0. (13)



Third, the relative degree of the system (5)—(6)
equals 1 and its internal stability 1s satisfied.
Therefore, the control law with the 1st output
derivative in feedback (Yurkevich, 2004)

pa®) = kT — 2] -2 (14)

can be applied in order to meet the require-
ment (13), where p; is a small positive parame-
ter. Note that (14) corresponds to proportional-
integral (PT) controller.

We see that in the closed-loop system given by
(5)—(6) and (14), the two-time-scale motions are
induced as p3 — 0. Hence, we obtain the fast-
motion subsystem (FMS) given by

B E4 xq9 r — 2 x
™t + &y 7 2U:k1{ 1T1 1+f2}7(15)

where 1, 25 are the frozen parameters during the
transients in (15) and Tys = p1 L/ (E + 22) is the
time constant of the fast-motion subsystem. We
see that the block diagram of the FMS (15) can
be displayed as shown in Fig. 2. We see that the
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Fig. 2. Block diagram of the FMS in the closed-
loop system (5)—(6) controlled by (14).

FMS (15) is stable. Then, letting g — 0 in (15),
we obtain the steady state (more precisely, quasi-
steady state) of the FMS (15), where u(t) = u®()

and
_ L Ty — 1 X9
= P 1
" E+x2{ T +L} (16)

Substitution of (16) into (5)—(6) yields the slow-
motion subsystem (SMS) given by

. 1
3512771[7%—1‘1]7 (17)
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X[ E—|—J:2< T, +L>] (18)
Note that the desired behavior of 1 in the SMS
(17)—(18) is satisfied. By letting #; = r1 in (17)-
(18), we obtain the degenerated system (10).
Take E = 15V, [ = 0.02H, C = 0.001F, R =
200 2. By linearization of (10) at the equilibrium
point x5 we obtain z = a;n:2 where

1 27“1

RO ol TranR/E]
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and Tj,¢ = —1/a;ne is the time constant of the
linearized internal subsystem at the point 3.

From the above we get 25 ~ 3.28 V, T}, =~ 0.03
S, Tims =~ 2.2 - 103 s when 7 = 0.02 A. Note
that Tine > Tims where Thps — 0 as g — 0.
Similarly, 25 ~ 48 V, Ty & 0.0036 s, Tips ~
0.63 - 1073 s when 71 = 1 A. Note that Tj,; >
Ttms again.

Take 77 = 0.02 s, u1 = 0.002 s, and k; = 0.001
where T} and gy are selected such that 77 > T,
and Tipt > Ty, to produce slow-fast decomposi-
tion in the closed-loop system. Simulation results
for the model (5)—(6) controlled by the algorithm
(14) are displayed in Fig. 3, where the initial con-
ditions are 21(0) = 0.02 A, 22(0) = 3.26 V, u(0) =
0, and ¢t € [0,1] s. The external disturbance is
represented by the varying resistance R = R(t),
shown in Fig. 1.
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Fig. 3. Simulation results for the system (5)—(6)
controlled by (14).

3.2 Switching regulator design

As the next step, let us consider the switching reg-
ulator given by

pd = e {17 =] = VY, (19)

us(t) = ug(t — 1), (20)
u = Ltsen(uz) (21)
2

Hence, in contrast to Fig. 2, the block diagram of
the FMS has modified form, shown in Fig. 4.
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Fig. 4. Block diagram of the FMS in the closed-
loop system (1)—(2) controlled by (19)—(21).

The time delay 7 is included here in order to sat-
1sfy the conditions for limit cycle existence in the



FMS shown in Fig. 4. Assume that the nonlinear-
ity input is u2(t), where

us(t) = ul + Asin(wt)

with u§ the constant bias signal. Hence, due to the
integral action incorporated in feedback loop, we
have

t+27/w
eF()dt =0 (22)

t

for the stationary oscillations in the FMS. So, the
average value of e corresponds to the insensitiv-
ity condition (13) and the desired behavior of z4(¥)
with assigned dynamics (12) is satisfied if suffi-
ciently fast oscillations take place. Therefore, the
expession (22) represents the insensitivity condi-
tion of 21 (t) with respect to external disturbances
and variations of parameters of the buck-boost
converter in the average sense. We can see that
the key element to reach the desirable behavior of
z1(t) is the existence of the fast oscillations in the

FMS.

Then, in accordance with the describing func-
tion method, let us replace the relay switch by
its quasi-linear approximation. Let the integra-
tor k1 /(p1s) in Fig. 4 displays a low-pass filtering
property. Consider the output u(t) of the nonlin-
earity represented by its Fourier series

u(t) = up + i{bk sin(kwt) + ¢ cos(kwt)} (23)
k=1

with coefficients ug, by, ci. Note that the particu-
lar feature of the discussed system is the nonsym-
metrical limits of the nonlinearity. Hence, uJ # 0,
ug # 0, and it is known that for the given nonlin-
earity we have (see, e.g., (Paltov, 1975))

_1 1. 4 ug
u0_§—|—;sm <Z>7 (24)

2 ul1?
by==4/1— |2 25
=2 -4 (25)
C1:07 (26)

where A > [uj| and y = sin™'(x) denotes the in-
verse sine of x. Therefore, the sinusoid plus bias
describing function of the discussed nonlinear ele-
ment has the gain for the bias

ug/ud

and the gain for the sinusoid

Gn(j, A) = % 1- [“—2]2 (27)

Assume that F' = 0. Then, by the block diagram
shown 1n Fig. 4, we get the balance equation for
the constant bias signal u3 of the discussed FMS:

1.y [ 9
R 23| _ —0. (2
|:2—|—ﬂ_sm <A>] o 0. (28)

The 1st order harmonic balance equation for the
FMS shown in Fig. 4 yields

2(E + .l‘g)kle_jﬂu

1 —
jppiwmTAL

From (29) we obtain

m?A* — A7 4+ [ud)? =0, (30)
T
= — 31
v 27’ (31)
where
iy L?

m= m (32)

The oscillations in the FMS induce the oscillations
in 21(¢) and have an influence on accuracy of sta-
bilization for z1(t). Let e,s. be the amplitude of
the stationary oscillations of z1(¢) with frequency
w. In accordance with Fig. 4, we get to a first ap-
proximation

1
Cosc N 'Z—A
1

given that w is sufficiently large. Note that w —
oo and A — 0 as 7 — 0. Hence, e,,. — 0 and an
acceptable level of ripple for the output voltage
Vour can easily be provided by selection of 7.

Take 77 = 0.02 s, gy = 0.002 s, k&1 = 0.001, and
7 = 0.001 s. From (31) we get w = 1570.8 rad/s.
Let R = 200€2. The joint numerical resolution of
(28) and (30) yields u§ ~ —0.101, A ~ 0.143,
€ose = 0.286 V when 25 = 5 V, and ug ~ 0.327,
A= 0.437, epse = 0.874 V when 25 = 50 V.

Simulation results for the switched system (1)-
(2) controlled by the algorithm (19)-(21) are dis-
played in Fig. 5, where the initial conditions are
21(0) = 0.02A, 25(0) = 3.26V, u1(0) = 0 and
R = 200 Q for all ¢ € [0,0.3] s. The simulation

results confirm the analytical calculations.

4. OUTER CONTROLLER DESIGN

Let us consider the block diagram of the control
system shown in Fig. 6 where the external dis-
turbance 1s represented by the varying resistance
R = R(t) of the buck-boost converter (BBC) and
there are two controllers: the designed above inner
switching controller C'; and an outer continuous

controller C'5. Here, we denote ry = Vo‘fn.
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Fig. 5. Simulation results for the switched system

(1)—(2) controlled by (19)—(21).
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Fig. 6. Block diagram of the closed-loop system
with an inner switching controller C'; and an

outer continuous controller C5.

Assume that 1 = r1 in the average sense for the
stationary oscillations in the FMS. Then the be-
havior of zs(t) can be approximately described
by the degenerated system (10) of the 1st order,
where 71 is the new control variable, z4(t) is the
new output variable, and the relative degree of the
degenerated system (10) equals 1. Let the desired
behavior of x5 be assigned by

1
28 = 2= 22). (33)

Therefore, the structure of C5 can be selected in
the form

portt) = ko {T5 ey — 2] — 23} (34)

and designed similar to (14). Hence, from the
closed-loop system given by (10), (34), where the
two-time-scale motions are induced as po — 0, we
obtain the fast-motion subsystem (FMS) given by

(1) ko E/ _ ro— 22 | kaxo
pory "+ 7C(E—|—l‘2)r1 —kz{ T + C }7
where x5 is the frozen parameter. We get that
Tfms = usC(F + 22)/(koF) is the time constant
of this fast-motion subsystem where Tfm s €(0.61-
1072,2.1-1072) when z5 € (3.26,48). The corre-

sponding SMS is the same as (33).

We can take 75 = 0.1 s, pus = 0.01 s, ko = 0.002
where T5 and s are selected such that 75 > Tfm s
to produce slow-fast decomposition in the closed-
loop system given by (10), (34).

Finally, in order to perform numerical simulation,
let us rewrite the inner switching regulator (19)-
(21) and the outer controller (34) in the form

dU11 ]fl 1
_ - —k
T —[r1—21], w n [u11 121],
1
() =w(t —7), u= —H%(uz)7 (35)
du k 1
-2 [7“2 - 1‘2] r = —[U21 - /le‘2]~

dt T2 H2

Simulation results for the switched model (1)—(2)
controlled by the algorithm (35) with the assigned
above parameters are displayed in Fig. 7 for the
time interval ¢ € [0,0.3] s, where ro = 49V and
the initial conditions are the following: 21(0) =

llA, .1‘2(0) = 50\/7 U11(0) = 07 U21(0) =0.11.

5. CONCLUSIONS

The presented method of switching regulator de-
sign allows us to obtain the desired transients for
buck-boost converter under uncertainty in model
description and in the presence of unknown exter-
nal disturbances. The discussed control law with
the relative highest derivative and small param-
eter (high gain) in feedback produces slow-fast
decomposition in the closed-loop system. It has
been shown that if a sufficient time-scale separa-
tion between the fast and slow modes and stability
of FMS are provided by selection of controller pa-
rameters, then SMS equation has the desired form,



and, thus, we have the desired transient perfor-
mance indices of the current I; and the voltage
Vout 1n the closed-loop system.
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Fig. 7. Simulation results for the switched system

(1)—(2) controlled by the algorithm (35).



