
 1

RECONFIGURATION OF DISCRETE EVENT SYSTEM CONTROLLERS WITH DYNAMIC
SENSING SET

Jing Liu and Houshang Darabi

University of Illinois at Chicago, Department of Mechanical and Industrial Engineering

Abstract: This paper presents a finite automaton model to describe the control
reconfiguration of discrete event systems (DES) with respect to the dynamic changes of
observation means, especially when the changes are not acceptable for the conventional
observability theory. The model includes other classes of events besides the regular DES
events, such as repair and failure events of the observation means. Given a regular DES
controller, through a systematic procedure it is extended to include the effect of those
events on the control. The potential application of this work is the optimization of the
reconfiguration strategies. Copyright © 2005 IFAC

Keywords: supervisory control, observability, sensor failures, formal methods.

1. INTRODUCTION

This paper models the control reconfiguration of
DES with respect to the change of observation means.
Specifically, the effect of the reconfiguration
strategies on DES when the change of observation
means is not acceptable for the conventional
observability theory is addressed.

The investigation on the observability theory of DES
was triggered by two parallel and original works of
(Lin and Wonham, 1988) and (Cieslak, et al., 1988).
The DES observability is critical for the DES
controller as the controller takes the control actions
according to what it observes from the DES.

It is assumed that for each event, there is a sensor
reporting its occurrence to the controller. If a sensor
is not working properly or its communication
channel with the controller fails, the controller
cannot obtain the information regarding the
occurrence of the corresponding event. In this case,
from the controller’s point of view, this event is
unobservable. Once the sensor and/or
communication channel are repaired, that event
becomes observable again.

In practice, the sensors or communication channels
can be broken down or repaired at any time during
the control. In a sense, in certain state the controller
may “see” a different set of events than it does in the
initial state. In other words, the observability of
events changes over time. In conventional
observability theory of the DES (Lin and Wonham,
1988), it is assumed that the set of observable events

remains unchanged. Furthermore, there are some
events which are critical for keeping the right control
- the “must-be-observed” events. However, if these
events are not seen by the controller, the controlled
DES will go out of control. But there are some
occasions where the controller can survive even if
some of the “must-be-observed” events are not
observed according to (Darabi, et al., 2003). Here
they propose a control switching policy to discover
an appropriate control policy and switch to the new
policy on the fly. The search for the new control
policy and the switching actions are performed by
another control agent called the mega-controller. The
proposed switching theory in this work is based on
the set of observable projections originally
introduced in (Haji-Valizadeh and Loparo 1996).
Therefore if a new control policy is found when the
set of observable events changes, then this policy can
survive for infinite time given that the observable
events set does not change again after the switch.
Such policies, called infinite time policies, have
some limitations according to (Liu and Darabi 2004).
In fact the infinite time policies cannot provide the
controller maximum survival time subject to the
dynamic observable event set.

In (Liu and Darabi 2004) the authors have developed
the class of finite time policies. This class is a
superset of the infinite time policies introduced by
(Darabi, et al., 2003). This class, in addition to the
infinite time policies, consists of all control policies
that are feasible for a finite duration of time. A finite
time observation policy is good for the current state,
but may not be good for other states. Using finite
time policies provides a more general solution for the

 2

controller reconfiguration upon the change of event
observability. In addition, (Liu and Darabi 2004)
offers a new reconfiguration strategy, so called
control feedback adjustment, to resolve control
conflicts.

One of the problems generated by the work (Liu and
Darabi 2004) is the implementation of the control
reconfiguration strategies through a mega-controller.
The mega-controller interacts with the DES
controller to adapt the control to the dynamic
changes of observation means. In this paper, the
authors develop a finite automaton model to describe
combined behavior of the mega-controller and the
DES controller. By this model, the reader can have a
full picture of how the mega-controller evolves upon
the change of observation means. This finite
automaton includes other classes of events besides
the regular DES events. For example repair and
failure events of sensors can change the state of this
finite automaton. Our development starts from the
regular DES controlled finite automaton and through
a systematic procedure it extends the regular
automaton to include the behavior of additional
events. One of the main applications of the extended
finite automaton (not discussed in this paper) is in
optimizing the reconfiguration decisions made by the
mega-controller.

The paper is organized as follows. Section 2 gives
the preliminaries. Section 3 provides the algorithm to
generate the extended finite automaton. Section 4
presents an illustrative example for building the
extended model, and section 5 concludes the paper
and discusses the future research.

2. PRELIMINARIES

According (Ramadge and Wonham 1987), a DES is
modeled by finite automaton 0(, , , ,)mG Q q Qδ= Σ ,
where Q is the set of states, Σ is the finite set of
events (which can be partitioned into two disjoint
subsets, controllable events set cΣ , and
uncontrollable events set ucΣ), : Q Qδ ×Σ → is the
transition functions, q0 is the initial state, and

mQ Q⊆ is the set of marked states. G is said to be

blocking if mL L⊂ , and nonblocking if mL L= ,
where *

0{ : (,) is defined}L s q sδ= ∈Σ is the
language generated by G (*Σ is the set of finite length
strings ofΣ). G models the uncontrolled plant. The
supervisor S (or controller) interacts with G (or plant)
in a closed loop manner (Fig. 1), and it assures that
the plant does not violate a given set of specifications.
The specifications are the conditions that the
designers wish to impose on the plant.
Mathematically, (,)S= ΦS , where

0(, , , ,)mS X f x X= Σ is a deterministic automaton
with state set X, initial state x0, a marked subset,

mX X⊆ and transition function :f X X×Σ → ;
: {1,0, }X dcΦ ×Σ→ is the feedback function.
(,) 1x σΦ = (0) indicates that the control action at

state x is to enable (disable) eventσ . “dc” is an
abbreviation for “don’t care”, which implies that the
enabling or disabling of σ at x doesn’t affect the
behavior of G. : 2X ΣΓ → is the active event
function, and is defined as () { : (,)x f xσ σΓ = is
defined} for all x X∈ . In other words, ()xΓ includes
all the events that are enabled by S at state x . The
controlled plant language, so called coupled language,
is shown by (/)K L G= S .

3. EXTENDED CONTROLLER FINITE
AUTOMATON MODEL

It is assumed that a DES and its controller, as stated
above, are given. It is also assume that there is a
sensor associated with each event reporting its
occurrence to the controller. Therefore, the sensor
status change results in change in event observability.
To develop the algorithm that generates the finite
automata model with extended sensory events and
reconfiguration decisions, some definitions are first
provided.

The sensor status of an eventσ , ssσ , can be failed,
represented by 0 and working, represented by 1. The
change of sensor status is triggered by two sets of
events, sensor repair event set, R and sensor
breakdown event set B. b Bσ ∈ , r Rσ ∈ are the sensor
breakdown and repair event for σ respectively.

An extended state y is represented by “ _X SS ”
where X X⊂ and

1 2
(, , , , ,)

i n
SS ss ss ss ssσ σ σ σ= " "

is the sensor status vector (

i
ssσ is the sensor status

of event iσ in 1 2{ , , , , , }i nσ σ σ σΣ = " "). As defined
before the element of SS are 0’s or 1’s.

Extended state : _y X SS= is a conflict state if there
exist 1 2, and x x X σ∈ ∈Σ such that 1(,) 1,x eΦ =

2(,) 0.x eΦ =

Controller

Sensory Network

Plant (DES)

Fig. 1. DES control loop

 3

Start

Set 0 0 0_11...1, { }y y x Y y= = =

Call procedure 1

 Is σ the last event in Σ?

End

Let σ = the next event in Σ

Check if 1?ssσ =

Call procedure 2 Call procedure 3

Y N

Y

N

Fig. 2. Flow chart for building reconfigured controller Θ

' ?y Y∈ Add 'y in Y

Y

N

 σ = the first event in Σ

 Is y the last state of Y? N Let y=next state in Y

Is y a conflict state?

Call Procedure 4

Y

N

Y

Accordingly, define the conflict event set of the
conflict state by 1 2() { | , , ,CE y x x Xσ σ= ∃ ∈ ∈Σ

1 2(,) 1, (,) 0}x xσ σΦ = Φ = , the enabling state set for
the conflict event ()CE yσ ∈ by

() { | ,ES y x x X= ∈ (), (,) 1}CE y xσ σ∈ Φ = , and the
disabling state set for the conflict event ()CE yσ ∈
by () { | , (), (,) 0}DS y x x X CE y xσ σ= ∈ ∈ Φ = .

In order to have a full representation of the controller
reconfiguration evolution, consider all the possible

sensor status changes at any state. Given a
controller (,)S= ΦS , and S is five-tuple
automaton 0(, , , ,)mS X f x X= Σ , the extended
controller automaton with a six-tuple automaton

0(, , , , ,)mY E g y Y infΘ = is modeled. The elements in
Θ are illustrated as follows:

(1) Y – the set of extended states
The members of Y are the states of the extended
automaton and are generated using the flowchart in
Figure 2.

 4

(2) E – event space
E B R= Σ∪ ∪

(3) 0y – initial state

0 0: _y x SS=

(4) mY – marked subset

{ | : _ , }m mY y y x SS x X= = ∈ .

(5) inf – infeasible state
The infeasible state is any state that is reached from
state 0y through string s such that s L∈ but s K∉ .

(6) g – transition function

: { }g Y E Y inf× → ∪

 Accordingly, define active event function
as : 2EAE Y → and () { : (,) is defined}AE y e g y e= .

Figure 2 shows the algorithm for constructingΘ . The
inputs to these algorithms include the regular
controller S and the initial extended state 0y . All the
procedures used in Figure 2 are based on the
occurrence of events in Σ and the sensory events.

Procedure 1: called for every event σ ∈Σ , let
transition function (,) 'g y yσ = and ' : '_ 'y X SS= is
computed as follows,
a) 1 { (,) | , (,) is defined.}X f x x X f xσ σ= ∈ ;
b) 2 1{ (,) | ,X f x t x X= ∈ *{ | and 0} ,t ssσσ σ= ∈Σ =
 (,) is defined.}f x t ;
c) 1 2'X X X= ∪ , 'SS SS= , 1 2' : () _y X X SS= ∪ .
d) Add σ to ()AE y .

Procedure 2: called when 1ssσ = .
(1) Add bσ to ()AE y .
(2) (,) 'g y b yσ = , the algorithm for computing y′ is
as follows,
a) ' { (,) | ,X f x t x X= ∈
 *{ | , 0 or ' } }t ssσσ σ σ σ′′ ′= ∈Σ = =
b) ' : '_ 'y X SS= where the element

0, if ;

, otherwise.
ss

ssσ
σ

σ σ
′

′ =
=

Procedure 3: called when 0ssσ = .
(1) Add rσ to ()AE y .
(2) (,) 'g y b yσ = , ' : _ 'y X SS= where the element

 '

1, if ' ;
, otherwise.

ss
ssσ

σ

σ σ=
=

Procedure 4 (Feedback Adjustment): called when
in a conflict state. At the conflict state : _y X SS= ,

there are two ways to adjust the feedback to resolve
the conflict:

(1) Enable the conflict event ()CE yσ ∈ at all the
states in ().DS y (,) 'g y yσ = , and (,)g y infσ =
where ' : '_ 'y X SS= and ' { (,) | ()}X f x x ES yσ= ∈ .
This makes the reconfigured controller automaton Θ
nondeterministic. At state ()x DS y∈ , enabling σ
causes the controller to enter an infeasible state.

(2) Disable the conflict event ()CE yσ ∈ at all the
states in ()DS y . Remove even σ from ()AE y .
If | () | 0AE y = , then state y is a deadlock.

Discussion The four procedures deal with the event
occurrences and conflict resolving. Events include
the regular events (Σ), sensor breakdown events (B)
and sensor repair events (R). At an extended
state : _y X SS= , consider all the events that
possibly can happen. First, every event in Σ is
examined to find the ones that can take place. Then,
it is investigated if the sensor breakdown or repair
events are possible to happen or not according to the
current sensor status. For doing so, three rules are
used. (1) Event σ ∈Σ can happen if and only if
there is a state x X∈ where σ is active. (2) Sensor
breakdown event bσ can happen if and only if

1ssσ = , i.e. sensor for event σ can fail only when it
is at work. (It is assumed that all sensors are working
at the initial state). (3) Sensor repair event rσ can
happen if and only if 0ssσ = , i.e. sensor for event
σ can be repaired only when it is failed. During this
process, control conflict could come up as a result
that some states requiring different feedback policy
on certain events are aggregated together due to the
unavailability of sensors. The procedures are
explained one by one in the followings.

Procedure 1 handles the occurrence of events in Σ
(the event set of given controller). For the state set
part X , the states where that event is enabled are
aggregated up, and the resultant state set are further
combined with the states that cannot be differentiated
due to the sensor failure. The sensor status vector
remains the same.

Procedure 2 copes with the occurrence of sensor
breakdown events. Once the failure takes place, the
sensor cannot report the occurrence of corresponding
event to the controller. The states that are reachable
from the given state by the unobservable strings are
aggregated together. The element in sensor status
vector for that event changes from 1 to 0 accordingly.

Procedure 3 takes care of the case that sensor is
failed. At this case, that sensor repair event is
possible to happen. When it happens, it only affects
the sensor status vector.

 5

Procedure 4 deals with the control conflict resolving.
There are two ways to tackle the conflict, either
enabling or disabling the events that cause the
conflict. Which way is overweight the other one is
different from case to case.

From the generation of Θ it is evident that the
feedback adjustment at conflict states could generate
states not reachable or not feasible. Taking different
feedback policy adjustments affects the evolution
path of the finite automatonΘ , and thus affects the
chance of leading to infeasible or blocking states. As
mentioned in the introduction, the selection between
different actions outlined by Θ requires an
optimization model that uses Θ as its input. Another
input to this model can be a reconfiguration criterion
such as maximizing the probability of reaching to a
marked state. However, the objective of this paper is
not to address such an optimization framework.

4. An Illustrative Example

The controller automaton is shown in Figure 3, and
the feedback of each state is listed in table 1. Event
set 1 2 3{ , , }e e eΣ = , and all are controllable. 5mc = − ,

4Ic = and 2bc = .

For this example, configure the controller under the
policy that event 1e , 2e are to be enabled and 3e is
to be disabled if there is a conflict.

Due to the space limitation, the figure of the finite
automaton of the reconfigured controller cannot be
shown completely. Here only a part of the figure in
Figure4 is shown.

The evolution of the extended controller Θ is
illustrated as follows,

(1) At the initial state 1_111,
• event 1e is active, call procedure 1.

Because 3(1,) 3f e = , 1(1_111,) 3_111g e = .
•

2
1ess = , call procedure 2. Add

2eb to (1_111)AE .

Because 2(1,) 2f e = ,
1

(1_111,) 12 _101eg b = .

(2) At state 12_101,

State 12_101 is conflict, and 1(12 _101) { }CE e= .
If 1e is enabled at (12 _101)DS = {2},
then 1(12 _101,) 3_101g e = ,
and 1(12 _101,)g e inf= .

(3) At state 3_111,

3e is active, follow procedure 1, 3(3,) 4f e = ,

3(3_111,) 4 _111g e = which is the marked state.

(4) At state 34_110,

State 34_110 is conflict, and 3(34 _110) { }CE e= .
If 3e is disabled at (34 _110)ES = {3},
then 3(34 _110,) 0g e = / , so there is a chance that
state 34_110 becomes a deadlock itself.

The transitions between states are listed in Table 2.

5. CONCLUSION AND FUTURE RESEARCH

This paper provides a formal model that embeds the
controller reconfiguration options upon the change in

1 1e

2e

3e

3e

3

2 4

Fig. 3. Controller automaton of the illustrative
example.

 1e 2e 3e

1 1 1 dc
2 0 dc 1
3 dc 0 1
4 dc dc 0

Table 1 Feedback table of the illustrative
l

Fig. 4. Partial representation of the extended
automaton Θ

1_111

3_111

e1

12_101

be2

be1
To 13_011

e2

To 2_111be3

To 1_110

4_111
e3

be1

To 3_011
be2

To 3_101

be3

34_110 deadlock

re3

To 34_111
be1

To 34_010

be2

To 34_100

e2

e1

Inf
To 3_101

e1
To 4_101

e3

To
123_001

be1To
124_100

be3

To
12_111

re2

 6

Table 2. Transitions between states for illustrative
example.

Events State

Name
State
No. e1 e2 e3 be1 be2 be3 re1 re2 re3

1_111 1 3 2 7 8 9
2_111 2 4 10 11 12
3_111 3 4 13 14 15
4_111 4

inf 5
block 6

13_011 7 7 5,10 16 20 21 19
12_101 8 5,14 8 17 20 23 22
1_110 9 15 12 21 23
2_011 10 16 24 25 2
2_101 11 17 24 26 2

24_110 12 6 25 26 27
3_011 13 16 28 29 3
3_101 14 17 28 30 3

34_110 15 6 29 30 31
4_011 16 32 33 4
4_101 17 32 34 4
4_110 18 33 34 4

13_111 19 3 2,5 4 7 35 36
123_001 20 5,20 5,20 32 38 35 37
134_010 21 21 5,25 6 38 36 39
12_111 22 5,3 2 4 37 8 40

124_100 23 5,30 23 6 38 40 41
2_001 24 32 42 11 10

24_010 25 6 42 12 43
24_100 26 6 42 12 44
24_111 27 6 43 44 12
3_001 28 32 45 14 13

34_010 29 6 45 15 46
34_100 30 6 45 15 47
34_111 31 6 46 47 15
4_001 32 48 17 16
4_010 33 48 18 16
4_100 34 48 18 17

123_101 35 5,14 5,35 17 20 50 49
134_110 36 15 5,12 6 21 50 51
123_011 37 5,37 5,10 16 20 52 49

1234_000 38 5,38 5,38 6 50 52 53
134_011 39 39 5,10 6 53 21 51
124_110 40 5,15 12 6 52 23 54
124_101 41 5,14 41 6 53 23 54
24_000 42 6 26 25 55
24_011 43 6 55 25 27
24_101 44 6 55 26 27
34_000 45 6 30 29 56
34_011 46 6 56 29 31
34_101 47 6 56 30 31
4_000 48 34 33 32

123_111 49 5,3 2,5 4 37 35 57
1234_100 50 5,30 5,50 6 38 57 58
134_111 51 3 2,5 6 39 58 36

Events State
Name

State
No. e1 e2 e3 be1 be2 be3 re1 re2 re3

1234_010 52 5,52 5,25 6 38 57 59
1234_001 53 5,53 5,53 6 38 58 59
124_111 54 3,5 2 6 59 41 40
24_001 55 6 42 44 43
34_001 56 6 45 47 46

1234_110 57 5,15 5,12 6 52 50 60
1234_101 58 5,14 5,58 6 53 50 60
1234_011 59 5,59 5,10 6 53 52 60
1234_111 60 5,3 2,5 6 59 58 57

the availability of observation means. In this model,
all the possible changes are considered. During the
creation of the model, four control reconfiguration
procedures are adopted which cover all the possible
situations of sensor status changes. This model is
useful for the studying the reaction of controller to
the changes in the sensor status information. It can be
also used for the optimization of reconfiguration
strategies. The optimization problem cannot be
solved directly by this model, but it could be
converted to a Markov decision process that provides
the optimal reconfiguration strategies. The discussion
of the optimization framework will be the subject of
our future research.

REFERENCES

Cieslak, R., C. Desclaux, A. S. Fawaz and P.

Varaiya (1988). Supervisory control of discrete-
event processes with partial observations. IEEE
Transactions on Automatic Control, vol. 33, no.
3, pp. 249-260.

Darabi, H., M. A. Jafari and A. L. Buczak (2003). A
control switching theory for supervisory control
of discrete event systems. IEEE Transactions on
Robotics and Automation, vol. 19, no.1, pp. 131-
137.

Haji-Valizadeh, A. K. and A. Loparo (1996).
Minimizing the cardinality of an events set for
supervisors of discrete-event dynamical systems.
IEEE Transactions on Automatic Control, vol.
41, no. 11, pp. 1579-1593.

Lin, F. and W. A. Wonham (1988). On observability
of Discrete event systems. Information Sciences,
vol. 44, no. 3, pp. 173-198.

Liu, J. and H. Darabi (2004). Control
Reconfiguration of Discrete Event Systems
Controllers with Partial Observation. IEEE
Transactions on Systems, Man and Cybernetics,
Part B, vol. 34, no. 6, pp. 2262-2272.

Ramadge, P. J. and W. M. Wonham (1987).
Supervisory control of a class of discrete event
Processes. SIAM Journal of Control and
Optimization, vol. 25, no.1, pp. 206-230.

