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1. INTRODUCTION

In the real world, it is common that business com-
petition takes place among a few major corporate
groups. A corporate group is usually composed
of a parent company and a number of subsidiary
companies. For example, the headquarter of a fi-
nancing corporation is located usually in a central
city of business, but its branches are distributed
everywhere in the country or in the world, an
auto–manufacturer usually establish its factories
all over the world, and a general electrical maker
develops its business through numerous affiliated
companies. All these groups have their own group
interests. A decision maker in a parent company or
a subsidiary company is of responsibility to make
relatively independent decisions by taking into
account the group interest. Moreover, comparing
to the long–term decision–making in the parent
company, the short–term decision making is often
found in the subsidiary company. In other words,
there exist the time–scale difference in decision–

making between the parent company and the sub-
sidiary company.

Taking these characteristics into account, we try
to formulate a group differential game problem in
this paper by using the system model of multi-
parameter singularly perturbed systems. We con-
sider the case that there exist two groups of play-
ers with a different (conflict) group interest in
competition. The multiparameter singularly per-
turbed system is composed of N lower level fast–
subsystems (branches) and a higher level slow–
subsystem (headquarter) (see e.g., Khalil and
Kokotović, 1978; Coumarbatch and Gajić, 2000;
Gajić, 1988; Mukaidani et al., 2003). The fact
that fast–subsystems are interconnected through
the slow–subsystem is used to describes the time–
scale differences between the parent company and
the subsidiary company.

We are now interested in the saddle–point equi-
librium to the game. In order to solve the prob-
lem, the multiparameter algebraic Riccati equa-



tion (MARE), which is parameterized by the small
positive same order parameters εj , j = 1, ... , N
is studied. Various reliable approaches to the the-
ory of the algebraic Riccati equation (ARE) have
been reported in many literatures (see e.g., Laub,
1979). One of the approaches is the invariant
subspace approach which is based on the Hamil-
tonian matrix (Laub, 1979). However, when the
ARE is ill–conditioned, such an approach is not
adequate to the MSPS due to the high dimen-
sion and the numerical stiffness (Coumarbatch
and Gajić, 2000). Moreover, the exact slow–fast
decomposition method for solving the MARE has
been proposed recently in Coumarbatch and Gajić
(2000). However, the limitation of this approach
lies in that the small parameters are assumed to be
known. In the real world, the small perturbation
parameters εj are often not known. Thus, it is not
applicable to a large class of problems where the
parameters represent small perturbations whose
values are not known exactly.

In this paper, the unique and bounded solution of
the MARE is derived, and its asymptotic struc-
ture is also established. As the result, a method to
find the perturbation–independent approximate
strategies to the players is obtained in which the
zero–order solution of the MARE is used. Since
the approximate strategies of the player do not
depend on the small parameters (perturbations),
the decision making can be carried out even if
the parameters are not known. Furthermore, it
is proved that the perturbation–independent ap-
proximate strategies constitute an O(||µ||) near
saddle–point equilibrium.

2. PROBLEM FORMULATION

It is assumed that the considered system is an
actual business model with time–scale differences
between the parent company and the subsidiary
company. Therefore, we investigate the following
MSPS which is composed of N lower level fast
subsystems and a higher level slow subsystem as
the ideal MSPS.

ẋ0 =
N∑

j=0

A0jxj +
N∑

j=0

B0juj +
N∑

j=0

D0jvj ,

xj(0)=x0
j , (1a)

εj ẋj = Aj0x0 + Ajjxj + Bjjuj + Djjvj , (1b)

y0 = C00x0, yj = Cj0x0 + Cjjxj , (1c)

where xj ∈ Rnj , j = 0, 1, ... , N are the state
vectors, uj ∈ Rmuj , j = 0, 1, ... , N are the
controls of players in Group 1, and vj ∈ Rmvj , j =
0, 1, ... , N are the controls of players in Group
2, respectively. yj ∈ Rlj , j = 0, 1, ... , N are
the outputs. It is assumed that the ratios of the
small positive parameter εj > 0, j = 1, ... , N are

bounded by some positive constants kij , k̄ij (see
e.g., Khalil and Kokotović, 1978, 1979; Mukaidani
et al., 2003),

0 < kij ≤ αij ≡ εj

εi
≤ k̄ij < ∞. (2)

Note that at least one of the fast state matrices
Ajj , j = 1, ... , N, is singular. The performance
criterion is given by

J(u, v) =
1
2

∞∫
0

(
yT y + uT Ruu − vT Rvv

)
dt

=
1
2

∞∫
0


yT y +

N∑
j=0

uT
j Rujuj−

N∑
j=0

vT
j Rvjvj


 dt,(3)

where y =
[
yT
0 · · · yT

N

]T ∈ Rl̄, l̄ =
N∑

j=0

lj , Ruj >

0, Rvj > 0.

The goal of players in Group 1 is to minimize the
cost function J , while players in Group 2 would
like to maximize it.

The decision makers in two groups are required
to select the closed loop control laws u∗

j and
v∗

j , j = 1, ..., N , respectively, if they exist, such
that

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗), (4)

where

u =
[
uT

0 uT
1 · · · uT

N

]T ∈ Rm̄u , m̄u =
N∑

j=0

muj,

v =
[
vT
0 vT

1 · · · vT
N

]T ∈ Rm̄v , m̄v =
N∑

j=0

mvj .

The strategy pair (u∗, v∗) is called the saddle–
point equilibrium.

The full-order strategy pair (u∗, v∗) with the
knowledge of the small perturbation parameters
εj can be obtained as follow.

u∗ =−R−1
u BT

e Pex, (5a)

v∗ = R−1
v DT

e Pex, (5b)

where Pe satisfies the MARE

AT
e Pe + PeAe − PeSePe + Q = 0, (6)

with

Ae :=
[

A00 A0f

Π−1
e Af0 Π−1

e Af

]
,

Πe := block diag
(
ε1In1 · · · εNInN

)
,



A0f :=
[
A01 · · · A0N

]
,

Af0 :=
[
AT

10 · · · AT
N0

]T
,

Af := block diag
(
A11 · · · ANN

)
,

Se := BeR
−1
u BT

e −DeR
−1
v DT

e

=
[

S00 S0fΠ−1
e

Π−1
e ST

0f Π−1
e SfΠ−1

e

]
,

S00 :=
N∑

j=0

[
B0jR

−1
uj BT

0j −D0jR
−1
vj DT

0j

]
,

S0f :=
[
S01 · · · S0N

]
=

[
B01R

−1
u1 BT

11 − D01R
−1
v1 DT

11

· · · B0NR−1
uNBT

NN − D0NR−1
vNDT

NN

]
,

Sf := block diag
(
S11 · · · SNN

)
= block diag

(
B11R

−1
u1 BT

11 − D11R
−1
v1 DT

11

· · · BNNR−1
uNBT

NN − DNNR−1
vNDT

NN

)
,

Be :=
[

B00 B0f

0 Π−1
e Bf

]
, B0f :=

[
B01 · · · B0N

]
,

Bf := block diag
(
B11 · · · BNN

)
,

De :=
[

D00 D0f

0 Π−1
e Df

]
, D0f :=

[
D01 · · · D0N

]
,

Df := block diag
(
D11 · · · DNN

)
,

Ru := block diag
(
Ru0 Ru1 · · · RuN

)
,

Rv := block diag
(
Rv1 Rv1 · · · RvN

)
,

Q :=
[

Q00 Q0f

QT
0f Qf

]
, Q00 :=

N∑
j=0

CT
j0Cj0,

Q0f :=
[
Q01 · · · Q0N

]
=

[
CT

10C11 · · · CT
N0CNN

]
,

Qf := block diag
(
Q11 · · · QNN

)
= block diag

(
CT

11C11 · · · CT
NNCNN

)
.

However, the purpose of this paper is to find
the approximate saddle–point equilibrium with-
out the knowledge of the small perturbation pa-
rameters. In the later analysis, the following as-
sumptions are made without loss of generality.

Assumption 1: The Hamiltonian matrices Tjj

are nonsingular, where

Tjj :=
[

Ajj −Sjj

−Qjj −AT
jj

]
, j = 1, ... , N.

Assumption 2:

rank
[

sIn0 − A00 −A0f B00 B0f

−Af0 −Af 0 Bf

]
= n̄, (7a)

rank
[

sIn0 − A00 −A0f D00 D0f

−Af0 −Af 0 Df

]
= n̄,(7b)

rank
[

sIn0 − AT
00 −AT

f0 CT
0

−AT
0f −AT

f CT
f

]
= n̄, (7c)

where n̄ :=
N∑

j=0

nj ,

C0 :=




C00

C10

...
CN0


 , Cf :=




0 0 0 · · · 0
C11 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · CNN


 ,

with Re[s] ≥ 0, s ∈ C.

In order to find the approximate saddle–point
equilibrium, the asymptotic structure of the MARE
(6) will be derived. Let us introduce a scaling
matrix

Φe :=
[

In0 0
0 Πe

]
.

In order to avoid the ill–conditionedness caused
by a large value ε−1

j which is contained in the
MARE (6), the following useful lemma is intro-
duced (Mukaidani et al., 2003).

Lemma 1: The MARE (6) is equivalent to the fol-
lowing generalized multiparameter algebraic Ric-
cati equation (GMARE) (8)

G(P ) = AT P + PT A − PT SP + Q = 0, (8)

where A := ΦeAe, S := ΦeSeΦe and

P :=
[

P00 P0f

Pf0 Pf

]
, Pf0 :=




P10

...
PN0


 ,

P0f = PT
f0Πe :=

[
ε1P

T
10 · · · εNPT

N0

]
,

Pf :=




P11 α12P
T
21 · · · α1NPT

N1

P21 PT
22 · · · α2NPT

N2
...

...
. . .

...
PN−11 PN−12 · · · αN−1NPT

NN−1

PN1 PN2 · · · PNN


 .

The GMARE (8) can be partitioned into

f1 = PT
00A00 + AT

00P00 + PT
f0Af0 + AT

f0Pf0

−P T
00S00P00 − PT

f0SfPf0 − PT
00S0fPf0

−P T
f0S

T
0fP00 + Q00 = 0, (9a)

f2 = AT
00P

T
f0Πe + AT

f0Pf + PT
00A0f + PT

f0Af

−P T
00S00P

T
f0Πe − PT

f0S
T
0fPT

f0Πe

−P T
00S0fPf − PT

f0SfPf + Q0f = 0, (9b)

f3 = PT
f Af + AT

f Pf + ΠePf0A0f + AT
0fPT

f0Πe

−P T
f SfPf − PT

f ST
0fPT

f0Πe − ΠePf0S0fPf

−ΠePf0S00P
T
f0Πe + Qf = 0. (9c)

It is assumed that the limitation of αij exists
as εi and εj tend to zero (see e.g., Khalil and
Kokotović, 1978, 1979), that is



ᾱij = lim
εj→+0
εi→+0

αij . (10)

Let P̄00, P̄f0 and P̄f be the limiting solutions
of the above equation (8) as εj → +0, j =
1, ... , N . In this case, the following equations
are obtained.

P̄T
00A00 + AT

00P̄00 + P̄T
f0Af0 + AT

f0P̄f0

−P̄T
00S00P̄00 − P̄T

f0Sf P̄f0 − P̄T
00S0f P̄f0

−P̄T
f0S

T
0f P̄00 + Q00 = 0, (11a)

AT
f0P̄f + P̄T

00A0f + P̄T
f0Af − P̄T

00S0f P̄f

−P̄T
f0Sf P̄f + Q0f = 0, (11b)

P̄T
f Af + AT

f P̄f − P̄T
f Sf P̄f + Qf = 0, (11c)

where

P̄f :=




P̄11 ᾱ12P̄
T
21 · · · ᾱ1N P̄T

N1

P̄21 P̄22 · · · ᾱ2N P̄T
N2

...
...

...
...

P̄N−11 P̄N−12 · · · ᾱN−1NP̄T
NN−1

P̄N1 P̄N2 · · · P̄NN


 ,

P̄jj := P̄T
jj, j = 0, 1, ... , N.

The ARE (11c) appears nonsymmetric in the
form. However, we will show that the ARE (11c)
admits at least a symmetric positive semidefinite
stabilizing solution.

Lemma 2: Assume that the following AREs
admit a unique symmetric positive semidefinite
stabilizing solution P̄ ∗

jj , j = 1, ... , N , respectively

AT
jj P̄

∗
jj + P̄ ∗

jjAjj − P̄ ∗
jjSjjP̄

∗
jj + Qjj = 0.

Then there exists a symmetric positive semidefi-
nite stabilizing solution P̄f to the ARE (11c). It
can be written as

P̄ ∗
f := block diag

(
P̄ ∗

11 · · · P̄ ∗
NN

)
. (12)

Finally, 0–order equations (13) are given.

P̄ ∗
00A + AT P̄ ∗

00 + P̄ ∗
00SP̄ ∗

00 + Q = 0, (13a)

P̄ ∗
j0 =

[
P̄ ∗

jj −Inj

]
T−1

jj Tj0

[
In0

P̄ ∗
00

]
, (13b)

P̄ ∗
jjΞjj + ΞT

jjP̄
∗
jj + P̄ ∗

jjSjjP̄
∗
jj + Wjj = 0, (13c)

where

[ A −S
−Q −AT

]
:= T00 −

N∑
j=1

T0jT
−1
jj Tj0,

T00 :=
[

Ξ00 S00

−W00 −ΞT
00

]
, T0j :=

[
Ξ0j S0j

−W0j −ΞT
j0

]
,

Tj0 :=
[

Ξj0 ST
0j

−W T
0j −ΞT

0j

]
, Tjj :=

[
Ξjj Sjj

−Wjj −ΞT
jj

]
,

j = 1, ... , N.

The limiting behavior of Pe as the parameter
||µ|| :=

√
ε2
1 + · · · + ε2

N → +0 is described by the
following theorem.

Theorem 1: Under Assumptions 1 and 2, and
the condition that (Ajj , Cjj) is observable, there
exists a small σ∗ such that for all ||µ|| ∈ (0, σ∗) the
MARE (6) admits a symmetric positive semidef-
inite stabilizing solution Pe if the following two
conditions are satisfied.

(i) The ARE (13c) admits a symmetric positive
semidefinite stabilizing solution P̄ ∗

jj.
(ii) The ARE (13a) admits a symmetric positive

semidefinite stabilizing solution P̄ ∗
00.

Moreover, the solution Pe can be written as

Φ−1
e Pe =

[
P̄ ∗

00 + O(||µ||) [P̄ ∗
f0 + O(||µ||)]T Πe

P̄ ∗
f0 + O(||µ||) P̄ ∗

f + O(||µ||)
]

= P̄ + O(||µ||) =
[

P̄ ∗
00 0

P̄ ∗
f0 P̄ ∗

f

]
+ O(||µ||). (14)

Proof: The proof of the existence of Pe is obtained
by the implicit function theorem (Gajić, 1988). To
do so, it is sufficient to show that the correspond-
ing Jacobian is nonsingular at ||µ|| = 0. It can be
shown, after some algebra, that the Jacobian of
(8) in the limitation as ||µ|| → 0 is given by

J =∇F =
∂(vecf1, vecf2, vecf3)

∂(vecP00, vecPf0, vecPf)T

∣∣∣
||µ||=0

=


 J00 J01 0

J10 J11 J12

0 0 J22


 , (15)

where vec denotes an ordered stack of the columns
of its matrix and

J00 = In0 ⊗ ĀT
00 + ĀT

00 ⊗ In0,

J01 = (In0 ⊗ ĀT
f0)Un0n̂ + ĀT

f0 ⊗ In0,

J10 = ĀT
0f ⊗ In0, J11 = ĀT

f ⊗ In0,

J22 = In̂ ⊗ ĀT
f + ĀT

f ⊗ In̂,

Ā00 = A00 − S00P̄
∗
00 − S0f P̄ ∗

f0,

Āf0 = Af0 − ST
0f P̄ ∗

00 − Sf P̄ ∗
f0,

Ā0f = A0f − S0f P̄ ∗
f ,

Āf = Af − Sf P̄ ∗
f , n̂ =

N∑
j=1

nj,

where ⊗ denotes Kronecker products and Un0n0 is
the permutation matrix in the Kronecker matrix
sense.

The Jacobian (15) can be expressed as



detJ = detJ22 · detJ11

·det[In0 ⊗ ĀT
0 + ĀT

0 ⊗ In0], (16)

where Ā0 ≡ Ā00 − Ā0f Ā−1
f Āf0. Obviously, Jjj,

j = 1, 2 are nonsingular because the matrices
Āf = Af − Sf P̄ ∗

f is stable. After some straight-
forward but tedious algebra, it is easy to verify
that A−SP̄ ∗

00 = Ā00 − Ā0f Ā−1
f Āf0 = Ā0. There-

fore, the matrix Ā0 is also stable if Assumption
2 holds. Thus, detJ 
= 0, i.e., J is nonsingular at
||µ|| = 0. The conclusion of Theorem 1 is obtained
directly by using the implicit function theorem.
The remainder of the proof is to show that Pe is
the positive semidefinite stabilizing solution. Since
it can be done by using the similar technique in
(Mukaidani et al., 2003), the proof is omitted. �

3. APPROXIMATE SADDLE–POINT
EQUILIBRIUM

The required solution of the MARE (6) exists un-
der the condition of Theorem 1. Our attention is
focused on the design of the approximate strategy
which does not depend on the values of the small
perturbation parameters. Such an approximate
strategy is obtained by eliminating O(||µ||) item of
the linear state feedback strategy (5). If ||µ|| is very
small, it is obvious that the linear state feedback
strategy (5) for each group is approximated to

ū∗ =
[
ū∗T

0 ū∗T
1 · · · ū∗T

N

]T
= −R−1

u BT P̄ x

=−R−1
u BT

[
P̄ ∗

00 0
P̄ ∗

f0 P̄ ∗
f

]
x, (17a)

v̄∗ =
[
v̄∗T
0 v̄∗T

1 · · · v̄∗T
N

]T
= R−1

v DT P̄ x

= R−1
v DT

[
P̄ ∗

00 0
P̄ ∗

f0 P̄ ∗
f

]
x, (17b)

where B = ΦeBe and D = ΦeDe.

When ||µ|| is sufficiently small, it is easy to find
from Theorem 1 that the resulting perturbation–
independent strategy pair (17) is close to the full-
order strategy pair (5). We are now interested in
how the approximate strategy effects the original
game. In other words, we want to know if the
approximate strategy pair is still in a saddle–point
equilibrium, and how the game value changes
if the approximate strategy pair constitutes a
saddle–point equilibrium.

Theorem 2: Under the conditions of Theorem 1,
the use of the approximate strategies (17) results
in J(ū∗, v̄∗) satisfying

J(ū∗, v̄∗) = J(u∗, v∗) + O(||µ||2). (18)

Moreover, J(ū∗, v̄∗) > J(u∗, v∗) for S > 0, and
J(ū∗, v̄∗) < J(u∗, v∗) for S < 0.

Before proving this theorem, the following lemma
is useful (Mukaidani et al., 2001).

Lemma 3: Consider the iterative algorithm
which is based on the Kleinman algorithm

(A− SP (i))T P (i+1) + P (i+1)T (A − SP (i))

+P (i)T SP (i) + Q = 0, i = 0, 1, ... , (19a)

P (i) =

[
P

(i)
00 P

(i)T
f0 Πe

P
(i)
f0 P

(i)
f

]
, (19b)

with the initial condition obtained from

P (0) = P̄ =
[

P̄ ∗
00 0

P̄ ∗
f0 P̄ ∗

f

]
. (20)

Under Assumptions 1 and 2, there exists a small
σ̄ such that for all ||µ|| ∈ (0, σ̄), σ̄ ≤ σ∗ Kleinman
algorithm (19) converges to the exact solution of
Pe = ΦeP = PT Φe with the rate of quadratic
convergence, where P

(i)
e = ΦeP

(i) = P (i)T Φe

is positive semidefinite. That is, the following
relation holds

||P (i) − P || = O(||µ||2i

), i = 0, 1, ... , (21)

where

γ = 2||S|| < ∞, β = ||[∇G(P (0))]−1||,
η = β · ||G(P (0))||, θ = βηγ, ∇G(P )=

∂vecG(P )
∂(vecP )T

.

Proof: When ū∗ and v̄∗ are used, the value of the
performance index is given by

J(ū∗, v̄∗) =
1
2
x(0)T Xex(0),

where

(Ae − SeP̄e)T Xe + Xe(Ae − SeP̄e)

+P̄eSeP̄e + Q = 0, P̄e := ΦeP̄ . (22)

Subtracting (6) from (22), it is easy to verify that
Ve = Xe −Pe satisfies the following multiparame-
ter algebraic Lyapunov equation (MALE)

(Ae − SeP̄e)T Ve + Ve(Ae − SeP̄e)

+(Pe − P̄e)Se(Pe − P̄e) = 0. (23)

Hence, since Ae − SeP̄e is stable, using the stan-
dard Lyapunov theorem (Zhou, 1998), Ve = Xe −
Pe > 0 for S > 0, Ve = Xe − Pe < 0 for S < 0

are satisfied. Taking J(u∗, v∗) =
1
2
x(0)T Pex(0)

into account, J(ū∗, v̄∗) > J(u∗, v∗) for S > 0,
J(ū∗, v̄∗) < J(u∗, v∗) for S < 0 are obtained. On
the other hand, subtracting (6) from (19a), the
following MALE holds



(Ae − SeP
(i)
e )T (P (i+1)

e − Pe)

+(P (i+1)
e − Pe)(Ae − SeP

(i)
e )

+(Pe − P (i)
e )Se(Pe − P (i)

e ) = 0, (24)

where P
(i)
e = ΦeP

(i). When i = 0, the following
equality holds.

(Ae − SeP
(0)
e )T (P (1)

e −Pe)

+(P (1)
e −Pe)(Ae − SeP

(0)
e )

+(Pe − P (0)
e )Se(Pe − P (0)

e )

= (Ae − SeP̄e)T (P (1)
e −Pe)

+(P (1)
e −Pe)(Ae − SeP̄e)

+(Pe − P̄e)Se(Pe − P̄e) = 0.

Therefore, it is easy to verify that Ve = P
(1)
e −Pe

because Ae − SeP̄e is stable from Theorem 1 of
(Khalil and Kokotović, 1979). Using Lemma 3, the
following relation satisfies.

||Ve|| = ||Xe − Pe|| = ||P (1)
e − Pe||

≤ ||Φe|| · ||P (1) − P || ≤ ||P (1) − P || = O(||µ||2).(25)

Hence, Ve = Xe −Pe = O(||µ||2) results in (18). �

Using the similar analysis we have the following
result.

Theorem 3: Under the conditions of Theorem 1,
the following result holds.

J(ū∗, v) = J(u∗, v) + O(||µ||), (26a)

J(u, v̄∗) = J(u, v∗) + O(||µ||). (26b)

Proof: Since the proof can be done by using the
above technique, it is omitted. �

Finally, the main result is easily derived as the
major extension of the existing result (Xu and
Mizukami, 1997).

Theorem 4: Under the conditions of Theorem 1,
the approximate strategy pair (17) constitutes an
O(||µ||) near saddle–point equilibrium, that is,

J(ū∗, v) − O(||µ||) ≤ J(ū∗, v̄∗), (27a)

J(ū∗, v̄∗) ≤ J(u, v̄∗) + O(||µ||). (27b)

Proof: We will give the proof to the inequality
(27b). A similar proof can be obtained for another
inequality. Let us rewrite the inequality (27b) as

J(ū∗, v̄∗) − J(u, v̄∗)

= J(ū∗, v̄∗) − J(u∗, v∗) + J(u∗, v∗) − J(u, v∗)

+J(u, v∗) − J(u, v̄∗). (28)

Using (18), (4) and (26b), we get (27b) readily. �

4. CONCLUSION

In this paper, the group differential game problem
for the MSPS has been studied. A method to
find the perturbation–independent approximate
strategies to the players is developed, which use
the zero–order solution of the MARE in the ap-
proximate strategy. Since each approximate strat-
egy of the player does not depend on the small
parameters (perturbations), the decision making
can be carried out even if the player does not
have the knowledge of the small parameters. It has
been proved that the perturbation–independent
approximate strategies constitute an O(||µ||) near
saddle–point equilibrium.

Applicability of the theoretical results will be used
as the application of the business model with
decision support. This problem will be addressed
in future investigations.
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