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Abstract: A control profile is generated which suppresses one or more resonant dynamics
in a flexible dynamic system. This control profile can be used as a velocity profile, or as a
shape filter to an arbitrary control command. The robustness can be arbitrarily improved,
which brings about a smoother profile. The technique can be applied to both open-loop
and closed-loop systems. Copyright c©2005 IFAC

Keywords: Flexible dynamic system, residual vibration control

1. INTRODUCTION

Control of flexible structures has been extensively
studied in recent years. Flexible structures such as
high-speed disk drive actuators require extremely pre-
cise positioning under very tight time constraints.
Whenever a fast motion is commanded, residual vi-
bration in the flexible structure is induced, which in-
creases the settling time. One solution is to design a
closed-loop controller to damp out vibrations caused
by the command inputs and disturbances to the plant.
However, the resulting closed-loop response may still
be too slow to provide an acceptable settling time,
and the closed-loop control is not able to compensate
for high frequency residual vibration which occurs
beyond the closed-loop bandwidth. An alternative ap-
proach is to develop an appropriate reference trajec-
tory that is able to minimize the excitation energy
imparted to the system at its natural frequencies.
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Fig. 1. A typical mechanical flexible system.

Fig. 1 shows a typical mechanical flexible system,
where 1

s is an integrator, Kv is a velocity constant
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gain, and Kp is a position constant gain. The high fre-
quency modes can be described as a transfer function
R(s) = limn→∞

bnsn+bn−1sn−1+···+b1s+1
ansn+an−1sn−1+···+a1s+1 in which

an infinite number of lightly damped resonant struc-
tures is possible. The goal of vibration suppression tra-
jectory generation is to find a fast input trajectory, un-
der some physical constraint, with minimum possible
residual vibration. The position reference input can be
generated from a step movement command s(t) = S ·
1(t), through a finite support filter, f(t), 0 ≤ t ≤ T ,
where T is the time duration of the finite support filter.
To guarantee that the filtered command reaches the
same set point as the step movement command, the in-
tegral of f(t) must be equal to 1, i.e.,

∫ T

0
f(t)dt = 1.

This finite support filter f(t), 0 ≤ t ≤ T , which
generates a vibration suppression position reference
profile is called a “vibration suppression shape filter”,
or simply a “shape filter.”

To suppress all the high frequency resonant dynamics
in a flexible system, Zhou and Misawa (Zhou and
Misawa, 2005b) have proposed vibration suppression
shape filter and control profile generation based on
optimal energy concentration functions. In practical
system, a lower resonance frequency mode may exist
which is located far from the high frequency reso-
nance modes. If the low frequency is chosen to be a
bandwidth in (Zhou and Misawa, 2005b) for the vibra-



tion suppression control profile generation, the time
duration of the profile is inefficiently increased. In this
case, Zhou and Misawa (Zhou and Misawa, 2005a)
have proposed vibration suppression shape filter and
control profile generation for a specific resonance
mode. In (Zhou and Misawa, 2005a), a vibration sup-
pression shape filter and a vibration suppression con-
trol profile were generated based on a rectangle win-
dow and the continuous-time Input Shaping R© (Singer
and Seering, 1990) was shown to be a special case
of the discrete-time rectangle window based shape
filter with a particular sampling period. In this paper,
vibration suppression shape filter and control profile
generation based on other window functions is stud-
ied.

2. VIBRATION SUPPRESSION SHAPE FILTER
FOR A SPECIFIC RESONANCE MODE

From the analysis of the relationship between control
input and residual vibration of a damped resonant
mode with the natural frequency ωi and damping
ratio ζi, the following conclusion is drawn (Zhou and
Misawa, 2005a).

Conclusion 2.1. If there exists a finite support base
function h(t), 0 ≤ t ≤ T0, such that H(ωdi) =
H(

√

1 − ζ2
i ωi) = 0, then, h(t) may have two pos-

sible properties:

(1) The function h(t)

eζiωit is a control profile candidate
to eliminate the residual vibration caused by the
resonant mode with the natural frequency ωi and
the damping ratio ζi.

(2) The function h(t)

eζiωit with a constraint
∫ T0

0
h(t)

eζiωit dt
= 1, is a vibration suppression shape filter that
can be used to filter out an arbitrary control pro-
file, and the shaped control profile eliminates the
residual vibration caused by the resonant mode
with the natural frequency ωi and the damping
ratio ζi.

The proof of Conclusion 2.1 is given in (Zhou, 2005).
The philosophy of Conclusion 2.1 advocates that a
shape filter should be able to be both a traditional
shaping filter, as well as a possible command signal
in its own right. Let f1(t) = h(t)

eζiωit , then robustness of
the properties in Conclusion 2.1 can be improved by
the following filter operation,

fn(t) =

∫ t

0

fn−1(t − τ)f1(τ)dτ, n ≥ 2, (1)

and the resultant spectrum of fn(t) is Fn(ω) =
Fn

1 (ω). Here, the control profile or shape filter f1(t)
in (1) is said to have the robustness of order 1. The
control profile or shape filter fn(t) generated from the
filter operation in (1) is said to have the robustness
of order n. In the case that f(t) is a non-continuous

impulse function, the robustness improvement method
(1) becomes the idea advocated by Singer and Seer-
ing (Singer and Seering, 1990).

In (Zhou and Misawa, 2005a), a vibration suppression
shape filter and a vibration suppression control pro-
file were generated based on a rectangle window. In
the following sections, smooth shape filter generation
based on other window functions is studied. Instead of
analyzing the continuous-time case, the discrete-time
case is directly generated.

3. SHAPE FILTER GENERATION USING
HANNING WINDOW

If the sampling period is Ts sec and the total discrete-
time sequence has M + 1 impulses, the Hanning
window function is

h[k] =

{

0.5 − 0.5 cos (2πk/M), if 0 ≤ k ≤ M,

0, otherwise.
(2)

If H(ωdiTs) = H(
√

1 − ζ2
i ωiTs) = 0, then ωdiTs =

4π
M and M = 4π

ωdiTs
. If M is a positive integer,

a smooth shape filter can be generated as f [k] =
h[k]/eζiωikTs

∑

M

m=0
h[m]/eζiωimTs

. To improve robustness, the fil-

ter operation in (1) is performed. Let f1[k] = f [k],
then robust shape filters f2[k], f3[k], . . . can be gen-
erated following the filter operation in (1). Since the
sequence h[k] is known, the sequence f [k] can be
generated through a simple numerical calculation.

For a second-order harmonic oscillator of the natural
frequency ωi rad/sec and the damping ratio ζi, i.e.,

ω2

i

s2+2ζiωis+ω2

i

, the magnitude of the total response

immediately after the N th impulse is given by (Singer
and Seering, 1990)

Vamp(ωi, ζi) = e−ζiωitN
ωi

√

1 − ζ2
i

√

(AC(ωi, ζi))
2

+ (AS(ωi, ζi))
2
, (3)

where

AC(ωi, ζi) =

N
∑

k=1

Akeζiωitk cos

(

ωi

√

1 − ζ2
i tk

)

,

AS(ωi, ζi) =
N

∑

k=1

Akeζiωitk sin

(

ωi

√

1 − ζ2
i tk

)

.

The variables Ak and tk are the amplitude and time
location at which the impulse occurs, N is the total
number of impulses, and tN is the time of the last
impulse. The sensitivity of the impulse shape filter can
be displayed graphically by a sensitivity curve: a plot
of residual vibration amplitude versus frequency error.
Let q = ωactual/ωmodel, (3) becomes

Vamp(qωi,ζi) = e−ζiqωitN
qωi

√

1 − ζ2

√

(AC(qωi, ζi))
2

+ (AS(qωi, ζi))
2
, (4)



where ωi = ωmodel, ωactual = qωi, AC(qωi, ζi) =
∑N

k=1 Akeζiqωitk cos
(

qωi

√

1 − ζ2
i tk

)

, and AS(qωi,

ζi) =
∑N

k=1 Akeζiqωitk sin
(

qωi

√

1 − ζ2
i tk

)

. Since
for any finite impulse shape filter f(t), 0 ≤ t ≤
T0, the integral of f(t) is

∫ T0

0
f(t)dt = 1 and the

rigid body movement amplitude can be assumed as
∫ T0

0
f(t)dt = 1. The residual vibration level can be

defined as a percentage of the rigid body motion am-
plitude, i.e., Vamp(qωi,ζi)

∫

T0

0

f(t)dt
= Vamp(qωi, ζi). For the

impulse shape filter case,
∫ T0

0
f(t)dt =

∑N
k=1 Ak =

1. The residual vibration level (4) can be plotted for
the Hanning based shape filter f1[k] and rectangle
based shape filter f1[k]. The sampling period Ts is
chosen to be π

100ωdi
. Fig. 2 shows the sensitivity curve

of the rectangle based shape filter (Zhou and Mis-
awa, 2005a) with ωmodel = 1 rad/sec and different
damping ζi = 0, 0.05, 0.2. Fig. 3 shows the sensi-
tivity curve of the Hanning based shape filter f1[k]
with ωmodel = 1 rad/sec and different damping ζi =
0, 0.05, 0.2. Clearly, the robustness of the Hanning
based shape filter is increased both at the model natu-
ral frequency and the unmodeled high frequency.
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Fig. 2. Rectangle based shape filter f1[k] sensitivity
plot versus actual natural frequency.
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Fig. 3. Hanning based shape filter f1[k] sensitivity plot
versus actual natural frequency.

The definition in (4) is different from the sensitivity
concept of Singer (Singer and Seering, 1990) and
Singhose (Singhose, 1997). In their definition, the
sensitivity curve is expressed as the magnitude of
the total response immediately after the N th impulse
divided by the magnitude of the response with unit
impulse occurring at time 0. Since the magnitude of
the response with unit impulse occurring at time 0 is

given by ωi√
1−ζ2

i

, their definition of residual vibration

level is Vamp(qωi,ζi)
ωi√
1−ζ2

i

∑

N

k=1
Ak

or simply

e−ζiqωitN

√

(AC(qωi, ζi))
2

+ (AS(qωi, ζi))
2
, (5)

because Vamp(qωi, ζi) exactly has the term ωi√
1−ζ2

i

and
∑N

k=1 Ak = 1. It is known that the magnitude
of the response with unit impulse occurring at time
0, which is ωi√

1−ζ2

i

, linearly increases with respect to

actual undamped natural frequency ωi if ζi is assumed
to be a constant. Therefore, the definition (5) does
not express the absolute residual vibration magnitude.
For example, the definition (5) shows that the residual
vibration level is 100% when the actual undamped
natural frequency is 0. However, the true magnitude of
the residual vibration given in (4) is 0 when the actual
undamped natural frequency is 0.

Since the Hanning function starts and ends at zero,
the Hanning based shape filter f1[k] can be used as
a velocity candidate. Fig. 4 shows the rigid body
acceleration, velocity, and position profiles generated
from the Hanning based shape filter f1[k], with one
resonant mode with parameters ωi = 1 rad/sec and
damping ratio ζi = 0.2. Discrete-time shape filter
generation for an arbitrary sampling period can be
implemented following the procedure in (Zhou, 2005).
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Fig. 4. Acceleration, velocity and position profiles
from the Hanning based shape filter f1[k] with
ωi = 1 rad/sec and ζi = 0.2.

4. SHAPE FILTER GENERATION USING
BLACKMAN WINDOW

If the sampling period is Ts sec and the total discrete-
time sequence has M + 1 impulses, the Blackman
window function is

h[k] =











0.42 − 0.5 cos (2πn/M)

+0.08 cos (4πk/M), if 0 ≤ k ≤ M,

0, otherwise.

If H(ωdiTs) = H(
√

1 − ζ2
i ωiTs) = 0, then ωdiTs

= 6π
M and M = 6π

ωdiTs
. If M is a positive integer,

a smooth shape filter can be generated as f [k] =



h[k]/eζiωikTs

∑

M

m=0
h[m]/eζiωimTs

. Again, it is not necessary to

derive the explicit form for f [k]. Since sequence h[k]
is known, the sequence f [k] can be generated through
a simple numerical calculation. Let f1[k] = f [k], then
robust shape filters f2[k], f3[k], . . . can be generated
following the filter operation in (1).

5. CAN HAMMING WINDOW BE USED TO
SHAPE FILTER GENERATION?

If the sampling period is Ts sec and the total discrete-
time sequence has M + 1 impulses, the Hamming
window function is

h[k] =







25

46
− 21

46
cos (2πk/M), if 0 ≤ k ≤ M,

0, otherwise.

By calculation (Zhou, 2005), equation H(ω) = 0
has no solution and the shape filter cannot be gen-
erated from Hamming window in theory by follow-
ing Conclusion 2.1. However, approximately when
ω ≈ 4π

M , |H(ω)| approaches an extremely small num-
ber (Oppenheim, 1989). If M = 4π

ωdiTs
and M is

a positive integer, a smooth shape filter can be gen-
erated as f [k] = h[k]/eζiωikTs

∑

M

m=0
h[m]/eζiωimTs

. In this case,

since |H(ωdiTs)| ≈ 0, the residual vibration cannot
be eliminated in theoretical sense. But an extremely
small |H(ωdiTs)| implies the residual vibration is suf-
ficiently suppressed. Again, it is not necessary to de-
rive the explicit form for f [k]. Since the sequence h[k]
is known, the sequence f [k] can be generated through
a simple numerical calculation. Let f1[k] = f [k], then
robust shape filters f2[k], f3[k], . . . can be generated
following the filter operation in (1).

6. SHAPE FILTER GENERATION USING OTHER
CONTINUOUS FUNCTIONS

From Conclusion 2.1, a smooth shape filter can be
generated from a finite support smooth function h(t),
such that H(ωdi) = 0. Some simple window functions
have been used as base functions to generate the shape
filters in the previous sections. Numerous smooth
functions h(t) may have the property of H(ωdi) = 0
or H(ωdi) ≈ 0. So all of them can be used as base
functions to generate the shape filters. Here, some
window functions that possess the property are listed:
cosα (X) window, Riesz window, Riemann window,
de la Vallé-Poussin window, Tukey window, Bohman
window, Poisson window, Hanning-Poisson window,
Cauchy window, Gaussian window, Dolph-Chebeshev
window, Kaiser-Bessel window, Barcilon-Temes win-
dow, Nuttall window, Modified Bartlett-Hanning win-
dow, and Others. These window functions were orig-
inally used for harmonic analysis (Harris, 1978),
(Nuttall, 1981), (Ha and Pearce, 1989).

7. SHAPE FILTER GENERATION USING
SEVERAL SMOOTH FUNCTIONS

A section of a base function h[k] can be constructed
from other smooth functions through products, sums,
convolutions, integral, or other mathematical opera-
tions. If the constructed base function has the property
of H(ωdiTs) = 0, then it can be used to generate the
shape filters through Conclusion 2.1. Here, a simple
example is given to show the basic idea.

Here, a base function h[k] is generated from three
Hanning window functions h[k] = hs1[k] + hs2[k] +
hs3[k], 0 ≤ k ≤ 2M, where

hs1[k] =







1

2
− 1

2
cos (

πk

M
), if 0 ≤ k ≤ 2M,

0, otherwise,

hs2[k] =







C

[

1

2
− 1

2
cos (

2πk

M
)

]

, if 0 ≤ k ≤ M,

0, otherwise,

hs3[k] =







C

[

1

2
− 1

2
cos (

2πk

M
)

]

, if M ≤ k ≤ 2M,

0, otherwise,

and C is a constant number. Fig. 5 shows a typical
combination of functions hs1[k], hs2[k], hs3[k], and
the resultant base function h[k].
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Fig. 5. A typical combination of functions hs1[k],
hs2[k], hs3[k], and the resultant base function
h[k].

If H(ωdiTs) = H(
√

1 − ζ2
i ωiTs) = 0, then ωdiTs =

2[cos (π/M)]2(C+1)+2C cos (π/M)−1
2C cos (π/M)+2C+1 . So M can be de-

rived to be

M =
π

arccos C cos (ωdiTs)−C+
√

B
2C+2

, (6)

where B = C2[cos (ωdiTs)]
2 + 2C2 cos (ωdiTs) +

C2+2C+6C cos (ωdiTs)+2+2 cos (ωdiTs). If M is a
positive integer, a smooth shape filter can be generated
as f [k] = h[k]/eζiωikTs

∑

2M

m=0
h[m]/eζiωimTs

, 0 ≤ k ≤ 2M.

Normalized base functions h[k] and shape filters are
generated based on the same natural frequency ωi = 1
rad/sec and the damping ratio ζi = 0.2 with different
values of parameter C. Fig. 6 shows the normalized
base function h[k] and the shape filter f [k] with C =
0.25.
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Fig. 6. Normalized base function h[k] and the shape
filter f [k] with C = 0.25.

The value of M in Fig. 6 is made to be a positive
integer by choosing appropriate sampling periods. In
the derivation, the total impulses of the base function
h[k] are assumed to be an odd number 2M + 1,
however, the total impulses of the base function can
also be an even number 2M .

8. NON-SYMMETRIC CONTINUOUS
FUNCTION BASED SHAPE FILTER

GENERATION

Fig. 7 shows the architecture of the vibration sup-
pression shape filter. From the previous study (Zhou
and Misawa, 2005a), the Input Shaping R© impulse fil-
ters (Singer and Seering, 1990) belong to the impulse
function based shape filters. In the previous vibration
shape filter generation, all the base functions have a
symmetric waveform. In this section, non-symmetric
function based shape filter generation method is stud-
ied. Two methods to generate a non-symmetric base
function are studied.

Non−symmetric function
based shape filter

Continuous function 
based shape filter

Symmetric function
based shape filter

Vibration suppression
shape filter

Non−continuous function 
based shape filter

Non−impulse function 
based shape filter

Impulse function 
based shape filter

Fig. 7. The architecture of the vibration suppression
shape filter.

8.1 Non-Symmetric Base Function Generation from
the Derivative of a Base Function

If a discrete-time signal g[k], 0 ≤ k ≤ M , is a
base function such that G(ωdiTs) = 0, here Ts is the
sampling period in sec and ωdi is the damped natural
frequency in rad/sec, the differencing in time of g[k]

is dg[k] =

{

g[k] − g[k − 1], if 0 ≤ k ≤ M + 1,

0, otherwise.

A non-symmetric base function h[k] can be generated
by the linear combination of g[k] and the differencing
signal dg[k] by h[k] = k1 · g[k] + k2 · dg[k], 0 ≤
k ≤ M + 1, where k1 and k2 are two constants.
The discrete-time Fourier transform of h[k] is given
by H(ω) = k1 · G(ω) + k2 · (1 − e−jω)G(ω). So
the new function h[k] can be used as a base function
because the spectrum H(ω) at ω = ωdiTs is exactly
zero as given by H(ωdiTs) = k1 ·G(ωdiTs)+k2 ·(1−
e−jωdiTs)G(ωdiTs) = k1·0+k2·(1−e−jωdiTs)·0 = 0.

A simple example generating a non-symmetric base
function is demonstrated here. If g[k] is a Hanning
function given in (2), the new generated base function
is h[k] = k1 · g[k] + k2 · dg[k]. If H(ωdiTs) =
H(

√

1 − ζ2
i ωiTs) = 0, then ωdiTs = 4π

M and M =
4π

ωdiTs
. If M is a positive integer, a shape filter can be

generated as f [k] = h[k]/eζiωikTs

∑

M

m=0
h[m]/eζiωimTs

.

Fig. 8 shows a construction of a non-symmetric base
function h[k] with the undamped natural frequency
ωi = 1 rad/sec and the damping ratio ζi = 0.1. The
sampling period is chosen to be Ts = π

100ωdi
. The

constants k1 and k2 are chosen to be k1 = 1 and
k2 = −25. Fig. 9 shows the normalized base function
h[k] and the shape filter f [k].
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Fig. 8. Construction of a non-symmetric base function
h[k].
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Fig. 9. Normalized base function h[k] and shape filter
f [k].

8.2 Non-Symmetric Base Function Generation from
the Self Convolution of a Base Function

If a discrete-time signal g[k], 0 ≤ k ≤ M , is a
base function such that G(ωdiTs) = 0, here Ts is the



sampling period in sec and ωdi is the damped natural
frequency in rad/sec, the self convolution of g[k] is

g ∗ g[k] =











k
∑

m=0

g[k − m]g[m], if 0 ≤ k ≤ 2M,

0, otherwise.
A non-symmetric base function can be generated by
the linear combination of g[k] and the self convolution
signal g ∗ g[k] by h[k] = k1 · g[k − k0] + k2 · g ∗ g[k],
where k0 is a non-negative integer. The discrete-time
Fourier transform of h[k] is given by H(ω) = k1 ·
e−jωk0G(ω)+k2·G(ω)2. So the new function h[k] can
be used as a base function because the spectrum H(ω)
at ω = ωdiTs is exactly zero as given by H(ωdiTs) =
k1 · e−jωdiTsk0G(ωdiTs) + k2 · G(ωdiTs)

2 = k1 ·
e−jωdiTsk0 · 0 + k2 · 0 = 0.

A simple example generating a non-symmetric base
function is demonstrated here. If g[k] is a Hanning
function given in (2) and k0 = M , the new generated
base function is h[k] = k1 · g[k − M ] + k2 · g ∗ g[k].
If H(ωdiTs) = H(

√

1 − ζ2
i ωiTs) = 0, then ωdiTs =

4π
M and M = 4π

ωdiTs
. If M is a positive integer, a shape

filter can be generated as f [k] = h[k]/eζiωikTs

∑

M

m=0
h[m]/eζiωimTs

.

Fig. 10 shows a construction of a non-symmetric base
function h[k] with the undamped natural frequency
ωi = 1 rad/sec and the damping ratio ζi = 0.1.
The sampling period is chosen to be Ts = π

100ωdi
.

The constants k1 and k2 are chosen to be k1 = 1
and k2 = 1/125. Fig. 11 shows the normalized base
function h[k] and the shape filter f [k].
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Fig. 10. Construction of a non-symmetric base func-
tion h[k].

It must be noted that there are a number of methods to
generate a non-symmetric base function. The methods
described in this section are only possible methods and
not exhaustive ones.

9. CONCLUSIONS

A vibration suppression shape filter is generated from
a continuous window function. The robustness can be
arbitrarily improved and the robustness brings about
a smoother profile. The shape filter can also be used
as a velocity profile in the case of zero initial and
final values. Since the profile is generated from a
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Fig. 11. Normalized base function h[k] and shape filter
f [k].

continuous function, a smoothly changing discrete-
time shape filter can be generated. The methods in this
paper were tested on hard disk drive actuator position
control at the Oklahoma State University Advanced
Controls Laboratory. The experimental results of both
Input Shaping R© and rectangle based shape filter are
reported in (Zhou and Misawa, 2005b). The methods
in this paper are patented (pending). Commercial use
of these methods requires written permission from the
Oklahoma State University.
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