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Abstract: It is proposed a modification of the traditional adaptive backstepping method
which leads to less control effort in the problem of non-linear control. The technique,
which is applicable to parametric strict feedback systems, is built on a recently introduced
Invariance Principle Extension and incorporates the use of optimisation techniques based
on evolutionary computation to adjust the controller parameters. Simulations with the
Chua’s system are conducted to show the feasibility and effectiveness of the approach.
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1. INTRODUCTION

Over the last decade, the non-linear control field has
experienced an impressive progress towards the
development of successful methods aimed at
constructing suitable control laws for complex non-
linear systems. The most powerful of these
techniques is the adaptive backstepping method
(Krstic et al., 1995), with which the issues of
stabilization and tracking for several classes of non-
linear systems with unknown parameters were able
to be addressed to in a systematic fashion. In some
applications, however, a backstepping-based control
may feature an excessive control effort. It is of
interest the design of general schemes of non-linear
control which could maintain the systematisation of
backstepping and  simultaneously  incorporate
optimisation mechanisms so as to reduce the control
effort.

According to the “No Free Lunch Theorem”
(Wolpert & Macready, 1997), there is no general-
purpose universal optimisation strategy. Classic
methods and dedicated techniques outperform less
conventional methodologies, like evolutionary
algorithms (EAs) (Fleming & Purshouse, 2002),
when restrictive hypotheses — such as continuity,

differentiability, convexity, unimodality, etc. — on the
search space are valid. On the other hand, EAs can
deal with problems to which a detailed description is
either too costly or not possible, or even about which
it is not possible to assume such strong restrictions.
Genetic Algorithms (GAs) (Michalewicz, 1996), in
particular, have proved to be successful in problems
that are difficult to formalize mathematically, such as
optimised adaptive non-linear control with a
discontinuous, non-differentiable, non-convex and/or
multimodal search space (Fleming & Purshouse,
2002).

In view of this, it would be appropriate the
incorporation of a GA in a non-linear control scheme
built on systematic backstepping for a better
performance as far as the control effort is
concerned. Nevertheless, whereas the control law
obtained with backstepping is Lyapunov-based it
would be in principle useless the introduction of a
GA to optimise the parameters of this controller, as
the Invariance Principle requirements on which the
backstepping technique is based pose excessive
restrictions on the parameters search space (i.e. the
parameters must comply with the non-negativeness
demand for the Lyapunov function derivative).



However, extensions to classic stability requirements
have been proposed. Rodrigues et al. (2000), for
instance, advanced a generalization of the La Salle’s
Invariance Principle that includes the case in which
the Lyapunov function derivative along the system
solutions may be positive on a bounded set of the
state space. Based on the new premises allowed by
this Invariance Principle Extension (IPE), the
traditional backstepping procedure can be modified
so as to make its stability conditions less severe, thus
enlarging the feasible region of the parameters search
space and allowing the incorporation of a GA in
order to obtain a set of parameters which may lead to
a more efficient controller in terms of control effort.

An extension to the method of (Grinits & Bottura,
2004) (optimised control of a third order system
using a modified backstepping procedure built on the
IPE in conjunction with a GA) to a general class of
strict feedback systems is presented here. By not
requiring that the derivative of the Lyapunov
functions should be nonpositive everywhere in the
state space, the proposed methodology allows the
combination of backstepping and GAs. As a result,
the controller obtained may lead to a more efficient
control process in terms of the control effort than
when the traditional adaptive backstepping is used.

This paper is organized as follows. In Section 2, the
IPE is reviewed. In Section 3, the new modified
backstepping is presented. The Chua’s system is used
as an example to illustrate the feasibility and the
advantages of the proposed approach in Section 4.
Finally, conclusions are presented in Section 5.

2. THE INVARIANCE PRINCIPLE EXTENSION

In this section the IPE is reviewed. Its proof can be
found in (Rodrigues, et al., 2000). Consider the
following autonomous differential equation (with

xe R"):
x=f, x0)=x. ey

Theorem. Let V : R" - R and f: R" - R" be
C = {xe R :V(x) > O}.
Suppose that [ :=sup,.o V(x) e R and that
51 = {x eR":V(x) < l} is  bounded. Let
E = {xe R :V(x) = O}U Q, and let B be the
largest invariant set contained in E. Then, every
solution ¢@(t,x,) of (1) that is bounded for ¢ = 0

t —> oo,

C'  functions. Let

converges to the invariant set B as
Moreover, if x, e 5,, then @(t, xy) exists for all
120, @t,x)eQ for all +>0 and ¢z, x,)
converges to the largest invariant set of (1) contained
in Q.

If it is assumed that V :R" - R is radially
unbounded, that is, if V(x) — o« as ||x|| — oo, then

every solution of (1) is bounded for # > 0 and the
conclusions of the theorem hold for all solutions.

3. STABILISATION OF PARAMETRIC STRICT
FEEDBACK SYSTEMS WITH MODIFIED
BACKSTEPPING

The modified adaptive backstepping uses the above-
reviewed IPE as a basis for the design of control laws
that provide stability and convergence for a non-
linear system without requiring the negative
(semi)definiteness of the Lyapunov function
derivative along its solutions everywhere in the state
space. As mentioned before, this feature can lead to a
more efficient control process in terms of control
effort.

Consider the following n™ order uncertain non-linear
system:

X =kx, + ‘9TF1(X1J) + fl(xpt)
iy = kyxs + 0" Fy(x, x,,1) + f(x, x,.1)
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X, =kix;yy + HTF,-(xl,...,x,-,z) + f,-(xl,...,xl»,z)
i, = g + 0" F,(x,0) + f,(x,1)
The system (2) is in parametric strict-feedback form,
X, ]T e R" is the state, ue R is
g()=0, F() and f(),
i=1,..,n, are known smooth non-linear functions

where x =[x,
the system input,

and k;, i=1..,n—1, are nonzero scalars. It is
supposed that y = x; € R is the system output. The

objective is the tracking of the output y to a given
set-point y,, which is the output (y, = x,,(¢)) of the
reference model

= file, 0 1<i<mn<m

ys = xrl (t)’

X

3

where x, =[x, I' € ®™ is the state, y, is

xrm
the output and f,;(.), i =1, ...,m, are known smooth

non-linear functions.

The backstepping design procedure comprises n
steps. At each step, an intermediate virtual control
law is constructed using a quadratic Lyapunov
function. As previously mentioned, the sense of the
expression “Lyapunov function” in this paper
includes the case in which its derivative may also be
positive.
Step 1. Firstly, the auxiliary variable (error variable)
corresponding to the system output is defined:

Q=X Vs “4)
where y; is the desired set-point. Differentiating (4)
along (2) and (3):

. T

G =kn —x,)+kx, +0TF + fi = fr. (9
The error variable corresponding to the second state
variable is given by: z, = x, — x,, —;, wWhere
is the intermediate control law when x, —x,, is
taken as a virtual control input. Thus:

&4 = kzy tkoy +0"F + fig, (©6)
Fy=F and  f = f - f, +kx,. The
Lyapunov function associated with the subsystem (6)
is introduced:

where



1
Vi = E(Zl —a1)2

where T'=T7 >0 is the adaptive gain matrix,

Soalrba) o

a, € R and @, is the parameter estimate vector for
this step. The derivative of (7) along (6) is:
V, = Zl(kIZZ +koy +0"F + fi,)-az, -

2 (8)
- (0 - elst) r glst'
The intermediate control law ¢, is defined as:
1 A
(4] =k—(_C1121 _QIJ;tFls _fls)7 ©)

1
where ¢, € R is a constant scalar. The z, subsystem

may now be expressed as:

Z = -z thz + (9 ‘913:) Fig. (10)
With (9), (10) and update law 9“ =TF,(z —a):
V1 _01121 +kiz12y +ayey 2y — ajkz;. (1D

It is important to note that, contrary to what is
required in the traditional backstepping procedure,
negative values for ¢, are allowed.

Step i (2<i<n-1). The error variable
corresponding to the i state variable is given by:
Zp =X = Xy — O (12)
Its derivative is
= ki(xi+1 - xr,i+1)+ 0" Fy + [y, 13)
where
—! 9
F,=F - 9% F; and
j=1 %
o,
]Ciszfi_frt+ktxrl+l z axl (/ ]+1+f)
j=1 J
2 o, é L
D 2rtl Z i
j=1 %%y 0 i

The error variable correspondmg to the (i + 1)th state
variable is given by: z,,, = x;,, — x,;,; — a;, where
«; is the intermediate control law when x;,, — x, ;,,
is taken as a virtual control input. We have then:

2 = kizpy + ki + 0T F + £ (14)
The intermediate Lyapunov function is introduced:

Vi=V +%(Zi -a) +%(‘9_‘9Aim)lrl(e—énh)(ls)

where a; € ® and éirh is the parameter estimate
vector for this step. The derivative of (15) along the
previous z; subsystems (j=1..i-1)and (14)is

i-1 z (i>2)

n LA )
Cj,leZt - (9 - eim)TF O —a;z; +
j=lt=1

(i>2)i=2(i=
+ Zatc”+a]+lk ]lkjlz +

J=1\1=j
(i>2)
Tl aCiior — Giokio |z —ai ki +

T
Tz (ki—lzi—l +kiziyy tha + 60" F + fis)
The intermediate control law ¢; is defined as:

l
a; = - l 12i-1 chlz lth is _fis (16)
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where cji € R, ]=1,...,i, are constant scalars.

The z; subsystem may now be expressed as
(i>2)i=2

;= - CiZj— (Ci—l,i + ki—l)Zi—l -

=1 ‘ (17
—Cii% thizig t (‘9 - énh)TFn
With (16), (17) and update law
éith =TF,(z —a;) (18)
we get

i
‘/i = _ZZC]‘JZ]‘Z[ + klZlZH_l +

j=11=1

—_

i—

i
+z Za Cir +aj+lkj —

a; ki |z; + (19)

j=1\r=j
¢ — ‘1;—1/9—1)2; —aik;z;,.
Step n (n=2). The auxiliary variable
corresponding to the last state variable is given by:
Ty =Xy T Xy (20)
and its derivative is
L =gu+O"F +f., Q1)
where
1o
F,=F -Y 2%-1 F; and
= axj
n-1 aa
-1
fm =fn frn an (kj'xj+l+f])
o1 ox;
J
_ i aan—l f _n_l ac{n—l A aan 1
1j

96, " o

j=1 7j j=1
The Lyapunov function of the whole system is:
vV, =V, + (Zn — (9 nth)Tr ( 0nth)(22)
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where a, € R and 6, is the parameter estimate

vector for this last step. The derivative of (22) along
the previous z; subsystems (j =1, ..., n-1) and (21) is

. p=in-l . x (n>2)
Vn == Cj,tzjzt - (0 - enth)Trilenth - anz'n +
j=lt=1
(n>2)yn=2(n-1
+ Z(z ac;, +a;gk; - aj_lkj_ljzj +
J=1\1=j

(n>2)
+ anflcnfl,nfl - aankth anl_anflknflzn +

T
+ y (kn—lzn—l + 8gu +6 Fns + fns)
The controller can now be chosen as

1
- E{ n-1%n-1 Z (’j n nth ns fns } (23)

where ¢, € R, j=1,..,n

The z,
definitive form:

, are constant scalars.

subsystem (21) can now be expressed in its



(n>2)n=2
Zn = = Cjn<j (Cn—l,n + kn—l )Zn—l -
= (24)
~ Cunln + (H - énfh)TF"S'
With the update law
ém‘h = Fan (Zn - an) (25)

and substituting (23) for u in Vn, we get the

expression for the Lyapunov function derivative of
the whole system:
non (n>2)

Ve ==2 2 ¢iu%% +

j=lt=1

(n>2)n=2

n
+ > [Z iy +ajk; = "jlkjl}j +
=iy

(n>2)
+ an—lcn—l,n—l + ancn—l,n + ankn—l - an—an—Z Zn-1 +

+ (ancn,n - anflknfl)zn'

Following the notation adopted in Section 2, the set
C is defined as

C:={ze§(":Vn>O} (26)

According to the IPE, the adaptive control of the
strict feedback system (2) will be achieved if the set
C is bounded, as the Lyapunov function (22) is
radially unbounded. The equation Vn = 0 represents

several kinds of geometric loci. Depending on the
values assumed by the set of parameters {c i € R

j=la,mt = j,., n} the set C will be bounded or
unbounded. There are geometric tests based on the
coefficients of the quadratic form Vn which can be
conducted to assess the boundedness of C.

Both the shape of C and the performance of the
controller as far as the control effort is concerned
rely on the values assumed by the set of parameters
{cj’, eR:j=L.,mt= j,...,n}. This allows us to

apply optimisation techniques on these parameters in
order to achieve a more efficient control process. As
the constraint represented by the boundedness of C is
a requisite for stability, we get the following
optimisation task:
transient duration
magnitude
of u

te ;1 of x (27)
boundedness of set C determined by}

{Ci j} = arg min [ + | of state variables

subject to .
the coefficients of Vn

where i, j = 1, ..., n. (27) aims not only at low
control effort magnitudes, but also at an acceptable
transient duration. Appropriate formalisation and
description associated with conventional
optimisation methods (e.g. based on gradient) are not
obtainable for (27). Indeed, the objective-function of
(27) does not allow the calculation of derivatives and
search space characteristics whose knowledge is
necessary to the application of those methods
(continuity, convexity, etc.) are not verifiable.
Optimisation techniques based on evolutionary

computation are therefore more adequate to the
optimisation task (27).

It is important to notice that with the traditional
backstepping (Krstic, et al., 1995) such an
optimisation task is not possible, because, as already
mentioned, the Lyapunov Direct Method and the La
Salle’s Invariance Principle requirements on which
the backstepping technique is based pose excessive
restrictions on the parameters search space.

4. AN EXAMPLE - CONTROL OF UNCERTAIN
CHUA’S SYSTEM WITH IMPROVED
PERFORMANCE

Analog electronic circuits are well-known examples
of systems exhibiting non-linear response. Among
these systems, the Chua’s circuit has become a
paradigm, due to its simplicity and richness of
behaviours. We work with the Chua’s circuit in its
dimensionless form:

5= p = px = p, (41| 1)

X, = pX = PX, + P, (28)

x; = —p7x;.
The equations (28) can be rendered into parametric
strict feedback form with the following state
variables transformations: x, = x,, x, = x, and
x,=x . So, with b =p,, b,=p,, 6 =p,,
0,=p;,0,=p, 6, =p,and 6, = p, we get:

xl = _blxz

X, =b,x,+0,x,—0,x, (29)

& =ut6,x, - 0,x, 6, (x, +1/~|x, ~1])
where a controller u(.) is assumed to be fed into the

third equation in (29). In comparison with the strict
feedback form (2) and in the case when the

parameters € = [9],92,...,95]T are unknown, we
have
ky = =bi,ky =by,8(x) =1 fi() = f,() = f3() =0
FO=[0 000 0of,FKO=k -x, 00 0f,
FO=0 0 x —x; —(x+1]-|s-1].
Our aim is the design of an adaptive state-feedback
controller which guarantees regulation of the state

x = [)c1 Xy X3 ]T at the origin and boundedness

of all the signals (state variables, control, parameter
estimates) in the closed-loop system with as less
control effort as possible.

Following the steps presented in Section 3 with
a, =a, =a, =1, we arrive at the control law

expression

u==byzy =321 — 2325 ~ C3323 + xléél) - xzéz(z) -

- [(bl/b2 )-(b1 —Cip— éél))]xz + (Cn TCp - ééz))xs - (30)
- [(Cu Ty~ ééz))/bzkxlés(l) - xzéa(z))_

- xzéf) + x3é3(4) - Qx3 + 1‘ - ‘x3 - 1‘)53(5),



where ¢, C,,, Cyy, Cpys Cpy» €y € R are  constant

11> =222 332 ~122 “13°

scalars and HA[ = [éi(l) éi(s)]r, i =123, are
the parameter estimates; at the update laws

el =62 = 6% =W = 6° = o,

° éz(l) =I'x (Zz - 1)’ 9*;2) =-Thx, (Zz - 1)’

3 _ pg@ _ o) _ 0.
69 =69 =69 = o,

3 A 4
93( ' = F3x2(z3 1), 93( ' = —F4x3(z3 1),
505
0% = Ty (es +1) =y — 1z — 1)
and at the expression for the Lyapunov function
derivative of the whole system:

s 2 2 2
V= —c 2] =025 — 3323 — 212 —

— 132123 — 32023 + (633 — by )23 (32)
+(er + e+ —b )y +
+ (e + Co3 + by + b))z,
According to the notation, the set C is defined as
C=fen®:V>o} (33)
As mentioned in the preceding section, the shape of
the set C and the performance of the controller (30)
with update laws (31) will rely on the values
assumed by the set {Cm Cpys Ci3s Cpas Crzs Cos J -

We employ a genetic algorithm (GA) (Michalewicz,
1996) in order to determine a satisfactory set of
parameters for the control law (30) and update laws
(31). The GA is used off-line to search through a
population of controllers (i.e. through a population of
sets of parameters {c“, Cpys Cyy> Cpys Cia» Cp J) - the

member most fit to be implemented. It is important
to point out that, as previously stated, in this problem
(see (27)) it is not possible to use neither classic nor
dedicated optimisation methods.

One of the requisites for the GA to find the best
solution to a particular problem is that the individuals
of the population must be encoded into a form upon
which the GA can operate efficiently. Here the
population has 100 chromosomes and each one has
six genes — thus correlating with the set of six
controller parameters —, whose alleles can take any
value in the range [-10, 10] with a precision of four
digits after the decimal point. Considering the
general case, the proposed method can be easily
extended to n™ order systems. In that case the GA

features a chromosome with n” — zz:i k genes.

GA processes include biomimetic operations such as
selection, crossover and mutation. Based on the idea
that, on average, the members of the population of
the current generation should be as good (or better)
at maximising the fitness function than those of the

previous generation, we utilise a variant of the elitist
strategy in which the 20 fittest members survive,
undisturbed, in the next generation. Crossover
combines the features of two parent chromosomes to
form two similar offspring. The offspring may then
replace weaker individuals in the population. We
employ the arithmetical crossover with the 80 fittest
members being selected for reproduction; of these,
parents are randomly chosen, with equal probability.
We also utilise non-uniform mutation, which
precludes the GA from converging to local solutions.
The GA is run over 50 generations.

The fitness function takes into account the objective
aimed at: control effort magnitudes as small as
possible without an excessive enlargement of the
transient response duration. An adequate transient
duration should be no greater than ¢, = 2 units of

time. For each chromosome at the generation f, we
carry out a simulation in order to evaluate its
performance (i.e. the performance of the
corresponding controller) in terms of the fitness
function

1

2 ] (34)
D+ j W(0) + Blx(o)|, dr

fitness =

where the Euclidean norm ||)c(.)||2 represents the

effect of the transient and £ is a weighting factor;
here, £ =100.
simulation, each individual is considered feasible or

infeasible. The feasible individuals are the ones
which make the C set bounded.

Before proceeding with the

The boundedness of C is determined through the
following matrices:

G2 T G3

A e
M, = %2 s — 3 M, = M, 3M224 (35)
2 2 | M3t
— (3 — C Ity RV
TBTB_C33 M, M5" M5 0

Mé4 = O.S(C11 +cpp tep3 - bl),
where {M3* = 0.5(cy; — b, ),
M224 = 0.5(C22 + C23 + bl + bz).

The following conditions must be satisfied as far as
the matrices (35) are concerned: rank(M;) = 3,
rank(M,) = 4, det(M,) < 0 and the real parts of the
eigenvalues of M| must have the same sign. In this

case the expression V=0 wil correspond to an
ellipsoid. The infeasible chromosomes are penalised
with p = 10'"°. Simulations are conducted only for the
feasible individuals (in this case, p = 0).

The parameters of the Chua’s system adopt the
following values:

b =16;b, =1;0, =1;6, =1,

1 2 1 2 (36)

6; =9.8008; 6, = 2.8028; 5 = —2.1021.
For these values the Chua’s system (29) exhibit a
chaotic response when u# = 0. The initial conditions
are x;(0) =0.2, x,(0) =0.5 and x;3(0) = 0.3. After



50 generations, the best chromosome consists of the
following genes:

¢ = —1.4056; ¢y, = —6.7052; ¢33 = —0.3747 ;
¢y =4.9612; ¢35 = 0.5991; ¢p3 = —0.1743.
The boundary of set C corresponding to these
parameters is an ellipsoid. Since C is a convex set
and the Lyapunov function (22) with n = 3 is a
convex function, the sup, .~ V(z) occurs at the

(37)

boundary of the set C. The set 51 is a sphere and the

set C is contained in ﬁ, . So, every solution
converges to the largest invariant set contained in
51. The introduction of the control law (30) and
update laws (31) with the parameters (37) and I' = 1
(the identity matrix) into the uncertain Chua’s system
makes the z state trajectory converge to the origin z =
0. In view of this and as far as the expressions of the
error variables are concerned, the x state trajectory
also converges to the origin x = 0, thereby achieving
the regulation objective.

The Fig. 1 shows the time responses of the state
variables x;, x, and x; when the controller (30)
and update laws (31) are applied to the system (29)
(solid lines). It confirms the effectiveness of the
design scheme with regard to the stabilisation
objective with transient duration ¢, = 2. It is also
shown the time responses obtained when the
traditional adaptive backstepping procedure (Krstic,
et al., 1995) with Lyapunov function

V= A zf:l Ziz + % Zf:l (9 - éith)TF_l (9 - éith)

is applied (dotted lines). In that case the control law

parameters are Cl1=Cp =c33=3 and
Cp = €3 = ¢p3 = 0. We also choose I = I for the

sake of comparison. These are the parameter values
which lead to ¢, = 2. It is important to point out that
in the traditional backstepping we must have
Ci1s Con»> €33 >0 and ¢y = ¢35 =¢p3 =0.

Stabilisation of uncertain Chua's circuit

the control effort when it is applied the controller
built on the traditional adaptive backstepping
procedure (dotted line). The control effort magnitude
is reduced when the controller derived from the
modified adaptive backstepping design with
parameters optimised via GA is applied. It is
important to note that there are no values for the
parameters c,,, C,,, C,, >0 of the traditional adaptive
backstepping controller that lead to less control effort
with ¢, = 2.

Control effort

100

— Traditional adaptive backst.
—— Modified adaptive backst. with GA

3 4

-150

Time

Fig. 2. Control effort magnitude reduction.

5. CONCLUSION

It is proposed a modification of the traditional
adaptive backstepping grounded on a recent
Extension to the Invariance Principle that allows the
incorporation of optimisation methods based on
evolutionary computation and can lead to a more
efficient performance in the control of parametric
strict feedback systems as far as the control effort is
concerned than when the traditional backstepping is
applied. The Chua’s circuit was used as an example
of the effectiveness of the approach.
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