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Abstract: We present a decentralized nonlinear flow control scheme for a class of
communication networks with physical constraints. Through a detailed analysis,
we demonstrate that nonlinear system theory can be applied to cope with satu-
ration nonlinearity and unknown disturbances in network flow control problems.
We solve the constrained queue regulation problem against traffic interferences
with control input and state saturation, under two explicitly identified conditions,
namely a “PE” condition and a Lipschitz-like condition. Asymptotic regulation is
achieved for both a single-node system and large-scale networks, for all feasible
initial states. The trade-offs of various control parameter settings are revealed
through our analysis. Computer simulations confirm the effectiveness of our non-
linear network flow control scheme. Copyright c©2005 IFAC
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1. INTRODUCTION

Recently, linear and nonlinear analysis and control
design tools prove effective in network flow control
problems (Alpcan and Basar, 2003; Wen and Ar-
cak, 2004; Srikant, 2004; Low et al., 2002; Quet
and Ozbay, 2004). Many previous results are
based on linearization ideas or linear robust con-
trol theory. Saturation constraints, especially on
nonlinear models have not been systematically ad-
dressed. Thus, the application of nonlinear control
theory to handle hard nonlinearities in large-scale
networks deserves further investigation.
We focus on nonlinear flow control problems, in
particular, under capacity saturation constraints
and nonlinear disturbances. In recent literature,
the authors of (Pitsillides et al., 2001) proposed
a nonlinear regulator for a buffer management
model. Using feedback linearization and robust
adaptive control ideas, the authors gave solu-
tion to bounded regulation against unknown time
varying traffics. However, the impact of saturation
constraints on control system performance is not
analyzed in (Pitsillides et al., 2001)
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Our work is inspired in part by the above dis-
cussion with particular interest to address the
saturation and to achieve asymptotic regulation
against disturbances. Besides a single-node sys-
tem, decentralized regulators for networks with in-
terconnected nodes are also proposed. Due to the
presence of saturation nonlinearities, extending
the robust adaptive control scheme in (Pitsillides
et al., 2001) to large-scale networks is nontrivial.
In this paper, we first propose a new control
law which achieves either asymptotic or practi-
cal queue regulation of the single-node system.
Quantitative bounds for the controller param-
eters are explicitly provided to guide us tune
the performance of the closed-loop system. Then,
the decentralized control of large-scale networks
is addressed, with the inter-node traffic being
treated as subsystem interconnection. We iden-
tify the conditions under which the constrained
regulation problem is solvable, namely a “per-
sistent excitation” (PE) (Khalil, 2002) condition
and a saturation-based Lipschitz-like condition.
Our ideas are in part inspired by recent advances
in decentralized control for large-scale nonlinear
systems (Jiang, 2004). The analysis shows that
the control design for the single-node system is
scalable to interconnected networks. The large-
scale network achieves either asymptotic or prac-
tical regulation, by appropriately tuning control
parameters.
The contributions of our paper are:



1. We address the issue of saturation constraints
on the control input and the state variables, be-
cause of their importance in control engineering
applications. As it is clearly understood in the
present literature (see (Hu and Lin, 2001) and nu-
merous references therein), the available solutions
for the stabilization of linear systems with control
input saturation already require involved analysis
and synthesis techniques. For nonlinear systems
with state and input constraints, the stabilization
problem has received much less attention and
requires further study. In particular, we give a
solution to the constrained regulation of a class
of large-scale networks, for all feasible initial con-
ditions. In this sense, global regulation is achieved.
2. Unlike (Pitsillides et al., 2001) where only
bounded regulation was addressed for a single-
node system, here we consider both a single-
node system and a network with interconnected
nodes. Moreover, we achieve asymptotic regula-
tion as opposed to the bounded regulation. For
the single-node system, the uncertain traffic is
treated as non-vanishing disturbances, while for
the large-scale network, the unknown traffic is sep-
arated into structured (vanishing) and unstruc-
tured (non-vanishing) uncertainties to enhance
the performance.
3. As compared to our previous “low gain” control
design in (Fan and Jiang, 2004), we use “high
gain” feedback in this paper to improve the per-
formance of the closed-loop system, namely to
achieve faster convergence and stronger distur-
bance rejection.
It should be mentioned that our proposed solu-
tion is application-oriented and does employ the
physical characteristics of the system in question.
For instance, the asymptotic regulation of queue
length is achievable by means of a feedback control
law, provided that a “PE” (persistency of excita-
tion) condition is met for the incoming (distur-
bance) traffic. As it will be clear later, there is
no need to activate the feedback control law (or
assign additional capacity) if this PE condition
is not fulfilled, or physically speaking if there is
not enough incoming (to-be-rejected disturbance)
traffic. The Lipschitz-like condition is related to
the physical constraints such as power constraint
and capacity constraint.

2. SINGLE-NODE SYSTEM DESIGN

By “node”, we refer to a router/switch in the
network throughout the rest of the paper. The
following model is first introduced in (Agnew,
1976) and is considered by several authors recently
(Tipper and Sundareshan, 1990)(Pitsillides et al.,
2001)(Guffens and Bastin, 2003). The model uses
the conservation law to establish the dynamic
equation of the buffer queue length:

ẋ(t) =− x(t)
1 + x(t)

· C(t) + λ(t) (1)

x(t) ∈ [0, xbuffer] (2)

C(t) ∈ [0, Cserver] (3)

In the above equation, queue size x is taken as
the state variable. C represents the to-be-assigned
capacity. It is taken as the control input. These
variables are subject to physical constraints (2)-
(3) with xbuffer denoting size of the buffer and
Cserver the maximum available capacity. λ rep-
resents the average incoming traffic rate, which
is considered as a disturbance input. By conser-
vation law, the first term in the above equation
represents the average outgoing traffic rate. The
validity of using µ(x) = x

1+xC to represent the
average traffic departure rate has been verified
by Filipiak and Tipper through simulations, re-
spectively in (Filipiak, 1984) and (Tipper and
Sundareshan, 1990).
xref is introduced as the given reference queue
length. It should be chosen such that the node
is sufficiently utilized while preserving certain
capability to handle additional traffic bursts. In
practice, an empty or extremely small steady state
queue usually leads to link under-utilization and
is thus undesired. We suppose that the reference
value xref satisfies:

ε ≤ xref < xbuffer.

The lower bound ε > 0 could be an arbitrary pos-
itive value. Our control law does not bear singu-
larity when xref → 0. The assumption xref ≥ ε is
due to physical considerations. For later reference,
x̄

.= x− xref stands for the regulation error.
We are more interested in asymptotic regulation
for the queue length (i.e., x̄ → 0 or, x →
xref ) than (merely) bounded regulation as in
(Pitsillides et al., 2001).
The following saturated controller is proposed for
achieving asymptotic regulation, in the presence
unknown but bounded disturbances.

C(x) = max {0, Cserver · sat [αx̄ + βsgn (x̄)]} (4)

where α, β are design parameters. “sat” is the
commonly used saturation function defined as
sat(y) = min{|y|, 1}sgn(y), where “sgn” is the
standard signum function. Since it is unnecessary
to assign additional capacity when the node is
under-utilized, we take C = 0 when x < xref .
We now analyze the performance of the closed-
loop system under the control law (4). In this sec-
tion, assume that the average rate of the incoming
traffic (λ) satisfies the following hypothesis.

Assumption 1. λ(t) belongs to [0, b] for all t ≥ 0,
with b a constant satisfying that

0 < b ≤ xref

1 + xref
Cserver. (5)



Furthermore, let t0 ≥ 0 be any initial time instant,
xref <

∫∞
t0

λ(t)dt ≤ ∞.

Remark 1. xref <
∫∞

t0
λ(t)dt ≤ ∞ is a “persistent

excitation”(PE) requirement. Under this assump-
tion, queue length x(t) will reach the reference
value in finite-time if x(t0) < xref . Physically, this
implies that the node is sufficiently utilized in the
long run. Otherwise if x(t) < xref for ∀t ∈ [t0,∞),
we consider the node as being under-utilized and
it is not necessary to assign (additional) capacity.
Note that no regularity assumption is made on λ.

We will show that if λ(t) satisfies Assumption 1
and if the control parameters are properly tuned,
the trajectories of the closed-loop system converge
to xref asymptotically under the control law (4).
The system can also be tuned such that x is
ultimately confined to an arbitrarily small neigh-
borhood around xref . The trade-offs between dif-
ferent parameter settings will be revealed through
the analysis and the remark that follows.
For notational convenience, set ε = b(1 +
xref )/Cserverxref ≤ 1.

Theorem 1. Consider the closed-loop system com-
posed of (1) and (4), where α > 0, β ≥ 0. Sup-
pose λ(t) satisfies Assumption 1. For all x(t0) ∈
[0, xbuffer] with t0 ≥ 0 being the initial time
instant, if β ≥ ε, x(t) converges to xref asymp-
totically. For any 0 ≤ β < ε, if α is chosen large
enough, the system achieves practical regulation
in the sense that x(t) satisfies (2) and x(t) is
ultimately confined within an arbitrarily small
neighborhood of xref .

Proof . Under the “PE” condition in Assump-
tion 1, there exists t0 < t1 < ∞ such that x(t1) ≥
xref if x(t0) < xref . x(t) ≥ xref ,∀t ≥ t1 by
observing (1) and (4). Due to such observations,
we assume without loss of generality that x(t0) ≥
xref . This implies that x(t) ≥ xref ,∀t ≥ t0. We
analyze separately for the three cases when β ≥ 1,
ε ≤ β < 1 or when 0 ≤ β < ε. In the first two
cases, asymptotic regulation is achieved; In the
third case, practical regulation is achieved if α is
chosen to be sufficiently large.
Case 1. When β ≥ 1, αx̄ + βsgn(x̄) ≥ 1 and
C(x) = Cserver for all x > xref . The controller
in this case is of the “bang-bang” type. For all
x > xref ,

ẋ(t) < − xref

1 + xref
Cserver + b ≤ 0.

It follows that x(t) → xref as t →∞.
Case 2. When ε ≤ β < 1 4 , we show that x(t)
converges to xref asymptotically for all α > 0
as follows. We consider the following two cases

4 In this case, ε < 1.

when α ∈
(

1−β
xbuffer−xref

,∞
)

or when α ∈(
0, 1−β

xbuffer−xref

]
.

Case 2.a If α > 1−β
xbuffer−xref

, it can be shown
that, there exists finite t∗ ≥ t0 such that x(t∗) ∈
[xref , x∗] and x(t) ∈ [xref , x∗],∀t ≥ t∗. In fact, in
this case, the following lemma holds, whose proof
is given in the Appendix.

Lemma 1. Consider the closed-loop system com-
posed of (1) and (4). Suppose Assumption 1 holds
and 0 ≤ β < 1, α > 1−β

xbuffer−xref
. For all

x(t0) ∈ [0, xbuffer], x(t) satisfies (2) for all t ≥ t0.
Furthermore, there exists some finite t∗ ≥ t0 such
that ∀t ≥ t∗, xref ≤ x(t) ≤ x∗, where x∗ = 1−β

α +
xref .

On [xref , x∗], C(x) is unsaturated, leading to

ẋ(t) = − x(t)
1 + x(t)

Cserver [αx̄ + βsgn(x̄)] + λ(t).

Consider the function V = 1
2 x̄2. For all t ≥ t∗,

V̇ = x̄

(
− x

1 + x
Cserver [αx̄ + βsgn(x̄)] + λ(t)

)
(6)

≤ − xref

1 + xref
Cserverαx̄2 −

(
xref

1 + xref
Cserverβ − b

)
|x̄|.

Thus V̇ ≤ 0. By Barbălat’s Lemma (Khalil, 2002),
we can conclude that x̄(t) → 0 as t →∞.
Case 2.b If 0 < α ≤ 1−β

xbuffer−xref
, it holds that

αx̄ + βsgn(x̄) ≤ 1 for all x ∈ [xref , xbuffer]. C(x)
is unsaturated. By similar analysis as we did for
Case 2.a, we can arrive at that limt→∞ x̄(t) → 0.
In Case 1 and Case 2, if it holds that ε < 1 and
β > ε, x̄(t) converges to zero in finite time.
Case 3. If 0 ≤ β < ε, for α large enough, x(t)
converges to an arbitrarily small neighborhood
of xref . Indeed, for all α > 1−β

xbuffer−xref
, by

Lemma 1, x(t) satisfies (2) and is ultimately
confined to {x|xref ≤ x ≤ x∗}. The set can be
made arbitrarily small if α is chosen to be large
enough, i.e., x∗ → xref as α →∞. 2

Remark 2. The controller is discontinuous for any
β > 0. In the case when β = 0, the controller is
continuous and practical regulation is achieved if
α is sufficiently large.

3. LARGE-SCALE SYSTEM SYNTHESIS

In this section, we study a large-scale network
composed of n interconnected nodes. For each
node i = 1, ..., n, we use the following model to
describe its dynamics.

ẋi =− xi

1 + xi
· Ci + λi(t, x1, ..., xn), (7)

xi ∈ [0, x
[i]
buffer], (8)

Ci ∈
[
0, C [i]

server

]
. (9)



For every ith subsystem, the variables have the
same physical meanings as those of (1). In a large-
scale network where the nodes are interconnected,
the interfering traffic is affected by the activi-
ties of the interfering nodes, reflected in part by
their queue lengths. We use a nonlinear function
λi : [0,∞) × <n

+ → <+ to denote the average
incoming traffic rate from other interconnected
nodes, which is considered as a disturbance input.
Let xref

i denote a desired reference queue length
for node i. It is assumed that the reference value
xref

i ,∀i ∈ [1, n], satisfy:

ε ≤ xref
i < x

[i]
buffer.

The lower bound ε > 0 could be an arbitrary
positive value. Denote x̄i

.= xi − xref
i the reg-

ulation error between the queue state and the
reference value. Before addressing the asymptotic
queue regulation, we first introduce assumptions
and some interesting preliminary results.

Hypothesis and Preliminary Results.

Assumption 2. ∀i = 1, ..., n, λi satisfies the fol-
lowing Lipschitz-like condition 5 :

|λi(t, y1, ..., yn)− λi(t, y′1, ..., y
′
n)| (10)

≤
n∑

j=1,j 6=i

γijsat {σij(|ỹj |)} ,

λi(t, 0, ..., 0) = 0, ∀t ≥ 0 (11)

where ỹj = yj − y′j , σij(·) : <+ → <+ are
continuously differentiable functions that satisfies
σij(0) = 0,∀i, j ∈ {1, ..., n}. γijs are positive
constants that satisfy

n∑

j=1,j 6=i

γij <
xref

i

1 + xref
i

C [i]
server. (12)

Furthermore, for each i and for any fixed t0 ≥
0, the following inequality holds where X(t) =
[x1(t), ..., xn(t)]T :

xref
i <

∞∫

t0

λi(t,X(t))dt ≤ ∞. (13)

Remark 3. The Assumption is motivated by phys-
ical characteristics of networks. The function
“sat” is adopted here to highlight the impact
of capacity constraints on the interfering traffic.
Equation (11) means there are no traffic interfer-
ences for a network with empty queue.
Except for limited service capacity, other physical
factors also affect the interference intensity among

5 Technically, the R.H.S. can be relaxed as∑n

j=1
γijsat {σij(·)}. From the physical meaning of

this problem, we only consider the case for j 6= i, which
means the upper bound of the interfering traffics from

other nodes to node i is not dependent on the state of
node i.

the nodes, such as the distance between nodes
i, j, the power constraint (in wireless network)
and the connectivity conditions. We use constant
coefficients γij to represent the impacts of these
physical factors on the disturbance traffic from
node j to node i.

We now propose the following control law, then
introduce a lemma to discover interesting proper-
ties of the closed-loop system. For all i = 1, ..., n,

Ci(xi) = C [i]
server · sat [αix̄i + βisgn(x̄i)] ,

where αi >
1− βi

x
[i]
buffer − xref

i

, 0 ≤ βi < 1.

Lemma 2. Consider the closed-loop large-scale
system composed of (7) and (14). Suppose As-
sumption 2 holds.
For all xi(t0) ∈ [0, x

[i]
buffer], xi(t) satisfies (8),

∀i ∈ {1, ..., n}. Furthermore, there exists some
finite T ≥ t0 such that ∀t ≥ T ,

X(t) ∈ Ω .=
{

X ∈ <n|xref
i ≤ xi ≤ x∗i ,∀i = 1, ..., n

}
,

where x∗i = 1−βi

αi
+ xref

i > xref
i .

The proof of Lemma 2 is based on Lemma 1. It is
omitted due to space limitation.

Main Result.
We now analyze the closed-loop system perfor-
mance under the control law (14) with αi and
βi satisfying (14). For notational conveniences,
denote P the n×n matrix with elements pij , i, j =
1, ..., n,

pii =
xref

i

1 + xref
i

C [i]
serverαi, pij = −1

2
(γ̄ij + γ̄ji) ,

γ̄ij = max
0≤x̄j≤x∗

j
−xref

j

γijsat{σij(x̄j)}
x̄j

.

γ̄ij is finite because of the definition of “sat”
function and the property of function σij . For all
i = 1, ..., n, let

υi
.=

n∑

j 6=i

γijsat
{

σij(x
ref
j )

}
, εi

.=
υi(1 + xref

i )

C
[i]
serverx

ref
i

.

Theorem 2. Consider closed-loop system com-
posed of (7) and (14) where αi, βi satisfy (14)
and αis are chosen such that P is positive definite.
Suppose that the interfering traffic λi satisfies
Assumption 2. If βi ∈ [εi, 1),∀i ∈ {1, ..., n}, the
queue length xi of every node converges to xref

i

asymptotically for all xi(t0) ∈ [0, x
[i]
buffer]. If for

some i ∈ {1, ..., n}, βi ∈ [0, εi), the closed-loop
system achieves practical regulation if αis are
chosen sufficiently large.



Proof . We first show that if all βis satisfy βi ∈
[εi, 1), the system achieves asymptotic regulation.
By definition of υi,

υi ≤
n∑

j=1,j 6=i

γij <
xref

i

1 + xref
i

C [i]
server, i = 1, ..., n.

Thus by the definition of εi, there exists βi such
that εi ≤ βi < 1 for every i. By the definition of P ,
αis can be chosen such that P > 0. According to
Lemma 2, the trajectories the closed-loop system
satisfy (8), and after some finite T ≥ t0, are
ultimately confined within Ω. We now analyze the
system for all t ≥ T . By applying (10) and (11),
it holds

|λi(t, x1, ..., xn)− λi(t, x
ref
1 , ..., xref

n )| (14)

≤
n∑

j=1,j 6=i

γijsat {σ(x̄j)} .

λi(t, x
ref
1 , ..., xref

n ) ≤ υi. (15)

leading to

λi(t, x1, ..., xn) ≤
n∑

j=1,j 6=i

γijsat {σij(x̄j)}+ υi.

Since xi(t) ∈ [xref
i , x∗i ], αix̄i(t) + βisgn(x̄i(t)) ≤

1,∀i = 1, ..., n,

Ci(xi(t)) = C [i]
server [αx̄i(t) + βisgn(x̄i(t))] .

Consider the function V = 1
2

∑n
i=1 x̄2

i . It holds,
by differentiating V along the closed-loop system
trajectory and using the definitions of P and γ̄ij ,

V̇ =

n∑
i=1

x̄i

(
− xi

1 + xi
Ci + λi

)

≤
n∑

i=1

x̄i

[
− xref

i

1 + xref
i

C
[i]
server [αix̄i + βisgn(x̄i)]

+

n∑
j=1,j 6=i

γijsat {σij(x̄j)}+ υi

]

≤ −
n∑

i=1

xref
i C

[i]
server

1 + xref
i

αix̄
2
i +

n∑
i=1

x̄i

n∑
j=1,j 6=i

γ̄ij x̄j

−
n∑

i=1

(
xref

i

1 + xref
i

C
[i]
serverβi − υi

)
|x̄i|

≤ −X̄T PX̄ −
n∑

i=1

(
xref

i

1 + xref
i

C
[i]
serverβi − υi

)
|x̄i|,

where X̄ = [x̄1, ..., x̄n]T .
Therefore, V̇ ≤ 0. By Barbălat’s Lemma (Khalil,
2002), we conclude that

lim
t→∞

n∑

i=1

|x̄i(t)| = 0.

If for some i ∈ {1, ..., n}, βi ∈ [0, εi), we show
that practical regulation is achieved if αis are suf-
ficiently large. Indeed, by Lemma 2, xi(t) satisfies

(8) ∀t ≥ t0,∀i ∈ {1, ..., n} and X(t) is ultimately
confined within Ω. By definition of x∗i , if αi →∞,
x∗i → xref

i . In other words, Ω can be made ar-
bitrarily small if αis are chosen to be sufficiently
large.2
We now present our simulation results for both
a single node system and a three-node inter-
connected system. We choose the following pa-
rameters for the single network node: Cserver =
5, xbuffer = 30, xref = 5, x(t0) = 30. The con-
troller parameters are set as: α = 0.018, β = 0.62.
We use a sine wave bounded by b = 2.6 to rep-
resent the uncertain traffic disturbances. For the
three-node interconnected system, the parameters
of the three nodes and their respective controller
parameters are shown in Table 1. The inter-node
traffic λi is modelled by a sine waves. γ12 =
2.04, γ13 = 2.42, γ21 = 2.34, γ23 = 2.65, γ31 =
1.4, γ32 = 2.8. We take σijs as tan−1 functions.
As confirmed by Figure 1, the regulation errors of
both systems converge to zero asymptotically.

Table 1. Simulation parameters for a
three-node network

node 1 node 2 node 3

x
[i]
buffer

35 28 36

xi(t0) 35 28 36

xref
i 10 8 7

C
[i]
server 7 8 8

αi 0.05 0.062 0.04

βi 0.17 0.16 0.25

4. CONCLUSIONS

Through theoretic analysis and simulations, we
have shown that we achieve either asymptotic
regulation or practical regulation of a class of
networks against unknown traffics, for all feasible
initial queue lengths, as opposed to the bounded
regulation in (Pitsillides et al., 2001). Explicit con-
ditions are identified under which the constrained
global regulation problem is solvable. We de-
compose the disturbances in large-scale networks
into structured (vanishing) and unstructured (un-
vanishing) uncertainties to improve the perfor-
mance. The control scheme is scalable and the
system can accommodate newly appended nodes.
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5. APPENDIX

5.1 Proof of Lemma 1.

It can be directly checked that xref < x∗ <
xbuffer. We first analyze the case when x(t0) <
xref . When x(t) < xref , it holds ẋ(t) = λ(t) ≥
0. Thus for any x(t0) < xref , under the “PE”
condition in Assumption 1, there exists finite t′ >
t0 such that xref ≤ x(t′) ≤ x∗.
We then analyze the case when x(t0) > x∗. For
all x(t) ∈ (x∗, xbuffer], αx̄(t) + βsgn(x̄(t)) > 1,
thus C(x(t)) = Cserver. It holds, by applying
Assumption 1,

ẋ(t) < − x∗i
1 + x∗i

Cserver + b < 0.

It follows that for any x(t0) > x∗, there exists
some finite t

′′
> t0 such that xref ≤ x(t

′′
) ≤ x∗.

The above analysis leads to that for all x(t0) ∈
[0, xbuffer], there must exists finite t∗ ≥ t0 such
that xref ≤ x(t∗) ≤ x∗. We now prove by
contradiction that xref ≤ x(t) ≤ x∗,∀t ≥ t∗. In
fact, suppose x(t) > x∗ or x(t) < xref for some
t > t∗, there must exists some t1 ≥ t∗ such that
either one of the following two statements is true:
S1. x(t1) = x∗ and x(t1 + τ) > x∗ for some τ > 0,
S2. x(t1) = xref and x(t1 + τ) < xref for some
τ > 0.
When x = x∗, αx̄ + βsgn(x̄) = 1, thus C(x∗) =
Cserver. It holds:

ẋ < − xref

1 + xref
Cserver + b ≤ 0.

This contradicts S1. When x = xref , C(xref ) = 0.
Thus ẋ = λ ≥ 0, which contradicts S2. We can
conclude that xref ≤ x(t) ≤ x∗,∀t ≥ t∗. In
other words, {x|xref ≤ x ≤ x∗} is an attractive
invariant set. The above analysis has revealed that
x(t) satisfies (2) for all t ≥ t0.


